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Abstract

Bidirectional typechecking, in which terms either synthesize a type
or are checked against a known type, has become popular for its
scalability (unlike Damas-Milner type inference, bidirectional typ-
ing remains decidable even for very expressive type systems), its
error reporting, and its relative ease of implementation. Following
design principles from proof theory, bidirectional typing can be ap-
plied to many type constructs. The principles underlying a bidirec-
tional approach to polymorphism, however, are less obvious. We
give a declarative, bidirectional account of higher-rank polymor-
phism, grounded in proof theory; this calculus enjoys many proper-
ties such as η-reduction and predictability of annotations. We give
an algorithm for implementing the declarative system; our algo-
rithm is remarkably simple and well-behaved, despite being both
sound and complete.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features—polymorphism

Keywords bidirectional typechecking, higher-rank polymorphism

1. Introduction

Bidirectional typechecking (Pierce and Turner 2000) has become
one of the most popular techniques for implementing typecheck-
ers in new languages. This technique has been used for depen-
dent types (Coquand 1996; Abel et al. 2008; Löh et al. 2008; As-
perti et al. 2012); subtyping (Pierce and Turner 2000); intersec-
tion, union, indexed and refinement types (Xi 1998; Davies and
Pfenning 2000; Dunfield and Pfenning 2004); termination check-
ing (Abel 2004); higher-rank polymorphism (Peyton Jones et al.
2007; Dunfield 2009); refinement types for LF (Lovas 2010); con-
textual modal types (Pientka 2008); compiler intermediate repre-
sentations (Chlipala et al. 2005); and object-oriented languages in-
cluding C♯ (Bierman et al. 2007) and Scala (Odersky et al. 2001).
As can be seen, it scales well to advanced type systems; moreover,
it is easy to implement, and yields relatively high-quality error mes-
sages (Peyton Jones et al. 2007).
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However, the theoretical foundation of bidirectional typecheck-
ing has lagged behind its application. As shown by Watkins et al.
(2004), bidirectional typechecking can be understood in terms of
the normalization of intuitionistic type theory, in which normal
forms correspond to the checking mode of bidirectional typecheck-
ing, and neutral (or atomic) terms correspond to the synthesis
mode. This enables a proof of the elegant property that type anno-
tations are only necessary at reducible expressions, and that normal
forms need no annotations at all. The benefit of the proof-theoretic
view is that it gives a simple and easy-to-understand declarative ac-
count of where type annotations are necessary, without reference to
the details of the typechecking algorithm.

While the proof-theoretic account of bidirectional typecheck-
ing has been scaled up as far as type refinements and intersection
and union types (Pfenning 2008), as yet there has been no com-
pletely satisfactory account of how to extend the proof-theoretic
approach to handle polymorphism. This is especially vexing, since
the ability of bidirectional algorithms to gracefully accommodate
polymorphism (even higher-rank polymorphism) has been one of
their chief attractions.

In this paper, we extend the proof-theoretic account of bidirec-
tional typechecking to full higher-rank polymorphism (i.e., pred-
icative System F), and consequently show that bidirectional type-
checking is not merely sound with respect to the declarative seman-
tics, but also that it is complete. Better still, the algorithm we give
for doing so is extraordinarily simple.

First, as a specification of type checking, we give a declara-
tive bidirectional type system which guesses all quantifier instanti-
ations. This calculus is a small but significant contribution of this
paper, since it possesses desirable properties, such as the preserva-
tion of typability under η-reduction, that are missing from the type
assignment version of System F. Furthermore, we can use the bidi-
rectional character of our declarative calculus to show a number
of refactoring theorems, enabling us to precisely characterize what
sorts of substitutions (and reverse substitutions) preserve typability,
where type annotations are needed, and when programmers may
safely delete type annotations.

Then, we give a bidirectional algorithm that always finds corre-
sponding instantiations. As a consequence of completeness, we can
show that our algorithm never needs explicit type applications, and
that type annotations are only required for polymorphic, reducible
expressions—which, in practice, means that only let-bindings of
functions at polymorphic type need type annotations; no other ex-
pressions need annotations.

Our algorithm is both simple to understand and simple to im-
plement. The key data structure is an ordered context containing all
bindings, including type variables, term variables, and existential
variables denoting partial type information. By maintaining order,
we are able to easily manage scope information, which is particu-
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Terms e ::= x | () | λx. e | e e | (e : A)

Figure 1. Source expressions

Types A,B, C ::= 1 | α | ∀α. A | A → B
Monotypes τ, σ ::= 1 | α | τ → σ
Contexts Ψ ::= · | Ψ,α | Ψ, x : A

Figure 2. Syntax of declarative types and contexts

larly important in higher-rank systems, where different quantifiers
may be instantiated with different sets of free variables. Further-
more, ordered contexts admit a notion of extension or informa-
tion increase, which organizes and simplifies the soundness and
completeness proofs of the algorithmic system with respect to the
declarative one.

Contributions. We make the following contributions:

• We give a declarative, bidirectional account of higher-rank
polymorphism, grounded strongly in proof theory. This cal-
culus has important properties (such as η-reduction) that the
type assignment variant of System F lacks, yet is sound and
complete (up to βη-equivalence) with respect to System F.

As a result, we can explain where type annotations are needed,
where they may be deleted, and why important code transfor-
mations are sound, all without reference to the implementation.

• We give a very simple algorithm for implementing the declar-
ative system. Our algorithm does not need any data structure
more sophisticated than a list, but can still solve all of the prob-
lems which arise in typechecking higher-rank polymorphism
without any need for search or backtracking.

• We prove that our algorithm is both sound and complete with
respect to our declarative specification of typing. This proof is
cleanly structured around context extension, a relational notion
of information increase, corresponding to the intuition that our
algorithm progressively resolves type constraints.

As a result of completeness, programmers may safely “pay no
attention to the implementor behind the curtain”, and ignore
all the algorithmic details of unification and type inference: the
algorithm does exactly what the declarative specification says,
no more and no less.

Lemmas and proofs. Proofs of the main results, as well as state-
ments of all lemmas (and their proofs), can be found in the ap-
pendix, available at www.cs.queensu.ca/~jana/papers/bidir/.

2. Declarative Type System

In order to show that our algorithm is sound and complete, we need
to give a declarative type system to serve as the specification for
our algorithm. Surprisingly, it turns out that finding the correct
declarative system to use as a specification is itself an interesting
problem!

Much work on type inference for higher-rank polymorphism
takes the type assignment variant of System F as a specification
of type inference. Unfortunately, under these rules typing is not
stable under η-reductions. For example, suppose f is a variable of
type 1 → ∀α. α. Then the term λx. f x can be ascribed the type
1 → 1, since the polymorphic quantifier can be instantiated to 1
between the f and the x. But the η-reduct f cannot be ascribed the
type 1 → 1, because the quantifier cannot be instantiated until after
f has been applied. This is especially unfortunate in pure languages
like Haskell, where the η law is a valid program equality.

Therefore, we do not use the type assignment version of System
F as our declarative specification of type checking and inference.

Ψ ⊢ A Under context Ψ, type A is well-formed

α ∈ Ψ

Ψ ⊢ α
DeclUvarWF

Ψ ⊢ 1
DeclUnitWF

Ψ ⊢ A Ψ ⊢ B

Ψ ⊢ A → B
DeclArrowWF

Ψ,α ⊢ A

Ψ ⊢ ∀α. A
DeclForallWF

Ψ ⊢ A ≤ B Under context Ψ, type A is a subtype of B

α ∈ Ψ

Ψ ⊢ α ≤ α
≤Var

Ψ ⊢ 1 ≤ 1
≤Unit

Ψ ⊢ B1 ≤ A1 Ψ ⊢ A2 ≤ B2

Ψ ⊢ A1 → A2 ≤ B1 → B2

≤→

Ψ ⊢ τ Ψ ⊢ [τ/α]A ≤ B

Ψ ⊢ ∀α. A ≤ B
≤∀L

Ψ,β ⊢ A ≤ B

Ψ ⊢ A ≤ ∀β. B
≤∀R

Figure 3. Well-formedness of types and subtyping in the declara-
tive system

Instead, we give a declarative, bidirectional system as the specifi-
cation. Traditionally, bidirectional systems are given in terms of a
checking judgment Ψ ⊢ e ⇐ A, which takes a type A as input and
ensures that the term e checks against that type, and a synthesis
judgment Ψ ⊢ e ⇒ A, which takes a term e and produces a type
A. This two-judgment formulation is satisfactory for simple types,
but breaks down in the presence of polymorphism.

The essential problem is as follows: the standard bidirectional
rule for checking applications e1 e2 in non-polymorphic systems
is to synthesize type A → B for e1, and then check e2 against A,
returning B as the type. With polymorphism, however, we may have
an application e1 e2 in which e1 synthesizes a term of polymorphic
type (e.g., ∀α.α → α). Furthermore, we do not know a priori how
many quantifiers we need to instantiate.

To solve this problem, we turn to focalization (Andreoli 1992),
the proof-theoretic foundation of bidirectional typechecking. In fo-
cused sequent calculi, it is natural to give terms in spine form
(Cervesato and Pfenning 2003; Simmons 2012), sequences of ap-
plications to a head. So we view every application as really being a
spine consisting of a series of type applications followed by a term
application, and introduce an application judgment Ψ ⊢ A • e ⇒⇒

C, which says that if a term of type A is applied to argument e, the
result has type C. Consequently, quantifiers will be instantiated ex-
actly when needed to reveal a function type.

The application judgment lets us suppress explicit type applica-
tions, but to get the η law, we need more. Recall the example with
f : 1 → ∀α. α. In η-reducing λx. f x to f, we reduce the number
of applications in the term. That is, we no longer have a syntac-
tic position at which we can (implicitly) instantiate polymorphic
quantifiers. To handle this, we follow Odersky and Läufer (1996)
in modeling type instantiation using subtyping, where subtyping is
defined as a “more-polymorphic-than” relation that guesses type in-
stantiations arbitrarily deeply within types. As a result, 1 → ∀α. α
is a subtype of 1 → 1, and the η law holds.

Happily, subtyping does fit naturally into bidirectional sys-
tems (Davies and Pfenning 2000; Dunfield 2007; Lovas 2010),
so we can give a declarative, bidirectional type system that guesses
type instantiations, but is otherwise entirely syntax-directed. In
particular, subsumption is confined to a single rule (which switches
from checking to synthesis), and our use of an application judgment
determines when to instantiate quantifiers. The resulting system is
very well-behaved, and ensures that the expected typability results
(such as typability being preserved by η-reductions) continue to
hold. Furthermore, our declarative formulation makes it clear that
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Ψ ⊢ e ⇐ A Under context Ψ, e checks against input type A

Ψ ⊢ e ⇒ A Under context Ψ, e synthesizes output type A

Ψ ⊢ A • e ⇒⇒ C Under context Ψ, applying a function of type A to e synthesizes type C

(x : A) ∈ Ψ

Ψ ⊢ x ⇒ A
DeclVar

Ψ ⊢ e ⇒ A Ψ ⊢ A ≤ B

Ψ ⊢ e ⇐ B
DeclSub

Ψ ⊢ A Ψ ⊢ e ⇐ A

Ψ ⊢ (e : A) ⇒ A
DeclAnno

Ψ ⊢ () ⇐ 1
Decl1I

Ψ ⊢ () ⇒ 1
Decl1I⇒

Ψ,α ⊢ e ⇐ A

Ψ ⊢ e ⇐ ∀α. A
Decl∀I

Ψ ⊢ τ Ψ ⊢ [τ/α]A • e ⇒⇒ C

Ψ ⊢ ∀α. A • e ⇒⇒ C
Decl∀App

Ψ, x : A ⊢ e ⇐ B

Ψ ⊢ λx. e ⇐ A → B
Decl→I

Ψ ⊢ σ → τ Ψ, x : σ ⊢ e ⇐ τ

Ψ ⊢ λx. e ⇒ σ → τ
Decl→I⇒

Ψ ⊢ e1 ⇒ A Ψ ⊢ A • e2 ⇒⇒ C

Ψ ⊢ e1 e2 ⇒ C
Decl→E

Ψ ⊢ e ⇐ A

Ψ ⊢ A → C • e ⇒⇒ C
Decl→App

Figure 4. Declarative typing

the fundamental algorithmic problem in extending bidirectional
typechecking to polymorphism is precisely the problem of figuring
out what the missing type applications are.

Preserving the η-rule for functions comes at a cost. The sub-
typing relation induced by instantiation is undecidable for im-
predicative polymorphism (Tiuryn and Urzyczyn 1996; Chrząszcz
1998). Since we want a complete typechecking algorithm, we con-
sequently restrict our system to predicative polymorphism, where
polymorphic quantifiers can be instantiated only with monomor-
phic types. We discuss alternatives in Section 9.

2.1 Typing in Detail

Language overview. In Figure 1, we give the grammar for our
language. We have a unit term (), variables x, lambda-abstraction
λx. e, application e1 e2, and type annotation (e : A). We write A,
B, C for types (Figure 2): types are the unit type 1, type variables α,
universal quantification ∀α. A, and functions A → B. Monotypes
τ and σ are the same, less the universal quantifier. Contexts Ψ
are lists of type variable declarations, and term variables x : A,
with the expected well-formedness condition. (We give a single-
context formulation mixing type and term hypotheses to simplify
the presentation.)

Checking, synthesis, and application. Our type system has three
main judgments, given in Figure 4. The checking judgment Ψ ⊢
e ⇐ A asserts that e checks against the type A in the context Ψ.
The synthesis judgment Ψ ⊢ e ⇒ A says that we can synthesize
the type A for e in the context Ψ. Finally, an application judgment
Ψ ⊢ A • e ⇒⇒ C says that if a (possibly polymorphic) function
of type A is applied to argument e, then the whole application
synthesizes C for the whole application.

As is standard in the proof-theoretic presentations of bidirec-
tional typechecking, each of the introduction forms in our calculus
has a corresponding checking rule. The Decl1I rule says that ()
checks against the unit type 1. The Decl→I rule says that λx. e
checks against the function type A → B if e checks against B with
the additional hypothesis that x has type A. The Decl∀I rule says
that e has type ∀α. A if e has type A in a context extended with a
fresh α.1 Sums, products and recursive types can be added similarly
(we leave them out for simplicity). Rule DeclSub mediates between

1 Note that we do not require an explicit type abstraction operation. As a
result, an implementation needs to use some technique like scoped type
variables (Peyton Jones and Shields 2004) to mention bound type variables
in annotations. This point does not matter to the abstract syntax, though.

synthesis and checking: it says that e can be checked against B, if
e synthesizes A and A is a subtype of B (that is, A is at least as
polymorphic as B).

As expected, we can infer a type for a variable (the DeclVar
rule) just by looking it up in the context. Likewise, the DeclAnno
rule says that we can synthesize a type A for a term with a type
annotation (e : A) just by returning that type (after checking that
the term does actually check against A).

Application is a little more complex: we have to eliminate
universals until we reach an arrow type. To do this, we use an
application judgment Ψ ⊢ A • e ⇒⇒ C, which says that if we
apply a term of type A to an argument e, we get something of type
C. This judgment works by guessing instantiations of polymorphic
quantifiers in rule Decl∀App. Once we have instantiated enough
quantifiers to expose an arrow A → C, we check e against A and
return C in rule Decl→App.

In the following example, where we are applying some function
polymorphic in α, Decl∀App instantiates the outer quantifier (to
the unit type 1; we elide the premise Ψ ⊢ 1), but leaves the inner
quantifier over β alone.

Ψ ⊢ x ⇐ (∀β. β→β)

Ψ ⊢ (∀β. β→β) → 1 → 1 • x ⇒⇒ 1 → 1
Decl→App

Ψ ⊢
(

∀α. (∀β. β→β) → α → α
)

• x ⇒⇒ 1 → 1
Decl∀App

In the minimal proof-theoretic formulation of bidirectional-
ity (Davies and Pfenning 2000; Dunfield and Pfenning 2004), in-
troduction forms are checked and elimination forms synthesize,
full stop. Even () cannot synthesize its type! Actual bidirectional
typecheckers tend to take a more liberal view, adding synthesis
rules for at least some introduction forms. To show that our system
can accommodate these kinds of extensions, we add the Decl1I⇒
and Decl→I⇒ rules, which synthesize a unit type for () and a
monomorphic function type for lambda expressions λx. e. We ex-
amine other variations, including a purist bidirectional no-inference
alternative, and a liberal Damas-Milner alternative, in Section 8.

Instantiating types. We express the fact that one type is a poly-
morphic generalization of another by means of the subtyping judg-
ment given in Figure 3. One important aspect of the judgment is
that types are compared relative to a context of free variables. This
simplifies our rules, by letting us eliminate the awkward side con-
ditions on sets of free variables that plague many presentations.
Most of the subtyping judgment is typical: it proceeds structurally
on types, with a contravariant twist for the arrow; all the real ac-
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tion is contained within the two subtyping rules for the universal
quantifier.

The left rule, ≤∀L, says that a type ∀α.A is a subtype of B, if
some instance [τ/α]A is a subtype of B. This is what makes these
rules only a declarative specification: ≤∀L guesses the instantia-
tion τ “out of thin air”, and so the rules do not directly yield an
algorithm.

The right rule ≤∀R is a little more subtle. It says that A is a
subtype of ∀β.B if we can show that A is a subtype of B in a
context extended with β. There are two intuitions for this rule,
one semantic, the other proof-theoretic. The semantic intuition is
that since ∀β. B is a subtype of [τ/β]B for any τ, we need A
to be a subtype of [τ/β]B for any τ. Then, if we can show that
A is a subtype of B, with a free variable β, we can appeal to a
substitution principle for subtyping to conclude that for all τ, type
A is a subtype of [τ/β]B.

The proof-theoretic intuition is simpler. The rules ≤∀L and
≤∀R are just the left and right rules for universal quantification
in the sequent calculus. Type inference is a form of theorem prov-
ing, and our subtype relation gives some of the inference rules a
theorem prover may use. Following good proof-theoretic hygiene
enables us to leave the reflexivity and transitivity rules out of the
subtype relation, since they are admissible properties (in sequent
calculus terms, they are the identity and cut-admissibility proper-
ties). The absence of these rules (particularly, the absence of tran-
sitivity), in turn, simplifies a number of proofs. In fact, the rules are
practically syntax-directed: the only exception is when both types
are quantifiers, and either ≤∀L or ≤∀R could be tried. Since ≤∀R
is invertible, however, in practice one can apply it eagerly.

Let-generalization. In many accounts of type inference, let-
bindings are treated specially. For example, traditional Damas-
Milner type inference only does polymorphic generalization at let-
bindings. Instead, we have sought to avoid a special treatment of
let-bindings. In logical terms, let-bindings internalize the cut rule,
and so special treatment puts the cut-elimination property of the
calculus at risk—that is, typability may not be preserved when a
let-binding is substituted away. To make let-generalization safe,
additional properties like the principal types property are needed, a
property endangered by rich type system features like higher-rank
polymorphism, refinement types (Dunfield 2007) and GADTs (Vy-
tiniotis et al. 2010).

To emphasize this point, we have omitted let-binding from our
formal development. But since cut is admissible—i.e., the substitu-
tion theorem holds—restoring let-bindings is easy, as long as they
get no special treatment incompatible with substitution. For exam-
ple, the standard bidirectional rule for let-bindings is suitable:

Ψ ⊢ e ⇒ A Ψ, x : A ⊢ e
′

⇐ C

Ψ ⊢ let x = e in e
′

⇐ C

Note the absence of generalization in this rule.

2.2 Bidirectional Typing and Type Assignment System F

Since our declarative specification is (quite consciously) not the
usual type-assignment presentation of System F, a natural question
is to ask what the relationship is. Luckily, the two systems are quite
closely related: we can show that if a term is well-typed in our type
assignment system, it is always possible to add type annotations to
make the term well-typed in the bidirectional system; conversely, if
the bidirectional system types a term, then some βη-equal term is
well-typed under the type assignment system.

We formalize these properties with the following theorems,
taking |e| to be the erasure of all type annotations from a term. We
give the rules for our type assignment System F in Figure 5.

Ψ ⊢ e : A Under context Ψ, e has type A

(x : A) ∈ Ψ

Ψ ⊢ x : A
AVar

Ψ ⊢ () : 1
AUnit

Ψ, x : A ⊢ e : B

Ψ ⊢ λx. e : A → B
A→I

Ψ ⊢ e1 : A → B Ψ ⊢ e2 : A

Ψ ⊢ e1 e2 : B
A→E

Ψ,α ⊢ e : A

Ψ ⊢ e : ∀α. A
A∀I

Ψ ⊢ e : ∀α. A Ψ ⊢ τ

Ψ ⊢ e : [τ/α]A
A∀E

Figure 5. Type assignment rules for predicative System F

Theorem 1 (Completeness of Bidirectional Typing). If Ψ ⊢ e : A
then there exists e ′ such that Ψ ⊢ e ′ ⇒ A and |e ′ | = e.

Theorem 2 (Soundness of Bidirectional Typing). If Ψ ⊢ e ⇐ A
then there exists e ′ such that Ψ ⊢ e ′ : A and e ′ =βη |e|.

Note that in the soundness theorem, the equality is up to β and
η. We may need to η-expand bidirectionally-typed terms to make
them typecheck under the type assignment system, and within the
proof of soundness, we β-reduce identity coercions.

2.3 Robustness of Typing

Type annotations are an essential part of the bidirectional approach:
they mediate between type checking and type synthesis. However,
we want to relieve programmers from having to write redundant
type annotations, and even more importantly, enable programmers
to easily predict where type annotations are needed.

Since our declarative system is bidirectional, the basic prop-
erty is that type annotations are required only at redexes. Addi-
tionally, these typing rules can infer (actually, guess) all monomor-
phic types, so the answer to the question of where annotations are
needed is: only on bindings of polymorphic type.2 Where bidirec-
tional typing really stands out is in its robustness under substitution.
We can freely substitute and “unsubstitute” terms:

Theorem 3 (Substitution). Assume Ψ ⊢ e ⇒ A.

• If Ψ, x : A ⊢ e ′
⇐ C then Ψ ⊢ [e/x]e ′

⇐ C.
• If Ψ, x : A ⊢ e ′

⇒ C then Ψ ⊢ [e/x]e ′
⇒ C.

Theorem 4 (Inverse Substitution). Assume Ψ ⊢ e ⇐ A.

• If Ψ ⊢ [(e : A)/x]e ′
⇐ C then Ψ, x : A ⊢ e ′

⇐ C.
• If Ψ ⊢ [(e : A)/x]e ′

⇒ C then Ψ, x : A ⊢ e ′
⇒ C.

Substitution is stated in terms of synthesizing expressions, since
any checking term can be turned into a synthesizing term by adding
an annotation. Dually, inverse substitution allows extracting any
checking term into a let-binding with a type annotation.3 However,
doing so indiscriminately can lead to a term with many redundant
annotations, and so we also characterize when annotations can
safely be removed:

Theorem 5 (Annotation Removal). We have that:

• If Ψ ⊢
(

(λx. e) : A
)

⇐ C then Ψ ⊢ λx. e ⇐ C.
• If Ψ ⊢ (() : A) ⇐ C then Ψ ⊢ () ⇐ C.
• If Ψ ⊢ e1 (e2 : A) ⇒ C then Ψ ⊢ e1 e2 ⇒ C.
• If Ψ ⊢ (x : A) ⇒ A then Ψ ⊢ x ⇒ B and Ψ ⊢ B ≤ A.

2 The number of annotations can be reduced still further; see Section 8 for
how to infer the types of all terms typable under Damas-Milner.
3 The generalization of Theorem 4 to any synthesizing term—not just (e :
A)—does not hold. For example, given e = λy. y and e ′ = x and
Ψ ⊢ λy. y ⇒ 1 → 1 and Ψ ⊢ λy. y ⇐ C1 → C2, we cannot derive
Ψ, x : 1 → 1 ⊢ x ⇐ C1 → C2 unless C1 and C2 happen to be 1.
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Types A,B, C ::= 1 | α | α̂ | ∀α. A | A → B

Monotypes τ, σ ::= 1 | α | α̂ | τ → σ

Contexts Γ, ∆, Θ ::= · | Γ, α | Γ, x : A

| Γ, α̂ | Γ, α̂ = τ | Γ,◮α̂

Complete Contexts Ω ::= · | Ω,α | Ω, x : A

| Ω, α̂ = τ | Ω,◮α̂

Figure 6. Syntax of types, monotypes, and contexts in the algo-
rithmic system

• If Ψ ⊢
(

(e1 e2) : A
)

⇒ A
then Ψ ⊢ e1 e2 ⇒ B and Ψ ⊢ B ≤ A.

• If Ψ ⊢
(

(e : B) : A
)

⇒ A
then Ψ ⊢ (e : B) ⇒ B and Ψ ⊢ B ≤ A.

• If Ψ ⊢ ((λx. e) : σ → τ) ⇒ σ → τ then Ψ ⊢ λx. e ⇒ σ → τ.

We can also show that the expected η-laws hold:

Theorem 6 (Soundness of Eta).
If Ψ ⊢ λx. e x ⇐ A and x 6∈ FV(e), then Ψ ⊢ e ⇐ A.

3. Algorithmic Type System

Our declarative bidirectional system is a fine specification of how
typing should behave, but it enjoys guessing entirely too much: the
typing rules Decl∀App and Decl→I⇒ could only be implemented
with the help of an oracle. The declarative subtyping rule ≤∀L has
the same problem.

The first step in building our algorithmic bidirectional system
will be to modify the three oracular rules so that, instead of guess-
ing a type, they defer the choice by creating an existential type
variable, to be solved later. However, our existential variables are
not exactly unification variables; they are organized into ordered al-
gorithmic contexts (Section 3.1), which define the variables’ scope
and controls the free variables of their solutions.

The algorithmic type system consists of subtyping rules (Fig-
ure 9, discussed in Section 3.2), instantiation rules (Figure 10, dis-
cussed in Section 3.3), and typing rules (Figure 11, discussed in
Section 3.4). All of the rules manipulate the contexts in a way con-
sistent with context extension, a metatheoretic notion described in
Section 4; context extension is key in stating and proving decidabil-
ity, soundness and completeness.

3.1 Algorithmic Contexts

A notion of (ordered) algorithmic context is central to our ap-
proach. Like declarative contexts Ψ, algorithmic contexts Γ (see
Figure 6; we also use the letters ∆ and Θ) contain declarations of
universal type variables α and term variable typings x : A. Unlike
declarative contexts, algorithmic contexts also contain declarations
of existential type variables α̂, which are either unsolved (and we
simply write α̂) or solved to some monotype (α̂ = τ). Finally, for
scoping reasons that will become clear when we examine the rules,
algorithmic contexts also include a marker ◮α̂.

Complete contexts Ω are the same as contexts, except that they
cannot have unsolved variables.

The well-formedness rules for contexts (Figure 7, bottom) do
not only prohibit duplicate declarations, but also enforce order:
if Γ = (ΓL, x : A, ΓR), the type A must be well-formed under
ΓL; it cannot refer to variables α or α̂ in ΓR. Similarly, if Γ =
(ΓL, α̂ = τ, ΓR), the solution type τ must be well-formed under

ΓL. Consequently, circularity is ruled out: (α̂ = β̂, β̂ = α̂) is not
well-formed.

Γ ⊢ A Under context Γ , type A is well-formed

Γ [α] ⊢ α
UvarWF

Γ ⊢ 1
UnitWF

Γ ⊢ A Γ ⊢ B

Γ ⊢ A → B
ArrowWF

Γ, α ⊢ A

Γ ⊢ ∀α. A
ForallWF

Γ [α̂] ⊢ α̂
EvarWF

Γ [α̂ = τ] ⊢ α̂
SolvedEvarWF

Γ ctx Algorithmic context Γ is well-formed

· ctx
EmptyCtx

Γ ctx α /∈ dom(Γ)

Γ, α ctx
UvarCtx

Γ ctx x /∈ dom(Γ) Γ ⊢ A

Γ, x : A ctx
VarCtx

Γ ctx α̂ /∈ dom(Γ)

Γ, α̂ ctx
EvarCtx

Γ ctx α̂ /∈ dom(Γ) Γ ⊢ τ

Γ, α̂ = τ ctx
SolvedEvarCtx

Γ ctx ◮α̂ /∈ Γ α̂ /∈ dom(Γ)

Γ,◮α̂ ctx
MarkerCtx

Figure 7. Well-formedness of types and contexts in the algorith-
mic system

[Γ ]α = α
[Γ ]1 = 1
[

Γ [α̂ = τ]
]

α̂ =
[

Γ [α̂ = τ]
]

τ
[

Γ [α̂]
]

α̂ = α̂

[Γ ](A → B) = ([Γ ]A) → ([Γ ]B)
[Γ ](∀α. A) = ∀α. [Γ ]A

Figure 8. Applying a context, as a substitution, to a type

Contexts as substitutions on types. An algorithmic context can
be viewed as a substitution for its solved existential variables. For
example, α̂ = 1, β̂ = α̂ → 1 can be applied as if it were the sub-
stitution 1/α̂, (α̂→1)/β̂ (applied right to left), or the simultaneous

substitution 1/α̂, (1→1)/β̂. We write [Γ ]A for Γ applied as a sub-
stitution to type A; this operation is defined in Figure 8.

Complete contexts. Complete contexts Ω (Figure 6) have no un-
solved variables. Therefore, applying such a context to a type A
(provided it is well-formed: Ω ⊢ A) yields a type [Ω]A with no
existentials. Complete contexts are essential for stating and proving
soundness and completeness, but are not explicitly distinguished in
any of our rules.

Hole notation. Since we will manipulate contexts not only by ap-
pending declarations (as in the declarative system) but by inserting
and replacing declarations in the middle, a notation for contexts
with a hole is useful:

Γ = Γ0[Θ] means Γ has the form (ΓL, Θ, ΓR)

For example, if Γ = Γ0[β̂] = (α̂, β̂, x : β̂), then Γ0[β̂ = α̂] =

(α̂, β̂ = α̂, x : β̂). Since this notation is concise, we use it even
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in rules that do not replace declarations, such as the rules for type
well-formedness in Figure 7.

Occasionally, we also need contexts with two ordered holes:

Γ = Γ0[Θ1][Θ2] means Γ has the form (ΓL, Θ1, ΓM, Θ2, ΓR)

Input and output contexts. Our declarative system used a sub-
typing judgment and three typing judgments: checking, synthesis,
and application. Our algorithmic system includes similar judgment
forms, except that we replace the declarative context Ψ with an al-
gorithmic context Γ (the input context), and add an output context
∆ written after a backwards turnstile: Γ ⊢ A <: B ⊣ ∆ for subtyp-
ing, Γ ⊢ e ⇐ A ⊣ ∆ for checking, and so on. Unsolved existential
variables get solved when they are compared against a type. For ex-
ample, α̂ <: β would lead to replacing the unsolved declaration α̂
with α̂ = β in the context (provided β is declared to the left of
α̂). Input contexts thus evolve into output contexts that are “more
solved”.

The differences between the declarative and algorithmic sys-
tems, particularly manipulations of existential variables, are most
prominent in the subtyping rules, so we discuss those first.

3.2 Algorithmic Subtyping

The first four subtyping rules in Figure 9 do not directly manipulate
the context, but do illustrate how contexts are propagated.

Rules <:Var and <:Unit are reflexive rules; neither involves
existential variables, so the output context in the conclusion is the
same as the input context Γ . Rule <:Exvar concludes that any
unsolved existential variable is a subtype of itself, but this gives
no clue as to how to solve that existential, so the output context is
similarly unchanged.

Rule <:→ is a bit more interesting: it has two premises, where
the first premise has an output context Θ, which is used as the input
context to the second (subtyping) premise; the second premise has
output context ∆, which is the output of the conclusion.4 Note that
in <:→’s second premise, we do not simply check that A2 <: B2,
but apply the first premise’s output Θ to those types:

Θ ⊢ [Θ]A2 <: [Θ]B2 ⊣ ∆

This maintains a general invariant: whenever we try to derive Γ ⊢
A <: B ⊣ ∆, the types A and B are already fully applied under Γ .
That is, they contain no existential variables already solved in Γ . On
balance, this invariant simplifies the system: the extra applications
of Θ in <:→ avoid the need for extra rules for replacing solved
variables with their solutions.

All the rules discussed so far have been natural extensions of
the declarative rules, with <:Exvar being a logical way to extend
reflexivity to types containing existentials. Rule <:∀L diverges sig-
nificantly from the corresponding declarative rule ≤∀L. Instead of
replacing the type variable α with a guessed τ, rule <:∀L replaces
α with a new existential variable α̂, which it adds to the premise’s
input context: Γ,◮α̂, α̂ ⊢ [α̂/α]A <: B ⊣ ∆,◮α̂, Θ. The peculiar-
looking ◮α̂ is a scope marker, pronounced “marker α̂”, which will
delineate existentials created by articulation (the step of solving α̂
to α̂1 → α̂2, discussed in the next subsection). The output context
(∆,◮α̂, Θ) allows for some additional (existential) variables to ap-
pear after ◮α̂, in a trailing context Θ. These existential variables
could mention α̂, or (if they appear between ◮α̂ and α̂) could be
mentioned by α̂; since α̂ goes out of scope in the conclusion, we
drop such “trailing existentials” from the concluding output con-
text, which is simply ∆.5

4 Rule <:→ enforces that the function domains B1, A1 are compared first:
Θ is an input to the second premise. But this is an arbitrary choice; the
system would behave the same if we chose to check the codomains first.
5 In our setting, it is safe to drop trailing existentials that are unsolved:
such variables are unconstrained, and we can treat them as having been

Rule <:∀R is fairly close to the declarative version, but for
scoping reasons similar to <:∀L, it also drops Θ, the part of the
context to the right of the universal type variable α. (Articulation
makes no sense for universal variables, so α can act as its own
marker.)

The last two rules are essential: they derive subtypings with an
unsolved existential on one side, and an arbitrary type on the other.
Rule <:InstantiateL derives α̂ <: A, and <:InstantiateR derives
A <: α̂. These rules do not directly change the output context;
they just do an “occurs check” α̂ /∈ FV(A) to avoid circularity, and
leave all the real work to the instantiation judgment.

3.3 Instantiation

Two almost-symmetric judgments instantiate unsolved existential
variables: Γ ⊢ α̂ :=< A ⊣ ∆ and Γ ⊢ A =<: α̂ ⊣ ∆. The symbol :=<

suggests assignment of the variable to its left, but also subtyping:
the subtyping rule <:InstantiateL moves from instantiation α̂ :=<

A, read “instantiate α̂ to a subtype of A”, to subtyping α̂ <: A.
The symmetric judgment A =<: α̂ can be read “instantiate α̂ to a
supertype of A”.

The first instantiation rule in Figure 10, InstLSolve, sets α̂ to
τ in the output context: its conclusion is Γ, α̂, Γ ′ ⊢ α̂ :=< τ ⊣
Γ, α̂ = τ, Γ ′. The premise Γ ⊢ τ checks that the monotype τ is
well-formed under the prefix context Γ . To check the soundness of
this rule, we can take the conclusion α̂ :=< τ, substitute our new
solution for α̂, and check that the resulting subtyping makes sense.
Since [Γ, α̂ = τ, Γ ′]α̂ = τ, we ask whether τ <: τ makes sense,
and of course it does through reflexivity.

Rule InstLArr can be applied when the type A in α̂ :=< A has
the form A1 → A2. It follows that α̂’s solution must have the form
· · · → · · · , so we “articulate” α̂, giving it the solution α̂1 → α̂2

where the α̂k are fresh existentials. We insert their declarations just
before α̂—they must be to the left of α̂ so they can be mentioned in
its solution, but they must be close enough to α̂ that they appear to
the right of the marker ◮α̂ introduced by <:∀L. Note that the first
premise A1 =<: α̂1 switches to the other instantiation judgment.
Also, the second premise Θ ⊢ α̂2 :=< [Θ]A2 ⊣ ∆ applies Θ to A2,
to apply any solutions found in the first premise.

The other rules are somewhat subtle. Rule InstLReach derives

Γ [α̂][β̂] ⊢ α̂ :=< β̂ ⊣ Γ [α̂][β̂ = α̂]

where, as explained in Section 3.1, Γ [α̂][β̂] denotes a context where

some unsolved existential variable α̂ is declared to the left of β̂. In
this situation, we cannot use InstLSolve to set α̂ to β̂ because β̂
is not well-formed under the part of the context to the left of α̂.
Instead, we set β̂ to α̂.

Rule InstLAllR is the instantiation version of <:∀R. Since our
polymorphism is predicative, we can’t assign ∀β. B to α̂, but we
can decompose the quantifier in the same way that subtyping does.

The rules for the second judgment A =<: α̂ are similar: InstRSolve,
InstRReach and InstRArr are direct analogues of the first three
α̂ :=< A rules, and InstRAllL is the instantiation version of <:∀L.

Example. The interplay between instantiation and quantifiers is
delicate. For example, consider the problem of instantiating β̂ to a
supertype of ∀α. α. In this case, the type ∀α. α is so polymorphic
that it places no constraints at all on β̂. Therefore, it seems we are
at risk of being forced to make a necessarily incomplete choice—
but the instantiation judgment’s ability to “change its mind” about
which variable to instantiate saves the day:

instantiated to any well-formed type, such as 1. In a dependently typed
setting, we would need to check that at least one solution exists.
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Γ ⊢ A <: B ⊣ ∆ Under input context Γ , type A is a subtype of B, with output context ∆

Γ [α] ⊢ α <: α ⊣ Γ [α]
<:Var

Γ ⊢ 1 <: 1 ⊣ Γ
<:Unit

Γ [α̂] ⊢ α̂ <: α̂ ⊣ Γ [α̂]
<:Exvar

Γ ⊢ B1 <: A1 ⊣ Θ Θ ⊢ [Θ]A2 <: [Θ]B2 ⊣ ∆

Γ ⊢ A1 → A2 <: B1 → B2 ⊣ ∆
<:→

Γ,◮α̂, α̂ ⊢ [α̂/α]A <: B ⊣ ∆,◮α̂, Θ

Γ ⊢ ∀α. A <: B ⊣ ∆
<:∀L

Γ, α ⊢ A <: B ⊣ ∆, α,Θ

Γ ⊢ A <: ∀α. B ⊣ ∆
<:∀R

α̂ /∈ FV(A) Γ [α̂] ⊢ α̂ :=< A ⊣ ∆

Γ [α̂] ⊢ α̂ <: A ⊣ ∆
<:InstantiateL

α̂ /∈ FV(A) Γ [α̂] ⊢ A =<: α̂ ⊣ ∆

Γ [α̂] ⊢ A <: α̂ ⊣ ∆
<:InstantiateR

Figure 9. Algorithmic subtyping

Γ ⊢ α̂ :=< A ⊣ ∆ Under input context Γ , instantiate α̂ such that α̂ <: A, with output context ∆

Γ ⊢ τ

Γ, α̂, Γ
′ ⊢ α̂ :=< τ ⊣ Γ, α̂ = τ, Γ

′
InstLSolve

Γ [α̂][β̂] ⊢ α̂ :=< β̂ ⊣ Γ [α̂][β̂ = α̂]
InstLReach

Γ [α̂2, α̂1, α̂ = α̂1 → α̂2] ⊢ A1 =<: α̂1 ⊣ Θ Θ ⊢ α̂2 :=< [Θ]A2 ⊣ ∆

Γ [α̂] ⊢ α̂ :=< A1 → A2 ⊣ ∆
InstLArr

Γ [α̂], β ⊢ α̂ :=< B ⊣ ∆, β,∆
′

Γ [α̂] ⊢ α̂ :=< ∀β. B ⊣ ∆
InstLAllR

Γ ⊢ A =<: α̂ ⊣ ∆ Under input context Γ , instantiate α̂ such that A <: α̂, with output context ∆

Γ ⊢ τ

Γ, α̂, Γ
′ ⊢ τ =<: α̂ ⊣ Γ, α̂ = τ, Γ

′
InstRSolve

Γ [α̂][β̂] ⊢ β̂ =<: α̂ ⊣ Γ [α̂][β̂ = α̂]
InstRReach

Γ [α̂2, α̂1, α̂ = α̂1 → α̂2] ⊢ α̂1 :=< A1 ⊣ Θ Θ ⊢ [Θ]A2 =<: α̂2 ⊣ ∆

Γ [α̂] ⊢ A1 → A2 =<: α̂ ⊣ ∆
InstRArr

Γ [α̂],◮β̂, β̂ ⊢ [β̂/β]B =<: α̂ ⊣ ∆,◮β̂, ∆
′

Γ [α̂] ⊢ ∀β. B =<: α̂ ⊣ ∆
InstRAllL

Figure 10. Instantiation

Γ ⊢ e ⇐ A ⊣ ∆ Under input context Γ , e checks against input type A, with output context ∆

Γ ⊢ e ⇒ A ⊣ ∆ Under input context Γ , e synthesizes output type A, with output context ∆

Γ ⊢ A • e ⇒⇒ C ⊣ ∆ Under input context Γ , applying a function of type A to e synthesizes type C, with output context ∆

(x : A) ∈ Γ

Γ ⊢ x ⇒ A ⊣ Γ
Var

Γ ⊢ e ⇒ A ⊣ Θ Θ ⊢ [Θ]A <: [Θ]B ⊣ ∆

Γ ⊢ e ⇐ B ⊣ ∆
Sub

Γ ⊢ A Γ ⊢ e ⇐ A ⊣ ∆

Γ ⊢ (e : A) ⇒ A ⊣ ∆
Anno

Γ ⊢ () ⇐ 1 ⊣ Γ
1I

Γ ⊢ () ⇒ 1 ⊣ Γ
1I⇒

Γ, α ⊢ e ⇐ A ⊣ ∆, α,Θ

Γ ⊢ e ⇐ ∀α. A ⊣ ∆
∀I

Γ, α̂ ⊢ [α̂/α]A • e ⇒⇒ C ⊣ ∆

Γ ⊢ ∀α. A • e ⇒⇒ C ⊣ ∆
∀App

Γ, x : A ⊢ e ⇐ B ⊣ ∆, x : A,Θ

Γ ⊢ λx. e ⇐ A → B ⊣ ∆
→I

Γ, α̂, β̂, x : α̂ ⊢ e ⇐ β̂ ⊣ ∆, x : α̂, Θ

Γ ⊢ λx. e ⇒ α̂ → β̂ ⊣ ∆
→I⇒

Γ ⊢ e1 ⇒ A ⊣ Θ Θ ⊢ [Θ]A • e2 ⇒⇒ C ⊣ ∆

Γ ⊢ e1 e2 ⇒ C ⊣ ∆
→E

Γ [α̂2, α̂1, α̂ = α̂1 → α̂2] ⊢ e ⇐ α̂1 ⊣ ∆

Γ [α̂] ⊢ α̂ • e ⇒⇒ α̂2 ⊣ ∆
α̂App

Γ ⊢ e ⇐ A ⊣ ∆

Γ ⊢ A → C • e ⇒⇒ C ⊣ ∆
→App

Figure 11. Algorithmic typing
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Γ [β̂],◮α̂, α̂ ⊢ α̂ =<: β̂ ⊣ Γ [β̂],◮α̂, α̂ = β̂
InstRReach

Γ [β̂] ⊢ ∀α. α =<: β̂ ⊣ Γ [β̂]
InstRAllL

Here, we introduce a new variable α̂ to go under the universal
quantifier; then, instantiation applies InstRReach to set α̂, not β̂.
Hence, β̂ is, correctly, not constrained by this subtyping problem.

Thus, instantiation does not necessarily solve any existential
variable. However, instantiation to any monotype τ will solve an
existential variable—that is, for input context Γ and output ∆,
we have unsolved(∆) < unsolved(Γ). This will be critical for
decidability of subtyping (Section 5.2).

Another example. In Figure 12 we show a derivation that uses
quantifier instantiation (InstRAllL), articulation (InstRArr) and
“reaching” (InstLReach), as well as InstRSolve. In the output

context ∆ = Γ [β̂2, β̂1=β̂2, α̂=β̂1→β̂2] note that α̂ is solved to

β̂1 → β̂2, and β̂2 is solved to β̂1. Thus, [∆]α̂ = β̂1→β̂1, which is
a monomorphic approximation of ∀β.β→β.

3.4 Algorithmic Typing

We now turn to the typing rules in Figure 11. Many of these rules
follow the declarative rules, with extra context machinery. Rule Var
uses an assumption x : A without generating any new information,
so the output context in its conclusion Γ ⊢ x ⇒ A ⊣ Γ is just
the input context. Rule Sub’s first premise has an output context Θ,
used as the input context to the second (subtyping) premise, which
has output context ∆, the output of the conclusion. Rule Anno does
not directly change the context, but the derivation of its premise
might include the use of some rule that does, so we propagate the
premise’s output context ∆ to the conclusion.

Unit and ∀. In the second row of typing rules, 1I and 1I⇒ gener-
ate no new information and simply propagate the input context.

∀I is more interesting: Like the declarative rule Decl∀I, it adds a
universal type variable α to the (input) context. The output context
of the premise Γ, α ⊢ e ⇐ A ⊣ ∆,α,Θ allows for some additional
(existential) variables to appear after α, in a trailing context Θ.
These existential variables could depend on α; since α goes out
of scope in the conclusion, we must drop them from the concluding
output context, which is just ∆: the part of the premise’s output
context that cannot depend on α.

The application-judgment rule ∀App serves a similar purpose to
the subtyping rule <:∀L, but does not place a marker before α̂: the
variable α̂ may appear in the output type C, so α̂ must survive in
the output context ∆.

Functions. In the third row of typing rules, rule →I follows the
same scheme: the declarations Θ following x : A are dropped in
the conclusion’s output context.

Rule →I⇒ corresponds to Decl→I⇒, one of the guessing rules,
so we create new existential variables α̂ (for the function domain)
and β̂ (for the codomain) and check the function body against β̂.
As in ∀App, we do not place a marker before α̂, because α̂ and β̂
appear in the output type (λx. e ⇒ α̂ → β̂).

Rule →E is the expected analogue of Decl→E; like other rules
with two premises, it applies the intermediate context Θ.

On the last row of typing rules, α̂App derives α̂ • e ⇒⇒

α̂2 where α̂ is unsolved in the input context. Here we have an
application judgment, which is supposed to synthesize a type for an
application e1 e where e1 has type α̂. We know that e1 should have
function type; similarly to InstLArr/InstRArr, we introduce α̂1 and
α̂2 and add α̂ = α̂1→α̂2 to the context. (Rule α̂App is the only
algorithmic typing rule that does not correspond to a declarative
rule.)

Finally, rule →App is analogous to Decl→App.

4. Context Extension

We motivated the algorithmic rules by saying that they evolved
input contexts to output contexts that were “more solved”. To state
and prove the metatheoretic results of decidability, soundness and
completeness (Sections 5–7), we introduce a context extension
judgment Γ −→ ∆. This judgment captures a notion of information
increase from an input context Γ to an output context ∆, and relates
algorithmic contexts Γ and ∆ to completely solved extensions Ω,
which correspond—via the context application described in Section
4.1—to declarative contexts Ψ.

The judgment Γ −→ ∆ is read “Γ is extended by ∆” (or ∆
extends Γ ). Another reading is that ∆ carries at least as much
information as Γ . A third reading is that Γ −→ ∆ means that Γ
is entailed by ∆: all positive information derivable from Γ (say,
that existential variable α̂ is in scope) can also be derived from
∆ (which may have more information, say, that α̂ is equal to a
particular type). This reading is realized by several key lemmas;
for instance, extension preserves well-formedness: if Γ ⊢ A and
Γ −→ ∆, then ∆ ⊢ A.

The rules deriving the context extension judgment (Figure 13)
say that the empty context extends the empty context (−→ID); a
term variable typing x : A ′ extends x : A if applying the extending
context ∆ to A and A ′ yields the same type (−→Var); universal
type variables must match (−→Uvar); scope markers must match
(−→Marker); and, existential variables may:

• appear unsolved in both contexts (−→Unsolved),

• appear solved in both contexts, if applying the extending con-
text ∆ makes the solutions τ and τ ′ equal (−→Solved),

• get solved by the extending context (−→Solve),

• be added by the extending context, either without a solution
(−→Add) or with a solution (−→AddSolved);

Extension does not allow solutions to disappear: information
must increase. It does allow solutions to change, but only if the
change preserves or increases information. The extension

(

α̂, β̂ = α̂
)

−→
(

α̂ = 1, β̂ = α̂
)

directly increases information about α̂, and indirectly increases
information about β̂. Perhaps more interestingly, the extension

(

α̂ = 1, β̂ = α̂
)

︸ ︷︷ ︸
∆

−→
(

α̂ = 1, β̂ = 1
)

︸ ︷︷ ︸
Ω

also holds: while the solution of β̂ in Ω is different, in the sense
that Ω contains β̂ = 1 while ∆ contains β̂ = α̂, applying Ω to the
two solutions gives the same thing: applying Ω to ∆’s solution of
β̂ gives [Ω]α̂ = [Ω]1 = 1, while applying Ω to Ω’s own solution

for β̂ also gives 1, because [Ω]1 = 1.
Extension is quite rigid, however, in two senses. First, if a

declaration appears in Γ , it appears in all extensions of Γ . Second,
extension preserves order. For example, if β̂ is declared after α̂ in
Γ , then β̂ will also be declared after α̂ in every extension of Γ . This
holds for every variety of declaration. This rigidity aids in enforcing
type variable scoping and dependencies, which are nontrivial in a
setting with higher-rank polymorphism.

This combination of rigidity (in demanding that the order of
declarations be preserved) with flexibility (in how existential type
variable solutions are expressed) manages to satisfy scoping and
dependency relations and give enough room to maneuver in the
algorithm and metatheory.

4.1 Context Application

A complete context Ω (Figure 6) has no unsolved variables, so ap-
plying it to a (well-formed) type yields a type [Ω]Awith no existen-
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context to the left of β̂
︷ ︸︸ ︷

Γ
′

,◮β̂ ⊢ β̂1

Γ
′

,

Γ
′

= Γ [β̂2, β̂1, α̂=β̂1→β̂2]

◮β̂, β̂ ⊢ β̂2 :=< β̂ ⊣ Γ
′

,◮β̂, β̂=β̂1

InstLReach

context to the left of β̂1

︷ ︸︸ ︷

. . . , β̂2 ⊢ β̂2

Γ
′

,◮β̂, β̂=β̂1 ⊢ β̂2 =<: β̂1 ⊣ ∆,◮β̂, β̂=β̂1

InstRSolve

Γ [α̂],◮β̂, β̂ ⊢ β̂→β̂ =<: α̂ ⊣ ∆,◮β̂, β̂=β̂1

InstRArr

Γ [α̂] ⊢ (∀β. β→β) =<: α̂ ⊣

∆ = Γ [β̂2, β̂1=β̂2, α̂=β̂1→β̂2]

∆
InstRAllL

Figure 12. Example of instantiation

Γ −→ ∆ Γ is extended by ∆

· −→ ·
−→ID

Γ −→ ∆ [∆]A = [∆]A
′

Γ, x : A −→ ∆, x : A
′

−→Var
Γ −→ ∆

Γ, α −→ ∆, α
−→Uvar

Γ −→ ∆

Γ, α̂ −→ ∆, α̂
−→Unsolved

Γ −→ ∆ [∆]τ = [∆]τ
′

Γ, α̂ = τ −→ ∆, α̂ = τ ′
−→Solved

Γ −→ ∆

Γ, α̂ −→ ∆, α̂ = τ
−→Solve

Γ −→ ∆

Γ −→ ∆, α̂
−→Add

Γ −→ ∆

Γ −→ ∆, α̂ = τ
−→AddSolved

Γ −→ ∆

Γ,◮α̂ −→ ∆,◮α̂

−→Marker

Figure 13. Context extension

[·]· = ·
[Ω,x : A](Γ, x : AΓ ) = [Ω]Γ , x : [Ω]A if [Ω]A = [Ω]AΓ

[Ω,α](Γ, α) = [Ω]Γ , α
[Ω, α̂ = τ](Γ, α̂) = [Ω]Γ
[Ω, α̂ = τ](Γ, α̂ = τΓ ) = [Ω]Γ if [Ω]τ = [Ω]τΓ
[Ω, α̂ = τ]Γ = [Ω]Γ if α̂ /∈ dom(Γ)
[Ω,◮α̂](Γ,◮α̂) = [Ω]Γ

Figure 14. Applying a complete context Ω to a context

tials. Such a type is well-formed under a declarative context—with
just α and x : A declarations—obtained by dropping all the exis-
tential declarations and applying Ω to declarations x : A (to yield
x : [Ω]A). We can think of this context as the result of applying Ω
to itself: [Ω]Ω.

More generally, we can apply Ω to any context Γ that it extends.
This operation of context application [Ω]Γ is given in Figure 14.
The application [Ω]Γ is defined if and only if Γ −→ Ω, and
applying Ω to any such Γ yields the same declarative context [Ω]Ω:

Lemma (Stability of Complete Contexts). If Γ −→ Ω then
[Ω]Γ = [Ω]Ω.

5. Decidability

Our algorithmic type system is decidable. Since the typing rules
(Figure 11) depend on the subtyping rules (Figure 9), which in turn
depend on the instantiation rules (Figure 10), showing that the typ-
ing judgments (checking, synthesis and application) are decidable
requires that we show that the instantiation and subtyping judg-
ments are decidable.

5.1 Decidability of Instantiation

As discussed in Section 3.3, deriving Γ ⊢ α̂ :=< A ⊣ ∆ does
not necessarily instantiate any existential variable (unless A is a
monotype). However, the instantiation rules do preserve the size of
(substituted) types:

Lemma (Instantiation Size Preservation).
If Γ = (Γ0, α̂, Γ1) and Γ ⊢ α̂ :=< A ⊣ ∆ or Γ ⊢ A =<: α̂ ⊣ ∆,

and Γ ⊢ B and α̂ /∈ FV([Γ ]B), then |[Γ ]B| = |[∆]B|, where |C| is
the plain size of C.

Using this lemma, we can show that the type A in the instan-
tiation judgment always get smaller, even in rule InstLArr: the
second premise applies the intermediate context Θ to A2, but the
lemma tells us that this application cannot make A2 larger, and A2

is smaller than the conclusion’s type (A1 → A2).
Now we can prove decidability of instantiation, assuming that

α̂ is unsolved in the input context Γ , that A is well-formed under
Γ , that A is fully applied ([Γ ]A = A), and that α̂ does not occur in
A. These conditions are guaranteed when instantiation is invoked,
because the typing rule Sub applies the input substitution, and the
subtyping rules apply the substitution where needed—in exactly
one place: the second premise of <:→. The proof is based on the
(substituted) types in the premises being smaller than the (substi-
tuted) type in the conclusion.

Theorem 7 (Decidability of Instantiation).
If Γ = Γ0[α̂] and Γ ⊢ A such that [Γ ]A = A and α̂ /∈ FV(A), then:

(1) Either there exists ∆ such that Γ0[α̂] ⊢ α̂ :=< A ⊣ ∆, or not.

(2) Either there exists ∆ such that Γ0[α̂] ⊢ A =<: α̂ ⊣ ∆, or not.

5.2 Decidability of Algorithmic Subtyping

To prove decidability of the subtyping system in Figure 9, measure
judgments Γ ⊢ A <: B ⊣ ∆ lexicographically by

(S1) the number of ∀ quantifiers in A and B;

(S2) |unsolved(Γ)|, the number of unsolved existentials in Γ ;

(S3) |Γ ⊢A|+ |Γ ⊢B|.

Part (S3) uses contextual size, which penalizes solved variables (*):

Definition (Contextual Size).

|Γ ⊢α| = 1
|Γ [α̂] ⊢ α̂| = 1
|Γ [α̂ = τ] ⊢ α̂| = 1+ |Γ [α̂ = τ] ⊢ τ| (*)
|Γ ⊢∀α. A| = 1+ |Γ, α ⊢A|
|Γ ⊢A → B| = 1+ |Γ ⊢A| + |Γ ⊢B|

For example, if Γ = (β, α̂ = β) then |Γ ⊢ α̂| = 1 + |Γ ⊢β| =
1+ 1 = 2, whereas the plain size of α̂ is simply 1.
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The connection between (S1) and (S2) may be clarified by
examining rule <:→, whose conclusion says that A1 → A2 is a
subtype of B1 → B2. If A2 or B2 is polymorphic, then the first
premise on A1 → A2 is smaller by (S1). Otherwise, the first
premise has the same input context as the conclusion, so it has
the same (S2), but is smaller by (S3). If B1 or A1 is polymorphic,
then the second premise is smaller by (S1). Otherwise, we use the
property that instantiating a monotype always solves an existential:

Lemma (Monotypes Solve Variables). If Γ ⊢ α̂ :=< τ ⊣ ∆ or
Γ ⊢ τ =<: α̂ ⊣ ∆, then if [Γ ]τ = τ and α̂ /∈ FV([Γ ]τ), we have
|unsolved(Γ)| = |unsolved(∆)| + 1.

A couple of other lemmas are worth mentioning: subtyping on
two monotypes cannot increase the number of unsolved existen-
tials, and applying a substitution Γ to a type does not increase the
type’s size with respect to Γ .

Lemma (Monotype Monotonicity).
If Γ ⊢ τ1 <: τ2 ⊣ ∆ then |unsolved(∆)| ≤ |unsolved(Γ)|.

Lemma (Substitution Decreases Size).
If Γ ⊢ A then |Γ ⊢ [Γ ]A| ≤ |Γ ⊢A|.

Theorem 8 (Decidability of Subtyping).
Given a context Γ and types A, B such that Γ ⊢ A and Γ ⊢ B and
[Γ ]A = A and [Γ ]B = B, it is decidable whether there exists ∆ such
that Γ ⊢ A <: B ⊣ ∆.

5.3 Decidability of Algorithmic Typing

Theorem 9 (Decidability of Typing).

(i) Synthesis: Given a context Γ and a term e, it is decidable
whether there exist a type A and a context ∆ such that
Γ ⊢ e ⇒ A ⊣ ∆.

(ii) Checking: Given a context Γ , a term e, and a type B such that
Γ ⊢ B, it is decidable whether there is a context ∆ such that
Γ ⊢ e ⇐ B ⊣ ∆.

(iii) Application: Given a context Γ , a term e, and a type A such
that Γ ⊢ A, it is decidable whether there exist a type C and a
context ∆ such that
Γ ⊢ A • e ⇒⇒ C ⊣ ∆.

The following induction measure suffices to prove decidability:

〈

e,

⇒

⇐, |Γ ⊢B|

⇒⇒, |Γ ⊢A|

〉

where 〈. . . 〉 denotes lexicographic order, and where (when com-
paring two judgments typing the same term e) the synthesis judg-
ment (top line) is considered smaller than the checking judgment
(second line), which in turn is considered smaller than the applica-
tion judgment (bottom line). That is, ⇒≺⇐≺⇒⇒. In Sub, this
makes the synthesis premise smaller than the checking conclusion;
in →App and α̂App, this makes the checking premise smaller than
the application conclusion.

Since we have no explicit introduction form for polymorphism,
the rule ∀I has the same term e in its premise and conclusion, and
both the premise and conclusion are the same kind of judgment
(checking). The rule ∀App is similar (with application judgments
in premise and conclusion). Therefore, given two judgments on the
same term, and that are both checking judgments or both appli-
cation judgments, we use the size of the input type expression—
which does get smaller in ∀I and ∀App.

6. Soundness

We want the algorithmic specifications of subtyping and typing to
be sound with respect to the declarative specifications. Roughly,

given a derivation of an algorithmic judgment with input context Γ
and output context ∆, and some complete context Ω that extends ∆
(which therefore extends Γ ), applying Ω throughout the given al-
gorithmic judgment should yield a derivable declarative judgment.
Let’s make that rough outline concrete for instantiation, showing
that the action of the instantiation rules is consistent with declara-
tive subtyping:

Theorem 10 (Instantiation Soundness).
Given ∆ −→ Ω and [Γ ]B = B and α̂ /∈ FV(B):

(1) If Γ ⊢ α̂ :=< B ⊣ ∆ then [Ω]∆ ⊢ [Ω]α̂ ≤ [Ω]B.

(2) If Γ ⊢ B =<: α̂ ⊣ ∆ then [Ω]∆ ⊢ [Ω]B ≤ [Ω]α̂.

Note that the declarative derivation is under [Ω]∆, which is Ω
applied to the algorithmic output context ∆.

With instantiation soundness, we can prove the expected sound-
ness property for subtyping:

Theorem 11 (Soundness of Algorithmic Subtyping).
If Γ ⊢ A <: B ⊣ ∆ where [Γ ]A = A and [Γ ]B = B and ∆ −→ Ω
then [Ω]∆ ⊢ [Ω]A ≤ [Ω]B.

Finally, knowing that subtyping is sound, we can prove that
typing is sound:

Theorem 12 (Soundness of Algorithmic Typing). Given ∆ −→ Ω:

(i) If Γ ⊢ e ⇐ A ⊣ ∆ then [Ω]∆ ⊢ e ⇐ [Ω]A.

(ii) If Γ ⊢ e ⇒ A ⊣ ∆ then [Ω]∆ ⊢ e ⇒ [Ω]A.

(iii) If Γ ⊢ A • e ⇒⇒ C ⊣ ∆ then [Ω]∆ ⊢ [Ω]A • e ⇒⇒ [Ω]C.

The proofs need several lemmas, including this one:

Lemma (Typing Extension).
If Γ ⊢ e ⇐ A ⊣ ∆ or Γ ⊢ e ⇒ A ⊣ ∆ or Γ ⊢ A • e ⇒⇒ C ⊣ ∆
then Γ −→ ∆.

7. Completeness

Completeness of the algorithmic system is something like sound-
ness in reverse: given a declarative derivation of [Ω]Γ ⊢ [Ω] · · · ,
we want to get an algorithmic derivation of Γ ⊢ · · · ⊣ ∆.

For soundness, the output context ∆ such that ∆ −→ Ω was
given; Γ −→ Ω followed from Typing Extension (the above
lemma) and transitivity of extension. For completeness, only Γ
is given, so we have Γ −→ Ω in the antecedent. Then we might
expect to show, along with Γ ⊢ · · · ⊣ ∆, that ∆ −→ Ω. But this is
not general enough: the algorithmic rules generate fresh existential
variables, so ∆ may have existentials that are not found in Γ , nor in
Ω. In completeness, we are given a declarative derivation, which
contains no existentials; the completeness proof must build up the
completing context Ω along with the algorithmic derivation. Thus,
completeness will produce an Ω ′ which extends both the given Ω
and the output context of the algorithmic derivation: Ω −→ Ω ′

and ∆ −→ Ω ′. (By transitivity, we also get Γ −→ Ω ′.)
As with soundness, we have three main completeness results,

for instantiation, subtyping and typing.

Theorem 13 (Instantiation Completeness). Given Γ −→ Ω and
A = [Γ ]A and α̂ ∈ unsolved(Γ) and α̂ /∈ FV(A):

(1) If [Ω]Γ ⊢ [Ω]α̂ ≤ [Ω]A then there are ∆, Ω ′ such that

Ω −→ Ω ′ and ∆ −→ Ω ′ and Γ ⊢ α̂ :=< A ⊣ ∆.

(2) If [Ω]Γ ⊢ [Ω]A ≤ [Ω]α̂ then there are ∆, Ω ′ such that

Ω −→ Ω ′ and ∆ −→ Ω ′ and Γ ⊢ A =<: α̂ ⊣ ∆.

Theorem 14 (Generalized Completeness of Subtyping).
If Γ −→ Ω and Γ ⊢ A and Γ ⊢ B and [Ω]Γ ⊢ [Ω]A ≤ [Ω]B
then there exist ∆ and Ω ′ such that ∆ −→ Ω ′ and Ω −→ Ω ′ and
Γ ⊢ [Γ ]A <: [Γ ]B ⊣ ∆.
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Theorem 15 (Completeness of Algorithmic Typing).
Given Γ −→ Ω and Γ ⊢ A:

(i) If [Ω]Γ ⊢ e ⇐ [Ω]A
then there exist ∆ and Ω ′

such that ∆ −→ Ω ′ and Ω −→ Ω ′ and Γ ⊢ e ⇐ [Γ ]A ⊣ ∆.

(ii) If [Ω]Γ ⊢ e ⇒ A
then there exist ∆, Ω ′, and A ′

such that ∆ −→ Ω ′ and Ω −→ Ω ′ and Γ ⊢ e ⇒ A ′ ⊣ ∆
and A = [Ω ′]A ′.

(iii) If [Ω]Γ ⊢ [Ω]A • e ⇒⇒ C
then there exist ∆, Ω ′, and C ′

such that ∆ −→ Ω ′ and Ω −→ Ω ′

and Γ ⊢ [Γ ]A • e ⇒⇒ C ′ ⊣ ∆ and C = [Ω ′]C ′.

8. Design Variations

The rules we give infer monomorphic types, but require annotations
for all polymorphic bindings. In this section, we consider alterna-
tives to this choice.

Eliminating type inference. To eliminate type inference from the
declarative system, it suffices to drop the Decl→I⇒ and Decl1I⇒
rules. The corresponding alterations to the algorithmic system are a
little more delicate: simply deleting the →I⇒ and 1I⇒ rules breaks
completeness. To see why, suppose that we have a variable f of type
∀α. α → α, and consider the application f (). Our algorithm will
introduce a new existential variable α̂ for α, and then check ()

against α̂. Without the 1I⇒ rule, typechecking will fail. To restore
completeness, we need to modify these two rules. Instead of being
synthesis rules, we will change them to checking rules that check
values against an unknown existential variable.

Γ [α̂] ⊢ () ⇐ α̂ ⊣ Γ [α̂ = 1]
1Iα̂

Γ [α̂2, α̂1, α̂ = α̂1 → α̂2], x : α̂1 ⊢ e ⇐ α̂2 ⊣ ∆, x : α̂1, ∆
′

Γ [α̂] ⊢ λx. e ⇐ α̂ ⊣ ∆
→Iα̂

With these two rules replacing 1I⇒ and →I⇒, we have a complete
algorithm for the no-inference bidirectional system.

Full Damas-Milner type inference. Another alternative is to in-
crease the amount of type inference done. For instance, a natural
question is whether we can extend the bidirectional approach to
subsume the inference done by the algorithm of Damas and Milner
(1982). This appears feasible: we can alter the →I⇒ rule to support
ML-style type inference.

Γ,◮α̂, α̂, β̂, x : α̂ ⊢ e ⇐ β̂ ⊣ ∆,◮α̂, ∆
′

τ = [∆
′

](α̂ → β̂) ~̂α = unsolved(∆
′

)

Γ ⊢ λx. e ⇒ ∀~α. [~α/~̂α]τ ⊣ ∆
→I⇒ ′

In this rule, we introduce a marker ◮α̂ into the context, and then
check the function body against the type β̂. Then, our output type
substitutes away all the solved existential variables to the right of
the marker ◮α̂, and generalizes over all of the unsolved variables
to the right of the marker. Using an ordered context gives precise
control over the scope of the existential variables, making it easy to
express polymorphic generalization.

The above is only a sketch; we have not defined the correspond-
ing declarative system, nor proved completeness.

9. Related Work and Discussion

9.1 Type Inference for System F

Because type inference for System F is undecidable (Wells 1999),
designing type inference algorithms for first-class polymorphism

inherently involves navigating a variety of design tradeoffs. As a re-
sult, there have been a wide variety of proposals for extending type
systems beyond the Damas-Milner “sweet spot”. The main trade-
off appears to be a “two-out-of-three” choice: language designers
can keep any two of: (1) the η-law for functions, (2) impredicative
instantiation, and (3) the standard type language of System F.

As discussed in Section 2, for typability under η-reductions, it
is necessary for subtyping to instantiate deeply: that is, we must
allow instantiation of quantifiers to the right of an arrow. However,
Tiuryn and Urzyczyn (1996) and Chrząszcz (1998) showed that
the subtyping relation for impredicative System F is undecidable.
As a result, if we want η and a complete algorithm, then either
the polymorphic instantiations must be predicative, or a different
language of types must be used.

Figure 15 summarizes the different choices made by the design-
ers of this and related systems.

Impredicativity and the η-law. The designers of ML
F (Le Bot-

lan and Rémy 2003; Rémy and Yakobowski 2008; Le Botlan and
Rémy 2009) chose to use a different language of types, one with
a form of bounded quantification. This increases the expressivity
of types enough to ensure principal types, which means that (1)
required annotations are few and predictable, and (2) their system
is very robust in the face of program transformations, including
η. However, the richness of the ML

F type structure requires a so-
phisticated metatheory and correspondingly intricate implementa-
tion techniques.

Impredicativity and System F types. Much of the other work on
higher-rank polymorphism avoids changing the language of types.

The HML system of Leijen (2009) and the FPH system of Vy-
tiniotis et al. (2008) both retain the type language of (impredicative)
System F. Each of these systems gives as a specification a slightly
different extension to the declarative Damas-Milner type system,
and handle the issue of inference in slightly different ways. HML
is essentially a restriction of ML

F, in which the external language
of types is limited to System F, but which uses the technology of
ML

F internally, as part of type inference. FPH, on the other hand,
extends and generalizes work on boxy types (Vytiniotis et al. 2006)
to control type inference. The differences in expressive power be-
tween these two systems are subtle—roughly speaking, FPH re-
quires slightly more annotations, but has a less complicated speci-
fication. However, in both systems, the same heuristic guidance to
the programmer applies: place explicit annotations on binders with
fancy types.

The η-law and System F types. Peyton Jones et al. (2007) devel-
oped an approach for typechecking higher-rank predicative poly-
morphism that is closely related to ours. They define a bidirec-
tional declarative system similar to our own, but which lacks an
application judgment. This complicates the presentation of their
system, forcing them to introduce an additional grammatical cate-
gory of types beyond monotypes and polytypes, and requires many
rules to carry an additional subtyping premise. Next, they enrich
the subtyping rules of Odersky and Läufer (1996) with the distribu-
tivity axiom of Mitchell (1988), which we rejected on ideological
grounds: it is a valid coercion, but is not orthogonal (it is a sin-
gle rule mixing two different type connectives) and does not cor-
respond to a rule in the sequent calculus. They do not prove the
soundness and completeness of their Haskell reference implemen-
tation, but it appears to implement behavior close to our application
judgment.

History of our approach. Several of the ideas used in the present
paper descend from Dunfield (2009), an approach to first-class
polymorphism (including impredicativity) also based on ordered
contexts with existential variables instantiated via subtyping. In
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System η-laws? Impredicative? System F type language?

ML
F yes yes no

FPH no yes yes
HML no yes yes
Peyton Jones et al. (2007) yes no yes
This paper yes no yes

Figure 15. Comparison of type inference algorithms

fact, the present work began as an attempt to extend Dunfield
(2009) with type-level computation. During that attempt, we found
several shortcomings and problems. The most serious is that the de-
cidability and completeness arguments were not valid. These prob-
lems may be fixable, but instead we started over, reusing several of
the high-level ideas in different technical forms.

9.2 Other Type Systems

Pierce and Turner (2000) developed bidirectional typechecking for
rich subtyping, with specific techniques for instantiating polymor-
phism within function application (hence, local type inference).
Their declarative specification is more complex than ours, and
their algorithm depends on computing approximations of upper and
lower bounds on types. Colored local type inference (Odersky et al.
2001) allows different parts of type expressions to be propagated in
different directions. Our approach gets a similar effect by manipu-
lating type expressions with existential variables.

9.3 Our Algorithm

One of our main contributions is our new algorithm for type infer-
ence, which is remarkable in its simplicity. Three key ideas under-
pin our algorithm.

Ordered contexts. We move away from the traditional “bag of
constraints” model of type inference, and instead embed existential
variables and their values directly into an ordered context. Thus,
straightforward scoping rules control the free variables of the types
each existential variable may be instantiated with, without any need
for model-theoretic techniques like skolemization, which fit awk-
wardly into a type-theoretic discipline. Using an ordered context
permits handling quantifiers in a manner resembling the level-based
generalization mechanism of Rémy (1992), used also in ML

F (Le
Botlan and Rémy 2009).

The instantiation judgment. The original inspiration for instanti-
ation comes from the “greedy” algorithm of Cardelli (1993), which
eagerly uses type information to solve existential constraints. In
that setting—a language with rather ambitious subtyping—the
greedy algorithm was incomplete: consider a function of type
∀α. α → α → α applied to a Cat and an Animal; the cat will be
checked against an existential α̂, which instantiates α̂ to Cat, but
checking the second argument, Animal <: Cat, fails. (Reversing
the order of arguments makes typing succeed!)

In our setting, where subtyping represents the specialization
order induced by quantifier instantiation, it is possible to get a
complete algorithm, by slightly relaxing the pure greedy strategy.
Rather than eagerly setting constraints, we first look under quanti-
fiers (in the InstLAllR and InstRAllL rules) to see if there is a fea-
sible monotype instantiation, and we also use the the InstLReach
and InstRReach to set the “wrong” existential variable in case we
need to equate an existential variable with one to its right in the
context. Looking under quantifiers seems forced by our restriction
to predicative polymorphism, and “reaching” seems forced by our
use of an ordered context, but the combination of these mechanisms
fortuitously enables our algorithm to find good upper and lower
monomorphic approximations of polymorphic types.

This is surprising, since it is quite contrary to the implemen-
tation strategy of ML

F (also used by HML and FPH). There, the
language of type constraints supports bounds on fully quantified
types, and the algorithm incrementally refines these constraints. In
contrast, we only ever create equational constraints on existentials
(bounds are not needed), and once we have a solution for an exis-
tential, our algorithm never needs to revisit its decision.

Distinguishing instantiation as a separate judgment is new in
this paper, and beneficial: Dunfield (2009) baked instantiation into
the subtyping rules, resulting in a system whose direct implementa-
tion required substantial backtracking—over a set of rules includ-
ing arbitrary application of substitutions. We, instead, maintain an
invariant in subtyping and instantiation that the types are always
fully applied with respect to an input context, obviating the need
for explicit rules to apply substitutions.

Context extension. Finally, we introduce a context-extension
judgment as the central invariant in our correctness proofs. This
permits us to state many properties important to our algorithm ab-
stractly, without reference to the details of our algorithm.

We are not the only ones to study context-based approaches to
type inference. Recently, Gundry et al. (2010) recast the classic
Damas-Milner algorithm, which manipulates unstructured sets of
equality constraints, as structured constraint solving under ordered
contexts. A (semantic) notion of information increase is central to
their development, as (syntactic) context extension is to ours. While
their formulation supports only ML-style prenex polymorphism,
the ultimate goal is a foundation for type inference for dependent
types. To some extent, both our algorithm and theirs can be under-
stood in terms of the proof system of Miller (1992) for mixed-prefix
unification. We each restrict the unification problem, and then give
a proof search algorithm to solve the type inference problem.
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A Declarative Subtyping

A.1 Properties of Well-Formedness

Proposition 1 (Weakening). If Ψ ⊢ A then Ψ,Ψ ′ ⊢ A by a derivation of the same size.

Proposition 2 (Substitution). If Ψ ⊢ A and Ψ,α,Ψ ′ ⊢ B then Ψ,Ψ ′ ⊢ [A/α]B.

A.2 Reflexivity

Lemma 3 (Reflexivity of Declarative Subtyping). Subtyping is reflexive: if Ψ ⊢ A then Ψ ⊢ A ≤ A.

A.3 Subtyping Implies Well-Formedness

Lemma 4 (Well-Formedness). If Ψ ⊢ A ≤ B then Ψ ⊢ A and Ψ ⊢ B.

A.4 Substitution

Lemma 5 (Substitution). If Ψ ⊢ τ and Ψ,α,Ψ ′ ⊢ A ≤ B then Ψ, [τ/α]Ψ ′ ⊢ [τ/α]A ≤ [τ/α]B.

A.5 Transitivity

Lemma 6 (Transitivity of Declarative Subtyping). If Ψ ⊢ A ≤ B and Ψ ⊢ B ≤ C then Ψ ⊢ A ≤ C.

A.6 Invertibility of ≤∀R

Lemma 7 (Invertibility).
If D derives Ψ ⊢ A ≤ ∀β. B then D ′ derives Ψ,β ⊢ A ≤ B where D ′ < D.

A.7 Non-Circularity and Equality

Definition 1 (Subterm Occurrence).
Let A � B iff A is a subterm of B.
Let A ≺ B iff A is a proper subterm of B (that is, A � B and A 6= B).
Let A ≺

→ B iff A occurs in B inside an arrow, that is, there exist B1, B2 such that (B1→B2) � B and
A � Bk for some k ∈ {1, 2}.

Lemma 8 (Occurrence).

(i) If Ψ ⊢ A ≤ τ then τ ≺6
→ A.

(ii) If Ψ ⊢ τ ≤ B then τ ≺6
→ B.

Lemma 9 (Monotype Equality). If Ψ ⊢ σ ≤ τ then σ = τ.

Definition 2 (Contextual Size). The size of A with respect to a context Γ , written |Γ ⊢A|, is defined by

|Γ ⊢α| = 1

|Γ [α̂] ⊢ α̂| = 1

|Γ [α̂ = τ] ⊢ α̂| = 1+ |Γ [α̂ = τ] ⊢ τ|

|Γ ⊢∀α. A| = 1+ |Γ, α ⊢A|

|Γ ⊢A → B| = 1+ |Γ ⊢A|+ |Γ ⊢B|
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B Type Assignment

Lemma 10 (Well-Formedness).
If Ψ ⊢ e ⇐ A or Ψ ⊢ e ⇒ A or Ψ ⊢ A • e ⇒⇒ C then Ψ ⊢ A (and in the last case, Ψ ⊢ C).

Theorem 1 (Completeness of Bidirectional Typing).
If Ψ ⊢ e : A then there exists e ′ such that Ψ ⊢ e ′ ⇒ A and |e ′| = e.

Lemma 11 (Subtyping Coercion). If Ψ ⊢ A ≤ B then there exists f which is βη-equal to the identity such
that Ψ ⊢ f : A → B.

Lemma 12 (Application Subtyping). If Ψ ⊢ A • e ⇒⇒ C then there exists B such that Ψ ⊢ A ≤ B → C

and Ψ ⊢ e ⇐ B by a smaller derivation.

Theorem 2 (Soundness of Bidirectional Typing). We have that:

• If Ψ ⊢ e ⇐ A, then there is an e ′ such that Ψ ⊢ e ′ : A and e ′ =βη |e|.

• If Ψ ⊢ e ⇒ A, then there is an e ′ such that Ψ ⊢ e ′ : A and e ′ =βη |e|.

C Robustness of Typing

Lemma 13 (Type Substitution).
Assume Ψ ⊢ τ.

• If Ψ,α,Ψ ′ ⊢ e ′ ⇐ C then Ψ, [τ/α]Ψ ′ ⊢ [τ/α]e ′ ⇐ [τ/α]C.

• If Ψ,α,Ψ ′ ⊢ e ′ ⇒ C then Ψ, [τ/α]Ψ ′ ⊢ [τ/α]e ′ ⇒ [τ/α]C.

• If Ψ,α,Ψ ′ ⊢ B • e ′ ⇒⇒ C then Ψ, [τ/α]Ψ ′ ⊢ [τ/α]B • [τ/α]e ′ ⇒⇒ [A/α]C.

Moreover, the resulting derivation contains no more applications of typing rules than the given one.
(Internal subtyping derivations, however, may grow.)

Definition 3 (Context Subtyping). We define the judgment Ψ ′ ≤ Ψ with the following rules:

· ≤ ·
CtxSubEmpty

Ψ ′ ≤ Ψ

Ψ ′, α ≤ Ψ,α
CtxSubUvar

Ψ ′ ≤ Ψ Ψ ⊢ A ′ ≤ A

Ψ ′, x : A ′ ≤ Ψ, x : A
CtxSubVar

Lemma 14 (Subsumption). Suppose Ψ ′ ≤ Ψ. Then:

(i) If Ψ ⊢ e ⇐ A and Ψ ⊢ A ≤ A ′ then Ψ ′ ⊢ e ⇐ A ′.

(ii) If Ψ ⊢ e ⇒ A then there exists A ′ such that Ψ ⊢ A ′ ≤ A and Ψ ′ ⊢ e ⇒ A ′.

(iii) If Ψ ⊢ C • e ⇒⇒ A and Ψ ⊢ C ′ ≤ C

then there exists A ′ such that Ψ ⊢ A ′ ≤ A and Ψ ′ ⊢ C ′ • e ⇒⇒ A ′.

Theorem 3 (Substitution).
Assume Ψ ⊢ e ⇒ A.

(i) If Ψ, x : A ⊢ e ′ ⇐ C then Ψ ⊢ [e/x]e ′ ⇐ C.

(ii) If Ψ, x : A ⊢ e ′ ⇒ C then Ψ ⊢ [e/x]e ′ ⇒ C.

(iii) If Ψ, x : A ⊢ B • e ′ ⇒⇒ C then Ψ ⊢ B • [e/x]e ′ ⇒⇒ C.

Theorem 4 (Inverse Substitution).
Assume Ψ ⊢ e ⇐ A.

(i) If Ψ ⊢ [(e : A)/x]e ′ ⇐ C then Ψ, x : A ⊢ e ′ ⇐ C.
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(ii) If Ψ ⊢ [(e : A)/x]e ′ ⇒ C then Ψ, x : A ⊢ e ′ ⇒ C.

(iii) If Ψ ⊢ B • [(e : A)/x]e ′ ⇒⇒ C then Ψ, x : A ⊢ B • e ′ ⇒⇒ C.

Theorem 5 (Annotation Removal). We have that:

• If Ψ ⊢
(

(λx. e) : A
)

⇐ C then Ψ ⊢ λx. e ⇐ C.

• If Ψ ⊢ (() : A) ⇐ C then Ψ ⊢ () ⇐ C.

• If Ψ ⊢ e1 (e2 : A) ⇒ C then Ψ ⊢ e1 e2 ⇒ C.

• If Ψ ⊢ (x : A) ⇒ A then Ψ ⊢ x ⇒ B and Ψ ⊢ B ≤ A.

• If Ψ ⊢
(

(e1 e2) : A
)

⇒ A then Ψ ⊢ e1 e2 ⇒ B and Ψ ⊢ B ≤ A.

• If Ψ ⊢
(

(e : B) : A
)

⇒ A then Ψ ⊢ (e : B) ⇒ B and Ψ ⊢ B ≤ A.

• If Ψ ⊢
(

(λx. e) : σ → τ
)

⇒ σ → τ then Ψ ⊢ λx. e ⇒ σ → τ.

Theorem 6 (Soundness of Eta).
If Ψ ⊢ λx. e x ⇐ A and x 6∈ FV(e), then Ψ ⊢ e ⇐ A.

D Properties of Context Extension

D.1 Syntactic Properties

Lemma 15 (Declaration Preservation). If Γ −→ ∆, and u is a variable or marker ◮α̂ declared in Γ , then
u is declared in ∆.

Lemma 16 (Declaration Order Preservation). If Γ −→ ∆ and u is declared to the left of v in Γ , then u is
declared to the left of v in ∆.

Lemma 17 (Reverse Declaration Order Preservation). If Γ −→ ∆ and u and v are both declared in Γ and
u is declared to the left of v in ∆, then u is declared to the left of v in Γ .

Lemma 18 (Substitution Extension Invariance). If Θ ⊢ A and Θ −→ Γ then [Γ ]A = [Γ ]([Θ]A) and
[Γ ]A = [Θ]([Γ ]A).

Lemma 19 (Extension Equality Preservation).
If Γ ⊢ A and Γ ⊢ B and [Γ ]A = [Γ ]B and Γ −→ ∆, then [∆]A = [∆]B.

Lemma 20 (Reflexivity). If Γ is well-formed, then Γ −→ Γ .

Lemma 21 (Transitivity). If Γ −→ ∆ and ∆ −→ Θ, then Γ −→ Θ.

Definition 4 (Softness). A context Θ is soft iff it consists only of α̂ and α̂ = τ declarations.

Lemma 22 (Right Softness). If Γ −→ ∆ and Θ is soft (and (∆,Θ) is well-formed) then Γ −→ ∆,Θ.

Lemma 23 (Evar Input).
If Γ, α̂ −→ ∆ then ∆ = (∆0, ∆α̂, Θ) where Γ −→ ∆0, and ∆α̂ is either α̂ or α̂ = τ, and Θ is soft.

Lemma 24 (Extension Order).

(i) If ΓL, α, ΓR −→ ∆ then ∆ = (∆L, α, ∆R) where ΓL −→ ∆L.
Moreover, if ΓR is soft then ∆R is soft.

(ii) If ΓL,◮α̂, ΓR −→ ∆ then ∆ = (∆L,◮α̂, ∆R) where ΓL −→ ∆L.
Moreover, if ΓR is soft then ∆R is soft.

(iii) If ΓL, α̂, ΓR −→ ∆ then ∆ = ∆L, Θ, ∆R where ΓL −→ ∆L and Θ is either α̂ or α̂ = τ for some τ.

(iv) If ΓL, α̂ = τ, ΓR −→ ∆ then ∆ = ∆L, α̂ = τ ′, ∆R where ΓL −→ ∆L and [∆L]τ = [∆L]τ
′.
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(v) If ΓL, x : A, ΓR −→ ∆ then ∆ = (∆L, x : A ′, ∆R) where ΓL −→ ∆L and [∆L]A = [∆L]A
′.

Moreover, ΓR is soft if and only if ∆R is soft.

Lemma 25 (Extension Weakening). If Γ ⊢ A and Γ −→ ∆ then ∆ ⊢ A.

Lemma 26 (Solution Admissibility for Extension). If ΓL ⊢ τ then ΓL, α̂, ΓR −→ ΓL, α̂ = τ, ΓR.

Lemma 27 (Solved Variable Addition for Extension). If ΓL ⊢ τ then ΓL, ΓR −→ ΓL, α̂ = τ, ΓR.

Lemma 28 (Unsolved Variable Addition for Extension). We have that ΓL, ΓR −→ ΓL, α̂, ΓR.

Lemma 29 (Parallel Admissibility).
If ΓL −→ ∆L and ΓL, ΓR −→ ∆L, ∆R then:

(i) ΓL, α̂, ΓR −→ ∆L, α̂, ∆R

(ii) If ∆L ⊢ τ ′ then ΓL, α̂, ΓR −→ ∆L, α̂ = τ ′, ∆R.

(iii) If ΓL ⊢ τ and ∆L ⊢ τ ′ and [∆L]τ = [∆L]τ
′, then ΓL, α̂ = τ, ΓR −→ ∆L, α̂ = τ ′, ∆R.

Lemma 30 (Parallel Extension Solution).
If ΓL, α̂, ΓR −→ ∆L, α̂ = τ ′, ∆R and ΓL ⊢ τ and [∆L]τ = [∆L]τ

′ then ΓL, α̂ = τ, ΓR −→ ∆L, α̂ = τ ′, ∆R.

Lemma 31 (Parallel Variable Update).
If ΓL, α̂, ΓR −→ ∆L, α̂ = τ0, ∆R and ΓL ⊢ τ1 and ∆L ⊢ τ2 and [∆L]τ0 = [∆L]τ1 = [∆L]τ2
then ΓL, α̂ = τ1, ΓR −→ ∆L, α̂ = τ2, ∆R.

D.2 Instantiation Extends

Lemma 32 (Instantiation Extension).
If Γ ⊢ α̂ :=

< τ ⊣ ∆ or Γ ⊢ τ =
<: α̂ ⊣ ∆ then Γ −→ ∆.

D.3 Subtyping Extends

Lemma 33 (Subtyping Extension).
If Γ ⊢ A <: B ⊣ ∆ then Γ −→ ∆.

E Decidability of Instantiation

Lemma 34 (Left Unsolvedness Preservation).
If Γ0, α̂, Γ1︸ ︷︷ ︸

Γ

⊢ α̂ :=
< A ⊣ ∆ or Γ0, α̂, Γ1︸ ︷︷ ︸

Γ

⊢ A =
<: α̂ ⊣ ∆, and β̂ ∈ unsolved(Γ0), then β̂ ∈ unsolved(∆).

Lemma 35 (Left Free Variable Preservation). If

Γ
︷ ︸︸ ︷
Γ0, α̂, Γ1 ⊢ α̂ :=

< A ⊣ ∆ or

Γ
︷ ︸︸ ︷
Γ0, α̂, Γ1 ⊢ A =

<: α̂ ⊣ ∆, and
Γ ⊢ B and α̂ /∈ FV([Γ ]B) and β̂ ∈ unsolved(Γ0) and β̂ /∈ FV([Γ ]B), then β̂ /∈ FV([∆]B).

Lemma 36 (Instantiation Size Preservation). If

Γ
︷ ︸︸ ︷
Γ0, α̂, Γ1 ⊢ α̂ :=

< A ⊣ ∆ or

Γ
︷ ︸︸ ︷
Γ0, α̂, Γ1 ⊢ A =

<: α̂ ⊣ ∆, and
Γ ⊢ B and α̂ /∈ FV([Γ ]B), then |[Γ ]B| = |[∆]B|, where |C| is the plain size of the term C.

This lemma lets us show decidability by taking the size of the type argument as the induction metric.

Theorem 7 (Decidability of Instantiation). If Γ = Γ0[α̂] and Γ ⊢ A such that [Γ ]A = A and α̂ /∈ FV(A),
then:

(1) Either there exists ∆ such that Γ0[α̂] ⊢ α̂ :=
< A ⊣ ∆, or not.

(2) Either there exists ∆ such that Γ0[α̂] ⊢ A =
<: α̂ ⊣ ∆, or not.
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F Decidability of Algorithmic Subtyping

F.1 Lemmas for Decidability of Subtyping

Lemma 37 (Monotypes Solve Variables). If Γ ⊢ α̂ :=
< τ ⊣ ∆ or Γ ⊢ τ =

<: α̂ ⊣ ∆, then if [Γ ]τ = τ and
α̂ /∈ FV([Γ ]τ), then |unsolved(Γ)| = |unsolved(∆)| + 1.

Lemma 38 (Monotype Monotonicity). If Γ ⊢ τ1 <: τ2 ⊣ ∆ then |unsolved(∆)| ≤ |unsolved(Γ)|.

Lemma 39 (Substitution Decreases Size). If Γ ⊢ A then |Γ ⊢ [Γ ]A| ≤ |Γ ⊢A|.

Lemma 40 (Monotype Context Invariance).
If Γ ⊢ τ <: τ ′ ⊣ ∆ where [Γ ]τ = τ and [Γ ]τ ′ = τ ′ and |unsolved(Γ)| = |unsolved(∆)| then Γ = ∆.

F.2 Decidability of Subtyping

Theorem 8 (Decidability of Subtyping).
Given a context Γ and types A, B such that Γ ⊢ A and Γ ⊢ B and [Γ ]A = A and [Γ ]B = B, it is decidable
whether there exists ∆ such that Γ ⊢ A <: B ⊣ ∆.

G Decidability of Typing

Theorem 9 (Decidability of Typing).

(i) Synthesis: Given a context Γ and a term e,
it is decidable whether there exist a type A and a context ∆ such that
Γ ⊢ e ⇒ A ⊣ ∆.

(ii) Checking: Given a context Γ , a term e, and a type B such that Γ ⊢ B,
it is decidable whether there is a context ∆ such that
Γ ⊢ e ⇐ B ⊣ ∆.

(iii) Application: Given a context Γ , a term e, and a type A such that Γ ⊢ A,
it is decidable whether there exist a type C and a context ∆ such that
Γ ⊢ A • e ⇒⇒ C ⊣ ∆.

H Soundness of Subtyping

Definition 5 (Filling). The filling of a context |Γ | solves all unsolved variables:

|·| = ·
|Γ, x : A| = |Γ | , x : A

|Γ, α| = |Γ | , α

|Γ, α̂ = τ| = |Γ | , α̂ = τ

|Γ,◮α̂| = |Γ | ,◮α̂

|Γ, α̂| = |Γ | , α̂ = 1

H.1 Lemmas for Soundness

Lemma 41 (Uvar Preservation).
If α ∈ Ω and ∆ −→ Ω then α ∈ [Ω]∆.

Proof. By induction on Ω, following the definition of context application.

Lemma 42 (Variable Preservation).
If (x : A) ∈ ∆ or (x : A) ∈ Ω and ∆ −→ Ω then (x : [Ω]A) ∈ [Ω]∆.

Lemma 43 (Substitution Typing). If Γ ⊢ A then Γ ⊢ [Γ ]A.
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Lemma 44 (Substitution for Well-Formedness). If Ω ⊢ A then [Ω]Ω ⊢ [Ω]A.

Lemma 45 (Substitution Stability).
For any well-formed complete context (Ω,ΩZ), if Ω ⊢ A then [Ω]A = [Ω,ΩZ]A.

Lemma 46 (Context Partitioning).
If ∆,◮α̂, Θ −→ Ω,◮α̂,ΩZ then there is a Ψ such that [Ω,◮α̂,ΩZ](∆,◮α̂, Θ) = [Ω]∆,Ψ.

Lemma 47 (Softness Goes Away).
If ∆,Θ −→ Ω,ΩZ where ∆ −→ Ω and Θ is soft, then [Ω,ΩZ](∆,Θ) = [Ω]∆.

Proof. By induction on Θ, following the definition of [Ω]Γ .

Lemma 48 (Filling Completes). If Γ −→ Ω and (Γ, Θ) is well-formed, then Γ, Θ −→ Ω, |Θ|.

Proof. By induction on Θ, following the definition of |−| and applying the rules for −→.

Lemma 49 (Stability of Complete Contexts).
If Γ −→ Ω then [Ω]Γ = [Ω]Ω.

Lemma 50 (Finishing Types).
If Ω ⊢ A and Ω −→ Ω ′ then [Ω]A = [Ω ′]A.

Lemma 51 (Finishing Completions).
If Ω −→ Ω ′ then [Ω]Ω = [Ω ′]Ω ′.

Lemma 52 (Confluence of Completeness).
If ∆1 −→ Ω and ∆2 −→ Ω then [Ω]∆1 = [Ω]∆2.

H.2 Instantiation Soundness

Theorem 10 (Instantiation Soundness).
Given ∆ −→ Ω and [Γ ]B = B and α̂ /∈ FV(B):

(1) If Γ ⊢ α̂ :=< B ⊣ ∆ then [Ω]∆ ⊢ [Ω]α̂ ≤ [Ω]B.

(2) If Γ ⊢ B =<: α̂ ⊣ ∆ then [Ω]∆ ⊢ [Ω]B ≤ [Ω]α̂.

H.3 Soundness of Subtyping

Theorem 11 (Soundness of Algorithmic Subtyping).
If Γ ⊢ A <: B ⊣ ∆ where [Γ ]A = A and [Γ ]B = B and ∆ −→ Ω then [Ω]∆ ⊢ [Ω]A ≤ [Ω]B.

Corollary 53 (Soundness, Pretty Version). If Ψ ⊢ A <: B ⊣ ∆, then Ψ ⊢ A ≤ B.

I Typing Extension

Lemma 54 (Typing Extension).
If Γ ⊢ e ⇐ A ⊣ ∆ or Γ ⊢ e ⇒ A ⊣ ∆ or Γ ⊢ A • e ⇒⇒ C ⊣ ∆ then Γ −→ ∆.

J Soundness of Typing

Theorem 12 (Soundness of Algorithmic Typing). Given ∆ −→ Ω:

(i) If Γ ⊢ e ⇐ A ⊣ ∆ then [Ω]∆ ⊢ e ⇐ [Ω]A.

(ii) If Γ ⊢ e ⇒ A ⊣ ∆ then [Ω]∆ ⊢ e ⇒ [Ω]A.

(iii) If Γ ⊢ A • e ⇒⇒ C ⊣ ∆ then [Ω]∆ ⊢ [Ω]A • e ⇒⇒ [Ω]C.
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K Completeness of Subtyping

K.1 Instantiation Completeness

Theorem 13 (Instantiation Completeness).
Given Γ −→ Ω and A = [Γ ]A and α̂ ∈ unsolved(Γ) and α̂ /∈ FV(A):

(1) If [Ω]Γ ⊢ [Ω]α̂ ≤ [Ω]A

then there are ∆, Ω ′ such that Ω −→ Ω ′ and ∆ −→ Ω ′ and Γ ⊢ α̂ :=
< A ⊣ ∆.

(2) If [Ω]Γ ⊢ [Ω]A ≤ [Ω]α̂

then there are ∆, Ω ′ such that Ω −→ Ω ′ and ∆ −→ Ω ′ and Γ ⊢ A =<: α̂ ⊣ ∆.

K.2 Completeness of Subtyping

Theorem 14 (Generalized Completeness of Subtyping). If Γ −→ Ω and Γ ⊢ A and Γ ⊢ B and [Ω]Γ ⊢
[Ω]A ≤ [Ω]B then there exist ∆ and Ω ′ such that ∆ −→ Ω ′ and Ω −→ Ω ′ and Γ ⊢ [Γ ]A <: [Γ ]B ⊣ ∆.

Corollary 55 (Completeness of Subtyping). If Ψ ⊢ A ≤ B then there is a ∆ such that Ψ ⊢ A <: B ⊣ ∆.

L Completeness of Typing

Theorem 15 (Completeness of Algorithmic Typing). Given Γ −→ Ω and Γ ⊢ A:

(i) If [Ω]Γ ⊢ e ⇐ [Ω]A

then there exist ∆ and Ω ′

such that ∆ −→ Ω ′ and Ω −→ Ω ′ and Γ ⊢ e ⇐ [Γ ]A ⊣ ∆.

(ii) If [Ω]Γ ⊢ e ⇒ A

then there exist ∆, Ω ′, and A ′

such that ∆ −→ Ω ′ and Ω −→ Ω ′ and Γ ⊢ e ⇒ A ′ ⊣ ∆ and A = [Ω ′]A ′.

(iii) If [Ω]Γ ⊢ [Ω]A • e ⇒⇒ C

then there exist ∆, Ω ′, and C ′

such that ∆ −→ Ω ′ and Ω −→ Ω ′ and Γ ⊢ [Γ ]A • e ⇒⇒ C ′ ⊣ ∆ and C = [Ω ′]C ′.
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Proofs

In the rest of this document, we prove the results stated above, with the same sectioning.

A ′ Declarative Subtyping

Proposition 1 (Weakening). If Ψ ⊢ A then Ψ,Ψ ′ ⊢ A by a derivation of the same size.

Proposition 2 (Substitution). If Ψ ⊢ A and Ψ,α,Ψ ′ ⊢ B then Ψ,Ψ ′ ⊢ [A/α]B.

The proofs of these two propositions are routine inductions.

A ′.1 Properties of Well-Formedness

A ′.2 Reflexivity

Lemma 3 (Reflexivity of Declarative Subtyping). Subtyping is reflexive: if Ψ ⊢ A then Ψ ⊢ A ≤ A.

Proof. By induction on A.

• Case A = 1: Apply rule ≤Unit.

• Case A = α: Apply rule ≤Var.

• Case A = A1 → A2:

Ψ ⊢ A1 ≤ A1 By i.h.

Ψ ⊢ A2 ≤ A2 By i.h.

Ψ ⊢ A1 → A2 ≤ A1 → A2 By ≤→

• Case A = ∀α. A0:

Ψ,α ⊢ A0 ≤ A0 By i.h.

Ψ,α ⊢ α By DeclUvarWF

Ψ,α ⊢ [α/α]A0 ≤ A0 By def. of substitution

Ψ,α ⊢ ∀α. A0 ≤ A0 By ≤∀L

Ψ ⊢ ∀α. A0 ≤ ∀α. A0 By ≤∀R

A ′.3 Subtyping Implies Well-Formedness

Lemma 4 (Well-Formedness). If Ψ ⊢ A ≤ B then Ψ ⊢ A and Ψ ⊢ B.

Proof. By induction on the given derivation. All 5 cases are straightforward.

A ′.4 Substitution

Lemma 5 (Substitution). If Ψ ⊢ τ and Ψ,α,Ψ ′ ⊢ A ≤ B then Ψ, [τ/α]Ψ ′ ⊢ [τ/α]A ≤ [τ/α]B.

Proof. By induction on the given derivation.

• Case β ∈ (Ψ,α,Ψ ′)

Ψ,α,Ψ ′ ⊢ β ≤ β
≤Var

It is given that Ψ ⊢ τ.

Either β = α or β 6= α. In the former case: We need to show Ψ,Ψ ′ ⊢ [τ/α]α ≤ [τ/α]α, that is,

Ψ,Ψ ′ ⊢ τ ≤ τ, which follows by Lemma 3 (Reflexivity of Declarative Subtyping). In the latter case:

We need to show Ψ,Ψ ′ ⊢ [τ/α]β ≤ [τ/α]β, that is, Ψ,Ψ ′ ⊢ β ≤ β. Since β ∈ (Ψ,α,Ψ ′) and β 6= α,
we have β ∈ (Ψ,Ψ ′), so applying ≤Var gives the result.
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• Case

Ψ,α,Ψ ′ ⊢ 1 ≤ 1
≤Unit

For all τ, substituting [τ/α]1 = 1, and applying ≤Unit gives the result.

• Case Ψ,α,Ψ ′ ⊢ B1 ≤ A1 Ψ,α,Ψ ′ ⊢ A2 ≤ B2

Ψ,α,Ψ ′ ⊢ A1 → A2 ≤ B1 → B2

≤→

Ψ,α,Ψ ′ ⊢ B1 ≤ A1 Subderivation

Ψ,Ψ ′ ⊢ [τ/α]B1 ≤ [τ/α]A1 By i.h.

Ψ,α,Ψ ′ ⊢ A2 ≤ B2 Subderivation

Ψ,Ψ ′ ⊢ [τ/α]A2 ≤ [τ/α]B2 By i.h.

Ψ,Ψ ′ ⊢ ([τ/α]A1) → ([τ/α]A2) ≤ ([τ/α]B1) → ([τ/α]B2) By ≤→

Z Ψ,Ψ ′ ⊢ [τ/α](A1 → A2) ≤ [τ/α](B1 → B2) By definition of subst.

• Case Ψ,α,Ψ ′ ⊢ σ Ψ,α,Ψ ′ ⊢ [σ/β]A0 ≤ B

Ψ,α,Ψ ′ ⊢ ∀β. A0 ≤ B
≤∀L

Ψ,α,Ψ ′ ⊢ [σ/β]A0 ≤ B Subderivation

Ψ,Ψ ′ ⊢ [τ/α][σ/β]A0 ≤ [τ/α]B By i.h.

Ψ,Ψ ′ ⊢
[

[τ/α]σ/β
]

[τ/α]A0 ≤ [τ/α]B By distributivity of substitution

Ψ,α,Ψ ′ ⊢ σ Premise

Ψ ⊢ τ Given

Ψ,Ψ ′ ⊢ [τ/α]σ By Proposition 2

Ψ,Ψ ′ ⊢ ∀β. [τ/α]A0 ≤ [τ/α]B By ≤∀L

Z Ψ,Ψ ′ ⊢ [τ/α]
(

∀β. A0

)

≤ [τ/α]B By definition of substitution

• Case Ψ,α,Ψ ′, β ⊢ A ≤ B0

Ψ,α,Ψ ′ ⊢ A ≤ ∀β. B0

≤∀R

Ψ,α,Ψ ′, β ⊢ A ≤ B0 Subderivation

Ψ,Ψ ′, β ⊢ [τ/α]A ≤ [τ/α]B0 By i.h.

Ψ,Ψ ′ ⊢ [τ/α]A ≤ ∀β. [τ/α]B0 By ≤∀R

Z Ψ,Ψ ′ ⊢ [τ/α]A ≤ [τ/α](∀β. B0) By definition of substitution

A ′.5 Transitivity

To prove transitivity, we use a metric that adapts ideas from a proof of cut elimination by Pfenning

(1995).

Lemma 6 (Transitivity of Declarative Subtyping). If Ψ ⊢ A ≤ B and Ψ ⊢ B ≤ C then Ψ ⊢ A ≤ C.

Proof. By induction with the following metric:

〈#∀(B), D1 + D2〉

where 〈. . . 〉 denotes lexicographic order, the first part #∀(B) is the number of quantifiers in B, and the
second part is the (simultaneous) size of the derivations D1 :: Ψ ⊢ A ≤ B and D2 :: Ψ ⊢ B ≤ C. We need

to consider the number of quantifiers first in one case: when ≤∀R concluded D1 and ≤∀L concluded D2,
because in that case, the derivations on which the i.h. must be applied are not necessarily smaller.

• Case α ∈ Ψ

Ψ ⊢ α ≤ α
≤Var

α ∈ Ψ

Ψ ⊢ α ≤ α
≤Var

Apply rule ≤Var.
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• Case ≤Unit / ≤Unit: Similar to the ≤Var / ≤Var case.

• Case Ψ ⊢ B1 ≤ A1 Ψ ⊢ A2 ≤ B2

Ψ ⊢ A1 → A2 ≤ B1 → B2

≤→
Ψ ⊢ C1 ≤ B1 Ψ ⊢ B2 ≤ C2

Ψ ⊢ B1 → B2 ≤ C1 → C2

≤→

By i.h. on the 3rd and 1st subderivations, Ψ ⊢ C1 ≤ A1.

By i.h. on the 2nd and 4th subderivations, Ψ ⊢ A2 ≤ C2.
By ≤→, Ψ ⊢ A1 → A2 ≤ C1 → C2.

If ≤∀L concluded D1:

• Case Ψ ⊢ τ Ψ ⊢ [τ/α]A0 ≤ B

Ψ ⊢ ∀α. A0 ≤ B
≤∀L

Ψ ⊢ τ Premise

Ψ ⊢ [τ/α]A0 ≤ B Subderivation

Ψ ⊢ B ≤ C Given (D2)

Ψ ⊢ [τ/α]A0 ≤ C By i.h.

Z Ψ ⊢ ∀α. A0 ≤ C By ≤∀L

If ≤∀R concluded D2:

• Case Ψ,β ⊢ B ≤ C

Ψ ⊢ B ≤ ∀β. C
≤∀R

Ψ ⊢ τ Premise

Ψ,β ⊢ B ≤ C Subderivation

Ψ ⊢ A ≤ B Given (D1)

Ψ,β ⊢ A ≤ B By Proposition 1

Ψ,β ⊢ A ≤ C By i.h.

Z Ψ ⊢ A ≤ ∀β. C By ≤∀L

The only remaining possible case is ≤∀R / ≤∀L.

• Case Ψ,β ⊢ A ≤ B0

Ψ ⊢ A ≤ ∀β. B0

≤∀R
Ψ ⊢ τ Ψ ⊢ [τ/β]B0 ≤ C

Ψ ⊢ ∀β. B0 ≤ C
≤∀L

Ψ,β ⊢ A ≤ B0 Subderivation of D1

Ψ ⊢ τ Premise of D2

Ψ ⊢ [τ/β]A ≤ [τ/β]B0 By Lemma 5 (Substitution)

[τ/β]A = A β cannot appear in A

Ψ ⊢ A ≤ [τ/β]B0 By above equality

Ψ ⊢ [τ/β]B0 ≤ C Subderivation of D2

Z Ψ ⊢ A ≤ C By i.h. (one less ∀ quantifier in B)

A ′.6 Invertibility of ≤∀R

Lemma 7 (Invertibility).
If D derives Ψ ⊢ A ≤ ∀β. B then D ′ derives Ψ,β ⊢ A ≤ B where D ′ < D.

Proof. By induction on the given derivation D.

• Cases ≤Var, ≤Unit, ≤→: Impossible: the supertype cannot have the form ∀β. B.
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• Case Ψ,β ⊢ A ≤ B

Ψ ⊢ A ≤ ∀β. B
≤∀R

The subderivation is exactly what we need, and is strictly smaller than D.

• Case

Ψ ⊢ τ

D0

Ψ ⊢ [τ/α]A0 ≤ ∀β. B

Ψ ⊢ ∀α. A0 ≤ ∀β. B
≤∀L

By i.h., D ′

0 derives Ψ,β ⊢ [τ/α]A0 ≤ B where D ′

0 < D0.

By ≤∀L, D ′ derives Ψ,β ⊢ ∀α. A0 ≤ B; since D ′

0 < D0, we have D ′ < D.

A ′.7 Non-Circularity and Equality

Lemma 8 (Occurrence).

(i) If Ψ ⊢ A ≤ τ then τ ≺6
→ A.

(ii) If Ψ ⊢ τ ≤ B then τ ≺6
→ B.

Proof. By induction on the given derivation.

• Cases ≤Var, ≤Unit: (i), (ii): Here A and B have no subterms at all, so the result is immediate.

• Case Ψ ⊢ B1 ≤ A1 Ψ ⊢ A2 ≤ B2

Ψ ⊢ A1 → A2 ≤ B1 → B2

≤→

(i) Here, A = A1 → A2 and τ = B1 → B2.

B1 ≺6
→ A1 By i.h. (ii)

B1 → B2 6�A1 Suppose B1 → B2 � A1. Then B1 ≺
→ A1: contradiction.

B2 ≺6
→ A2 By i.h. (i)

B1 → B2 6�A2 Similar

Suppose (for a contradiction) that B1 → B2 ≺
→ A1 → A2.

Now B1 → B2 � A1 or B1 → B2 � A2.

But above, we showed that both were false: contradiction.

Therefore, B1 → B2 6≺ A1 → A2.
Therefore, B1 → B2 ≺6

→ A1 → A2.

(ii) Here, A = τ and B = B1 → B2.

Symmetric to the previous case.

• Case Ψ ⊢ τ ′ Ψ ⊢ [τ ′/α]A0 ≤ τ

Ψ ⊢ ∀α. A0 ≤ τ
≤∀L

In part (ii), this case cannot arise, so we prove part (i).

By i.h. (i), τ ≺6
→ [τ ′/α]A0.

It follows from the definition of ≺
→ that τ ≺6

→ ∀α. A0.

• Case Ψ,β ⊢ τ ≤ B0

Ψ ⊢ τ ≤ ∀β. B0

≤∀R

In part (i), this case cannot arise, so we prove part (ii).

Similar to the ≤∀L case.

Lemma 9 (Monotype Equality). If Ψ ⊢ σ ≤ τ then σ = τ.
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Proof. By induction on the given derivation.

• Case ≤Var: Immediate.

• Case ≤Unit: Immediate.

• Case Ψ ⊢ B1 ≤ A1 Ψ ⊢ A2 ≤ B2

Ψ ⊢ A1 → A2 ≤ B1 → B2

≤→

By i.h. on each subderivation, B1 = A1 and A2 = B2. Therefore A1 → A2 = B1 → B2.

• Case ≤∀L: Here σ = ∀α. A0, which is not a monotype, so this case is impossible.

• Case ≤∀R: Here τ = ∀β. B0, which is not a monotype, so this case is impossible.

B ′ Type Assignment

Lemma 10 (Well-Formedness).
If Ψ ⊢ e ⇐ A or Ψ ⊢ e ⇒ A or Ψ ⊢ A • e ⇒⇒ C then Ψ ⊢ A (and in the last case, Ψ ⊢ C).

Proof. By induction on the given derivation.
In all cases, we apply the induction hypothesis to all subderivations.

• In the DeclVar and Decl→I cases, we use our standard assumption that every context appearing in

a derivation is well-formed.

• In the Decl→I⇒ case, we use inversion on the Ψ ⊢ σ → τ premise.

• In the Decl∀App case, we use the property that if Ψ ⊢ [τ/α]A0 then Ψ ⊢ ∀α. A0.

• In the DeclAnno case, we use its premise.

Theorem 1 (Completeness of Bidirectional Typing).
If Ψ ⊢ e : A then there exists e ′ such that Ψ ⊢ e ′ ⇒ A and |e ′| = e.

Proof. By induction on the derivation of Ψ ⊢ e : A.

• Case x : A ∈ Ψ

Ψ ⊢ x : A
AVar

Immediate, by rule DeclVar.

• Case Ψ, x : A ⊢ e : B

Ψ ⊢ λx. e : A → B
A→I

By inversion, we have Ψ, x : A ⊢ e : B.

By induction, we have Ψ, x : A ⊢ e ′ ⇒ B, where |e ′| = e.
By Lemma 3 (Reflexivity of Declarative Subtyping), Ψ ⊢ B ≤ B.

By rule DeclSub, Ψ, x : A ⊢ e ′ ⇐ B.

By rule Decl→I, Ψ ⊢ λx. e ′ ⇐ A → B.
By Lemma 10 (Well-Formedness), Ψ ⊢ A → B.

By rule DeclAnno, Ψ ⊢ ((λx. e ′) : A → B) ⇒ A → B.
By definition, |((λx. e ′) : A → B)| = |λx. e ′| = λx. |e ′| = λx. e.
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• Case Ψ ⊢ e1 : A → B Ψ ⊢ e2 : A

Ψ ⊢ e1 e2 : B
A→E

By induction, Ψ ⊢ e ′

1 ⇒ A → B and |e ′

1| = e1.
By induction, Ψ ⊢ e ′

2 ⇒ A and |e ′

2| = e2.

By Lemma 3 (Reflexivity of Declarative Subtyping), Ψ ⊢ A ≤ A.

By rule DeclSub, Ψ ⊢ e ′

2 ⇐ A.
By rule Decl→App, Ψ ⊢ A → B • e ′

2 ⇒⇒ B.

By rule Decl→E, Ψ ⊢ e ′

1 e ′

2 ⇒ B.
By definition, |e ′

1 e ′

2| = |e ′

1| |e
′

2| = e1 e2.

• Case Ψ,α ⊢ e : A

Ψ ⊢ e : ∀α. A
A∀I

By induction, Ψ,α ⊢ e ′ ⇒ A where |e ′| = e.
By Lemma 3 (Reflexivity of Declarative Subtyping), Ψ,α ⊢ A ≤ A.

By rule DeclSub, Ψ,α ⊢ e ′ ⇐ A.
By rule Decl∀I, Ψ ⊢ e ′ ⇐ ∀α. A.

By Lemma 10 (Well-Formedness), Ψ ⊢ ∀α. A.

By rule DeclAnno, Ψ ⊢ (e ′ : ∀α. A) ⇒ ∀α. A.
By definition, |e ′ : ∀α. A| = |e ′| = e.

• Case Ψ ⊢ e : ∀α. A Ψ ⊢ τ

Ψ ⊢ e : [τ/α]A
A∀E

By induction, Ψ ⊢ e ′ ⇒ ∀α. A where |e ′| = e.
By Lemma 3 (Reflexivity of Declarative Subtyping), Ψ ⊢ [τ/α]A ≤ [τ/α]A.

By ≤∀L, Ψ ⊢ ∀α. A ≤ [τ/α]A.
By rule DeclSub, Ψ ⊢ e ′ ⇐ [τ/α]A.

By Lemma 10 (Well-Formedness), Ψ ⊢ [τ/α]A.

By rule DeclAnno, Ψ ⊢ (e ′ : [τ/α]A) ⇐ [τ/α]A.
By definition, |e ′ : [τ/α]A| = |e ′| = e.

Lemma 11 (Subtyping Coercion). If Ψ ⊢ A ≤ B then there exists f which is βη-equal to the identity such
that Ψ ⊢ f : A → B.

Proof. By induction on the derivation of Ψ ⊢ A ≤ B.

• Case α ∈ Ψ

Ψ ⊢ α ≤ α
≤Var

Choose f = λx. x.
Clearly Ψ ⊢ λx. x : α → α.

• Case

Ψ ⊢ 1 ≤ 1
≤Unit

Choose f = λx. x.
Clearly Ψ ⊢ λx. x : 1 → 1.

• Case Ψ ⊢ B1 ≤ A1 Ψ ⊢ A2 ≤ B2

Ψ ⊢ A1 → A2 ≤ B1 → B2

≤→

By induction, we have g : B1 → A1, which is βη-equal to the identity.

By induction, we have k : A2 → B2, which is βη-equal to the identity.

Let f be λh. k ◦ h ◦ g.
It is easy to verify that Ψ ⊢ f : (A1 → A2) → (B1 → B2).

Since k and g are identities, f =βη λh. h.
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• Case Ψ ⊢ τ Ψ ⊢ [τ/α]A ≤ B

Ψ ⊢ ∀α. A ≤ B
≤∀L

By induction, g : [τ/α]A → B.

Let f , λx. g x.

f is an eta-expansion of g, which is βη-equal to the identity. Hence f is too.
Also, λx. g x : (∀α. A) → B, using the Decl∀E rule on x.

• Case Ψ,β ⊢ A ≤ B

Ψ ⊢ A ≤ ∀β. B
≤∀R

By induction, we have g such that Ψ,β ⊢ g : A → B.
Let f , λx. g x.

Use the following derivation:

WEAKEN

...

Ψ,β ⊢ g : A → B

Ψ, x : A,β ⊢ g : A → B Ψ, x : A,β ⊢ x : A

Ψ, x : A,β ⊢ g x : B

Ψ, x : A ⊢ g x : ∀β. B

Ψ ⊢ λx. g x : A → ∀β. B

Lemma 12 (Application Subtyping). If Ψ ⊢ A • e ⇒⇒ C then there exists B such that Ψ ⊢ A ≤ B → C

and Ψ ⊢ e ⇐ B by a smaller derivation.

Proof. By induction on the given derivation D.

• Case Ψ ⊢ e ⇐ B

Ψ ⊢ B → C • e ⇒⇒ C
Decl→App

Z D ′ :: Ψ ⊢ e ⇐ B Subderivation

Z D ′ < D D ′ is a subderivation of D

Z Ψ ⊢ B → C︸ ︷︷ ︸
A

≤ B → C By Lemma 3 (Reflexivity of Declarative Subtyping)

• Case Ψ ⊢ τ Ψ ⊢ [τ/α]A0 • e ⇒⇒ C

Ψ ⊢ ∀α. A0 • e ⇒⇒ C
Decl∀App

Ψ ⊢ τ Subderivation

Ψ ⊢ [τ/α]A0 • e ⇒⇒ C Subderivation

Ψ ⊢ [τ/α]A0 ≤ B → C By i.h.

Z D ′ :: Ψ ⊢ e ⇐ B ′′

Z D ′ < D ′′

Z Ψ ⊢ ∀α. A0 ≤ B → C By ≤∀L

Theorem 2 (Soundness of Bidirectional Typing). We have that:

• If Ψ ⊢ e ⇐ A, then there is an e ′ such that Ψ ⊢ e ′ : A and e ′ =βη |e|.

• If Ψ ⊢ e ⇒ A, then there is an e ′ such that Ψ ⊢ e ′ : A and e ′ =βη |e|.

Proof. • Case (x : A) ∈ Ψ

Ψ ⊢ x ⇒ A
DeclVar

By rule AVar, Ψ ⊢ x : A.
Note x =βη x.
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• Case Ψ ⊢ e ⇒ A Ψ ⊢ A ≤ B

Ψ ⊢ e ⇐ B
DeclSub

By induction, Ψ ⊢ e ′ : A and e ′ =βη |e|.
By Lemma 11 (Subtyping Coercion), f : A → B such that f =βη id.

By A→E, Ψ ⊢ f e ′ : B.

Note f e ′ =βη id e ′ =βη e ′ =βη |e|.

• Case Ψ ⊢ A Ψ ⊢ e ⇐ A

Ψ ⊢ (e : A) ⇒ A
DeclAnno

By induction, Ψ ⊢ e ′ : A such that e ′ =βη |e|.

Note e ′ =βη |e| = |e : A|.

• Case

Ψ ⊢ () ⇐ 1
Decl1I

By AUnit, Ψ ⊢ () : 1.
Note () =βη ().

• Case

Ψ ⊢ () ⇒ 1
Decl1I⇒

By AUnit, Ψ ⊢ () : 1.

Note () =βη ().

• Case Ψ,α ⊢ e ⇐ A

Ψ ⊢ e ⇐ ∀α. A
Decl∀I

By induction, Ψ,α ⊢ e ′ : A such that e ′ =βη |e|.

By rule A∀I, Ψ ⊢ e ′ : ∀α. A.

• Case Ψ, x : A ⊢ e ⇐ B

Ψ ⊢ λx. e ⇐ A → B
Decl→I

By induction, Ψ, x : A ⊢ e ′ : B such that e ′ =βη |e|.

By A→I, Ψ ⊢ λx. e ′ : A → B.

Note λx. e ′ =βη λx. |e| = |λx. e|.

• Case Ψ ⊢ σ → τ Ψ, x : σ ⊢ e ⇐ τ

Ψ ⊢ λx. e ⇒ σ → τ
Decl→I⇒

By induction, Ψ, x : σ ⊢ e ′ : τ such that e ′ =βη |e|.

By A→I, Ψ ⊢ λx. e ′ : σ → τ.

Note λx. e ′ =βη λx. |e| = |λx. e|.

• Case Ψ ⊢ e1 ⇒ A Ψ ⊢ A • e2 ⇒⇒ C

Ψ ⊢ e1 e2 ⇒ C
Decl→E

By induction, Ψ ⊢ e ′

1 : A such that e ′

1 =βη |e1|.

By Lemma 12 (Application Subtyping), there is a B such that

1. Ψ ⊢ A ≤ B → C, and
2. Ψ ⊢ e2 ⇐ B, which is no bigger than Ψ ⊢ A • e2 ⇒⇒ C.

By Lemma 11 (Subtyping Coercion), we have f such that Ψ ⊢ f : A → B → C and f =βη id.
By induction, we get Ψ ⊢ e ′

2 : B and e ′

2 =βη |e2|.

By A→E twice, Ψ ⊢ f e ′

1 e ′

2 : C.

Note f e ′

1 e ′

2 =βη id e ′

1 e ′

2 =βη e ′

1 e ′

2 =βη |e1| e
′

2 =βη |e1| |e2| = |e1 e2|.
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C ′ Robustness of Typing

Lemma 13 (Type Substitution).
Assume Ψ ⊢ τ.

• If Ψ,α,Ψ ′ ⊢ e ′ ⇐ C then Ψ, [τ/α]Ψ ′ ⊢ [τ/α]e ′ ⇐ [τ/α]C.

• If Ψ,α,Ψ ′ ⊢ e ′ ⇒ C then Ψ, [τ/α]Ψ ′ ⊢ [τ/α]e ′ ⇒ [τ/α]C.

• If Ψ,α,Ψ ′ ⊢ B • e ′ ⇒⇒ C then Ψ, [τ/α]Ψ ′ ⊢ [τ/α]B • [τ/α]e ′ ⇒⇒ [A/α]C.

Moreover, the resulting derivation contains no more applications of typing rules than the given one.
(Internal subtyping derivations, however, may grow.)

Proof. By induction on the given derivation.
In the DeclVar case, split on whether the variable being typed is in Ψ or Ψ ′; the former is immediate,

and in the latter, use the fact that (x : C) ∈ Ψ ′ implies (x : [τ/α]C) ∈ [τ/α]Ψ ′.

In the DeclSub case, use the i.h. and Lemma 5 (Substitution).
In the DeclAnno case, we are substituting in the annotation in the term, as well as in the type; we

also need Proposition 2.
In Decl→I, Decl→I⇒ and Decl∀I, we add to the context in the premise, which is why the statement is

generalized for nonempty Ψ ′.

Lemma 14 (Subsumption). Suppose Ψ ′ ≤ Ψ. Then:

(i) If Ψ ⊢ e ⇐ A and Ψ ⊢ A ≤ A ′ then Ψ ′ ⊢ e ⇐ A ′.

(ii) If Ψ ⊢ e ⇒ A then there exists A ′ such that Ψ ⊢ A ′ ≤ A and Ψ ′ ⊢ e ⇒ A ′.

(iii) If Ψ ⊢ C • e ⇒⇒ A and Ψ ⊢ C ′ ≤ C

then there exists A ′ such that Ψ ⊢ A ′ ≤ A and Ψ ′ ⊢ C ′ • e ⇒⇒ A ′.

Proof. By mutual induction: in (i), by lexicographic induction on the derivation of the checking judg-
ment, then of the subtyping judgment; in (ii), by induction on the derivation of the synthesis judgment;

in (iii), by lexicographic induction on the derivation of the application judgment, then of the subtyping
judgment.

For part (i), checking:

• Case Ψ ⊢ e ⇒ B Ψ ⊢ B ≤ A

Ψ ⊢ e ⇐ A
DeclSub

Ψ ⊢ e ⇒ B Subderivation

Ψ ′ ⊢ e ⇒ B ′ By i.h.

Ψ ⊢ B ′ ≤ B ′′

Ψ ⊢ B ≤ A Subderivation

Ψ ⊢ A ≤ A ′ Given

Ψ ⊢ B ′ ≤ A ′ By Lemma 6 (Transitivity of Declarative Subtyping) (twice)

Ψ ′ ⊢ B ′ ≤ A ′ By weakening

Z Ψ ′ ⊢ e ⇐ A ′ By DeclSub

• Case

Ψ ⊢ () ⇐ 1
Decl1I

Ψ ′ ⊢ () ⇒ 1 By Decl1I⇒

Ψ ⊢ 1 ≤ A ′ Given

Ψ ′ ⊢ 1 ≤ A ′ By weakening

Z Ψ ′ ⊢ () ⇐ A ′ By DeclSub
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• Case Ψ,α ⊢ e ⇐ A0

Ψ ⊢ e ⇐ ∀α. A0

Decl∀I

We consider cases of Ψ ⊢ ∀α. A0 ≤ A ′:

– Case Ψ,β ⊢ ∀α. A0 ≤ B

Ψ ⊢ ∀α. A0 ≤ ∀β. B
≤∀R

Ψ,β ⊢ ∀α. A0 ≤ B Subderivation

Ψ ⊢ e ⇐ ∀α. A0 Given

Ψ ′ ⊢ e ⇐ B By i.h. (i)

Z Ψ ′ ⊢ e ⇐ ∀β. B
︸ ︷︷ ︸
A ′

By Decl∀I

– Case Ψ ⊢ τ Ψ ⊢ [τ/α]A0 ≤ A ′

Ψ ⊢ ∀α. A0 ≤ A ′
≤∀L

Ψ,α ⊢ e ⇐ A0 Subderivation

Ψ ⊢ e ⇐ [τ/α]A0 By Lemma 13 (Type Substitution)

Ψ ⊢ [τ/α]A0 ≤ A ′ Subderivation

Z Ψ ′ ⊢ e ⇐ A ′ By i.h. (i)

• Case Ψ, x : A1 ⊢ e0 ⇐ A2

Ψ ⊢ λx. e0 ⇐ A1 → A2

Decl→I

We consider cases of Ψ ⊢ A1 → A2 ≤ A ′:

– Case Ψ ⊢ B1 ≤ A1 Ψ ⊢ A2 ≤ B2

Ψ ⊢ A1 → A2 ≤ B1 → B2

≤→

Ψ ≤ Ψ ′ Given

Ψ ⊢ B1 ≤ A1 Subderivation

Ψ ′, x : B1 ≤ Ψ, x : A1 By CtxSubVar

Ψ ′, x : B1 ⊢ e0 ⇐ B2 By i.h. (i)

Z Ψ ′ ⊢ λx. e0 ⇐ B1 → B2 By Decl→I

– Case Ψ,β ⊢ A1 → A2 ≤ B ′

Ψ ⊢ A1 → A2 ≤ ∀β. B ′
≤∀R

Ψ,β ⊢ A1 → A2 ≤ B ′ Subderivation

Ψ,β ⊢ λx. e0 ⇐ A1 → A2 By weakening

Ψ ′, β ⊢ λx. e0 ⇐ B ′ By i.h. (i)

Z Ψ ′ ⊢ λx. e0 ⇐ ∀β. B ′ By Decl∀I

For part (ii), synthesis:

• Case (x : A) ∈ Ψ

Ψ ⊢ x ⇒ A
DeclVar

By inversion on Ψ ′ ≤ Ψ, we have (x : A ′) ∈ Ψ ′ where Ψ ⊢ A ′ ≤ A.

By DeclVar, Ψ ′ ⊢ x ⇒ A ′.

• Case Ψ ⊢ A Ψ ⊢ e0 ⇐ A

Ψ ⊢ (e0 : A) ⇒ A
DeclAnno
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Let A ′ = A.

Ψ ⊢ A Subderivation

Ψ ′ ⊢ A By weakening

Ψ ⊢ e0 ⇐ A Subderivation

Ψ ′ ⊢ e0 ⇐ A By i.h.

Z Ψ ′ ⊢ (e0 : A) ⇒ A ′ By DeclAnno and A ′ = A

Z Ψ ⊢ A ′ ≤ A By Lemma 3 (Reflexivity of Declarative Subtyping)

• Case

Ψ ⊢ () ⇒ 1
Decl1I⇒

Let A ′ = 1.

Z Ψ ′ ⊢ () ⇒ 1 By Decl1I⇒

Z Ψ ⊢ 1 ≤ 1 By ≤Unit

• Case Ψ ⊢ σ → τ Ψ, x : σ ⊢ e0 ⇐ τ

Ψ ⊢ λx. e0 ⇒ σ → τ
Decl→I⇒

Let A ′ = σ → τ.

Ψ ′ ≤ Ψ Given

Ψ ⊢ σ ≤ σ By Lemma 3 (Reflexivity of Declarative Subtyping)

Ψ ′, x : σ ≤ Ψ, x : σ By CtxSubVar

Ψ, x : σ ⊢ e0 ⇐ τ Subderivation

Ψ ⊢ τ ≤ τ By Lemma 3 (Reflexivity of Declarative Subtyping)

Ψ ′, x : σ ⊢ e0 ⇐ τ By i.h. (i) with τ

Z Ψ ⊢ A ′ ≤ σ → τ By Lemma 3 (Reflexivity of Declarative Subtyping)

Z Ψ ′ ⊢ λx. e0 ⇒ A ′ By Decl→I⇒

• Case Ψ ⊢ e1 ⇒ C Ψ ⊢ C • e2 ⇒⇒ A

Ψ ⊢ e1 e2 ⇒ A
Decl→E

Ψ ⊢ e1 ⇒ C Subderivation

Ψ ′ ⊢ e1 ⇒ C ′ By i.h. (ii)

Ψ ⊢ C ′ ≤ C ′′

Ψ ⊢ C • e2 ⇒⇒ A Subderivation

Z Ψ ⊢ A ′ ≤ A By i.h. (iii)

Ψ ′ ⊢ C ′ • e2 ⇒⇒ A ′ ′′

Z Ψ ′ ⊢ e1 e2 ⇒ A ′ By Decl→E

For part (iii), application:

• Case Ψ ⊢ τ Ψ ⊢ [τ/α]C0 • e ⇒⇒ A

Ψ ⊢ ∀α. C0 • e ⇒⇒ A
Decl∀App

Ψ ⊢ C ′ ≤ ∀α. C0 Given

Ψ,α ⊢ C ′ ≤ C0 By Lemma 7 (Invertibility)

Ψ ⊢ [τ/α]C ′ ≤ [τ/α]C0 By Lemma 5 (Substitution)

Ψ ⊢ C ′ ≤ [τ/α]C0 α cannot appear in C ′

Ψ ⊢ [τ/α]C0 • e ⇒⇒ A Subderivation

Z Ψ ′ ⊢ C ′ • e ⇒⇒ A ′ By i.h. (iii)

Z Ψ ′ ⊢ A ′ ≤ A ′′
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• Case Ψ ⊢ e ⇐ C0

Ψ ⊢ C0 → A • e ⇒⇒ A
Decl→App

Ψ ⊢ C ′ ≤ C0 → A Given

– Case Ψ ⊢ C0 ≤ C ′

1 Ψ ⊢ C ′

2 ≤ A

Ψ ⊢ C ′

1 → C ′

2 ≤ C0 → A
≤→

Let A ′ = C ′

2.

Ψ ⊢ e ⇐ C0 Subderivation

Ψ ⊢ C0 ≤ C ′

1 Subderivation

Ψ ′ ⊢ e ⇐ C ′

1 By i.h.

Ψ ′ ⊢ C ′

1 → C ′

2 • e ⇒⇒ C ′

2 By Decl→App

Z Ψ ′ ⊢ C ′

1 → A ′ • e ⇒⇒ A ′ A ′ = C ′

2

Ψ ⊢ C ′

2 ≤ A Subderivation

Z Ψ ⊢ A ′ ≤ A A ′ = C ′

2

– Case Ψ ⊢ τ Ψ ⊢ [τ/β]B ≤ C0 → A

Ψ ⊢ ∀β. B ≤ C0 → A
≤∀L

Ψ ⊢ [τ/β]B ≤ C0 → A Subderivation

Ψ ′ ⊢ [τ/β]B • e ⇒⇒ A ′ By i.h. (iii)

Z Ψ ⊢ A ′ ≤ A ′′

Ψ ⊢ τ Subderivation

Ψ ′ ⊢ τ By weakening

Z Ψ ′ ⊢ ∀β. B • e ⇒⇒ A ′ By Decl∀App

Theorem 3 (Substitution).
Assume Ψ ⊢ e ⇒ A.

(i) If Ψ, x : A ⊢ e ′ ⇐ C then Ψ ⊢ [e/x]e ′ ⇐ C.

(ii) If Ψ, x : A ⊢ e ′ ⇒ C then Ψ ⊢ [e/x]e ′ ⇒ C.

(iii) If Ψ, x : A ⊢ B • e ′ ⇒⇒ C then Ψ ⊢ B • [e/x]e ′ ⇒⇒ C.

Proof. By a straightforward mutual induction on the given derivation.

Theorem 4 (Inverse Substitution).
Assume Ψ ⊢ e ⇐ A.

(i) If Ψ ⊢ [(e : A)/x]e ′ ⇐ C then Ψ, x : A ⊢ e ′ ⇐ C.

(ii) If Ψ ⊢ [(e : A)/x]e ′ ⇒ C then Ψ, x : A ⊢ e ′ ⇒ C.

(iii) If Ψ ⊢ B • [(e : A)/x]e ′ ⇒⇒ C then Ψ, x : A ⊢ B • e ′ ⇒⇒ C.

Proof. By mutual induction on the given derivation.

(i) We have Ψ ⊢ [(e : A)/x]e ′ ⇐ C.

• Case Ψ ⊢ [(e : A)/x]e ′ ⇒ B Ψ ⊢ B ≤ C

Ψ ⊢ [(e : A)/x]e ′ ⇐ C
DeclSub

By i.h. (ii), Ψ, x : A ⊢ e ′ ⇒ B.

By DeclSub, Ψ, x : A ⊢ e ′ ⇐ C.

• Case

Ψ ⊢ () ⇐ 1︸︷︷︸
C

Decl1I

We have [(e : A)/x]e ′ = (). Therefore e ′ = (), and the result follows by Decl1I.
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• Case Ψ,α ⊢ [(e : A)/x]e ′ ⇐ C ′

Ψ ⊢ [(e : A)/x]e ′ ⇐ ∀α. C ′
Decl∀I

By i.h. (i), Ψ,α, x : A ⊢ e ′ ⇐ C ′.
By exchange, Ψ, x : A,α ⊢ e ′ ⇐ C ′.

By Decl∀I, Ψ, x : A ⊢ e ′ ⇐ ∀α. C ′.

• Case Ψ, y : C1 ⊢ e ′′ ⇐ C2

Ψ ⊢ λy. e ′′ ⇐ C1 → C2

Decl→I

We have [(e : A)/x]e ′ = λy. e ′′.

By the definition of substitution, e ′ = λy. e0 and e ′′ = [(e : A)/x]e0.

Ψ, y : C1 ⊢ e ′′ ⇐ C2 Subderivation

Ψ, y : C1 ⊢ [(e : A)/x]e0 ⇐ C2 By above equality

Ψ, y : C1, x : A ⊢ e0 ⇐ C2 By i.h. (i)

Ψ, x : A,y : C1 ⊢ e0 ⇐ C2 By exchange

Z Ψ, x : A ⊢ λy. e0
︸ ︷︷ ︸

e ′

⇐ C1 → C2︸ ︷︷ ︸
C

By Decl→I

(ii) We have Ψ ⊢ [(e : A)/x]e ′ ⇒ C.

• Case e ′ = x:

Note [(e : A)/x]x = (e : A).

Hence Ψ ⊢ (e : A) ⇒ C; by inversion, C = A.

By Lemma 10 (Well-Formedness), Ψ ⊢ C, which is Ψ ⊢ A.
By DeclAnno, Ψ ⊢ (e : A) ⇒ A.

By DeclVar, Ψ, x : A ⊢ x︸︷︷︸
e ′

⇒ A.

• Case e ′ 6= x:

We now proceed by cases on the derivation of Ψ ⊢ [(e : A)/x]e ′ ⇒ C.

– Case (y : C) ∈ Ψ

Ψ ⊢ y ⇒ C
DeclVar

Since [(e : A)/x]e ′ = y, we know that e ′ = y.
By DeclVar, Ψ, x : A ⊢ y ⇒ C.

– Case Ψ ⊢ e ′′ ⇐ C

Ψ ⊢ (e ′′ : C)
︸ ︷︷ ︸

[(e:A)/x]e ′

⇒ C
DeclAnno

We know [(e : A)/x]e ′ = (e ′′ : C) and e ′ 6= x.
Hence there is e0 such that e ′ = (e0 : C) and [(e : A)/x]e0 = e ′′.

Ψ ⊢ e ′′ ⇐ C Subderivation

Ψ ⊢ [(e : A)/x]e0 ⇐ C By above equality

Ψ, x : A ⊢ e0 ⇐ C By i.h. (i)

Ψ, x : A ⊢ C By Lemma 10 (Well-Formedness)

Ψ, x : A ⊢ (e0 : C) ⇒ C By DeclAnno

Z Ψ, x : A ⊢ e ′ ⇒ C By above equality

– Case

Ψ ⊢ () ⇒ 1
Decl1I⇒

Since [(e : A)/x]e ′ = (), it follows that e ′ = ().

By Decl1I⇒, Ψ, x : A ⊢ () ⇒ 1.
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– Case Ψ ⊢ σ → τ Ψ, y : σ ⊢ e ′′ ⇐ τ

Ψ ⊢ λy. e ′′ ⇒ σ → τ
Decl→I⇒

We have [(e : A)/x]e ′ = λy. e ′′.

By definition of substitution, there exists e0 such that e ′ = λy. e0 and e ′′ = [(e : A)/x]e0.
So Ψ, y : σ ⊢ [(e : A)/x]e0 ⇐ τ.

By i.h. (i), Ψ, y : σ, x : A ⊢ e0 ⇐ τ.

By exchange and Decl→I, Ψ, x : A ⊢ λy. e0 ⇐ σ → τ.
Hence Decl→I⇒, Ψ, x : A ⊢ e ′ ⇒ σ → τ.

– Case Ψ ⊢ e1 ⇒ B Ψ ⊢ B • e2 ⇒⇒ C

Ψ ⊢ e1 e2︸ ︷︷ ︸
[(e:A)/x]e ′

⇒ C
Decl→E

Note that [(e : A)/x]e ′ = e1 e2.

So there exist e ′

1, e ′

2 such that e ′ = e ′

1 e ′

2 and [(e : A)/x]e ′

k = ek for k ∈ {1, 2}.
Applying these equalities to each subderivation gives

Ψ ⊢ [(e : A)/x]e ′

1 ⇒ B and Ψ ⊢ B • [(e : A)/x]e ′

2 ⇒⇒ C

By i.h. (ii) and (iii), Ψ, x : A ⊢ e ′

1 ⇒ B and Ψ, x : A ⊢ B • e ′

2 ⇒⇒ C.
By Decl→E, Ψ, x : A ⊢ e ′

1 e ′

2 ⇒ C, which is Ψ, x : A ⊢ e ′ ⇒ C.

(iii) We have Ψ ⊢ [(e : A)/x]e ′ • A ⇒⇒ C.

• Case Ψ ⊢ τ Ψ ⊢ [τ/α]B • [(e : A)/x]e ′ ⇒⇒ C

Ψ ⊢ ∀α. B • [(e : A)/x]e ′ ⇒⇒ C
Decl∀App

Follows by i.h. (iii) and Decl∀App.

• Case Ψ ⊢ [(e : A)/x]e ′
⇐ B

Ψ ⊢ B → C • [(e : A)/x]e ′ ⇒⇒ C
Decl→App

Follows by i.h. (i) and Decl→App.

Theorem 5 (Annotation Removal). We have that:

• If Ψ ⊢
(

(λx. e) : A
)

⇐ C then Ψ ⊢ λx. e ⇐ C.

• If Ψ ⊢ (() : A) ⇐ C then Ψ ⊢ () ⇐ C.

• If Ψ ⊢ e1 (e2 : A) ⇒ C then Ψ ⊢ e1 e2 ⇒ C.

• If Ψ ⊢ (x : A) ⇒ A then Ψ ⊢ x ⇒ B and Ψ ⊢ B ≤ A.

• If Ψ ⊢
(

(e1 e2) : A
)

⇒ A then Ψ ⊢ e1 e2 ⇒ B and Ψ ⊢ B ≤ A.

• If Ψ ⊢
(

(e : B) : A
)

⇒ A then Ψ ⊢ (e : B) ⇒ B and Ψ ⊢ B ≤ A.

• If Ψ ⊢
(

(λx. e) : σ → τ
)

⇒ σ → τ then Ψ ⊢ λx. e ⇒ σ → τ.

Proof. All of these follow directly from inversion and Lemma 14 (Subsumption). The one exception is
the third, which additionally requires a small induction on the application judgment.

Theorem 6 (Soundness of Eta).
If Ψ ⊢ λx. e x ⇐ A and x 6∈ FV(e), then Ψ ⊢ e ⇐ A.

Proof. By induction on the derivation of Ψ ⊢ λx. e x ⇐ A. There are three non-impossible cases:
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• Case Ψ, x : B ⊢ e x ⇐ C

Ψ ⊢ λx. e x ⇐ B → C
Decl→I

We have Ψ, x : B ⊢ e x ⇐ C.

By inversion on DeclSub, we get Ψ, x : B ⊢ e x ⇒ C ′ and Ψ ⊢ C ′ ≤ C.
By inversion on Decl→E, we get Ψ, x : B ⊢ e ⇒ A ′ and Ψ, x : B ⊢ A ′ • x ⇒⇒ C ′.

By thinning, we know that Ψ ⊢ e ⇒ A ′.

By Lemma 12 (Application Subtyping), we get B ′ so Ψ, x : B ⊢ A ′ ≤ B ′ → C ′ and Ψ, x : B ⊢ x ⇐

B ′.

By inversion, we know that Ψ, x : B ⊢ x ⇒ B and Ψ ⊢ B ≤ B ′.

By ≤→, Ψ, x : B ⊢ B ′ → C ′ ≤ B → C.
Hence by Lemma 6 (Transitivity of Declarative Subtyping), Ψ, x : B ⊢ A ′ ≤ B → C.

Hence Ψ ⊢ A ′ ≤ B → C.
By DeclSub, Ψ ⊢ e ⇐ B → C.

• Case Ψ,α ⊢ λx. e x ⇐ B

Ψ ⊢ λx. e x ⇐ ∀α. B
Decl∀I

By induction, Ψ,α ⊢ λx. e x ⇐ B.
By Decl∀I, Ψ ⊢ λx. e x ⇐ ∀α. B.

• Case Ψ ⊢ λx. e x ⇒ B Ψ ⊢ B ≤ A

Ψ ⊢ λx. e x ⇐ A
DeclSub

We have Ψ ⊢ λx. e x ⇒ B and Ψ ⊢ B ≤ A.

By inversion on Decl→I⇒, Ψ, x : σ ⊢ e x ⇐ τ and B = σ → τ.

By inversion on DeclSub, we get Ψ, x : σ ⊢ e x ⇒ C2 and Ψ ⊢ C2 ≤ τ.
By inversion on Decl→E, we get Ψ, x : σ ⊢ e ⇒ C and Ψ, x : σ ⊢ C • x ⇒⇒ C2.

By thinning, we know that Ψ ⊢ e ⇒ C.

By Lemma 12 (Application Subtyping), we get C1 such that Ψ, x : σ ⊢ C ≤ C1 → C2 and Ψ, x : σ ⊢
x ⇐ C1.

By inversion on DeclSub, Ψ, x : σ ⊢ x ⇒ σ and Ψ ⊢ σ ≤ C1.
By ≤→, Ψ, x : σ ⊢ C1 → C2 ≤ σ → τ.

Hence by Lemma 6 (Transitivity of Declarative Subtyping), Ψ, x : σ ⊢ C ≤ σ → τ.

Hence Ψ ⊢ C ≤ σ → τ.
Hence by Lemma 6 (Transitivity of Declarative Subtyping), Ψ ⊢ C ≤ A.

By DeclSub, Ψ ⊢ e ⇐ A.

D ′ Properties of Context Extension

D ′.1 Syntactic Properties

Lemma 15 (Declaration Preservation). If Γ −→ ∆, and u is a variable or marker ◮α̂ declared in Γ , then
u is declared in ∆.

Proof. By a routine induction on Γ −→ ∆.

Lemma 16 (Declaration Order Preservation). If Γ −→ ∆ and u is declared to the left of v in Γ , then u is
declared to the left of v in ∆.

Proof. By induction on the derivation of Γ −→ ∆.

• Case

· −→ ·
−→ID

This case is impossible.
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• Case Γ −→ ∆

Γ, x : A −→ ∆, x : A
−→Var

There are two cases, depending on whether or not v = x.

– Case v = x:

Since u is declared to the left of v, u is declared in Γ .
By Lemma 15 (Declaration Preservation), u is declared in ∆.

Hence u is declared to the left of x in ∆, x : A.

– Case v 6= x:
Then v is declared in Γ , and u is declared to the left of v in Γ .

By induction, u is declared to the left of v in ∆.
Hence u is declared to the left of v in ∆, x : A.

• Case Γ −→ ∆

Γ, α −→ ∆,α
−→Uvar

This case is similar to the −→Var case.

• Case Γ −→ ∆

Γ, α̂ −→ ∆, α̂
−→Unsolved

This case is similar to the −→Var case.

• Case Γ −→ ∆ [∆]τ = [∆]τ ′

Γ, α̂ = τ −→ ∆, α̂ = τ ′
−→Solved

This case is similar to the −→Var case.

• Case Γ −→ ∆

Γ,◮α̂ −→ ∆,◮α̂

−→Marker

This case is similar to the −→Var case.

• Case Γ −→ ∆

Γ, α̂ −→ ∆, α̂ = τ
−→Solve

This case is similar to the −→Var case.

• Case Γ −→ ∆

Γ −→ ∆, α̂
−→Add

By induction, u is declared to the left of v in ∆.
Therefore u is declared to the left of v in ∆, α̂.

• Case Γ −→ ∆

Γ −→ ∆, α̂ = τ
−→AddSolved

By induction, u is declared to the left of v in ∆.

Therefore u is declared to the left of v in ∆, α̂ = τ.

Lemma 17 (Reverse Declaration Order Preservation). If Γ −→ ∆ and u and v are both declared in Γ and
u is declared to the left of v in ∆, then u is declared to the left of v in Γ .

Proof. It is given that u and v are declared in Γ . Either u is declared to the left of v in Γ , or v is declared
to the left of u. Suppose the latter (for a contradiction). By Lemma 16 (Declaration Order Preservation),

v is declared to the left of u in ∆. But we know that u is declared to the left of v in ∆: contradiction.

Therefore u is declared to the left of v in Γ .

28



Lemma 18 (Substitution Extension Invariance). If Θ ⊢ A and Θ −→ Γ then [Γ ]A = [Γ ]([Θ]A) and
[Γ ]A = [Θ]([Γ ]A).

Proof. To show that [Γ ]A = [Θ][Γ ]A, observe that Θ ⊢ A, and that by definition of Θ −→ Γ , every solved

variable in Θ is solved in Γ . Therefore [Θ]([Γ ]A) = [Γ ]A, since unsolved([Γ ]A) contains no variables that

Θ solves.

To show that [Γ ]A = [Γ ][Θ]A, we proceed by induction on |Γ ⊢A|.

• Case α ∈ Θ

Θ ⊢ α

Note that [Γ ]α = α = [Θ]α, so [Γ ]α = [Γ ][Θ]α.

• Case Θ ⊢ A Θ ⊢ B

Θ ⊢ A → B

By induction, [Γ ]A = [Γ ][Θ]A.
By induction, [Γ ]B = [Γ ][Θ]B.

Then
[Γ ](A → B) = [Γ ]A → [Γ ]B By definition of substitution

= [Γ ][Θ]A → [Γ ][Θ]B By induction hypothesis (twice)
= [Γ ]([Θ]A → [Θ]B) By definition of substitution

= [Γ ][Θ](A → B) By definition of substitution

• Case Θ,α ⊢ A

Θ ⊢ ∀α. A

By inversion, we have Θ,α ⊢ A.
By rule −→Uvar, Θ,α −→ Γ, α.

By induction, [Γ, α]A = [Γ, α][Θ,α]A.

By definition, [Γ ]A = [Γ ][Θ]A.
Then

[Γ ]∀α. A = ∀α. [Γ ]A By definition

= ∀α. [Γ ][Θ]A By conclusion above

= [Γ ](∀α. [Θ]A) By definition
= [Γ ][Θ](∀α. A) By definition

= [Γ, α][Θ,α](∀α. A) By definition

• Case

Θ0, α̂, Θ1︸ ︷︷ ︸
Θ

⊢ α̂

Note that [Θ]α̂ = α̂.

Hence [Γ ][Θ]α̂ = [Γ ]α̂.

• Case

Θ0, α̂ = τ,Θ1 ⊢ α̂

From Θ −→ Γ , By a nested induction we get Γ = Γ0, α̂ = τ ′, Γ1, and [Γ ]τ ′ = [Γ ]τ.
Note that |Θ ⊢ τ| < |Θ ⊢ α̂|.

By induction, [Γ ]τ = [Γ ][Θ]τ.

Hence
[Γ ]α̂ = [Γ ]τ ′ By definition

= [Γ ]τ From the extension judgment

= [Γ ][Θ]τ From the induction hypothesis

= [Γ ][Θ]α̂ By definition
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Lemma 19 (Extension Equality Preservation).
If Γ ⊢ A and Γ ⊢ B and [Γ ]A = [Γ ]B and Γ −→ ∆, then [∆]A = [∆]B.

Proof. By induction on the derivation of Γ −→ ∆.

• Case

·︸︷︷︸
Γ

−→ ·︸︷︷︸
∆

−→ID

We have [Γ ]A = [Γ ]B, but Γ = ∆, so [∆]A = [∆]B.

• Case Γ ′ −→ ∆ ′

Γ ′, x : C −→ ∆ ′, x : C
−→Var

We have [Γ ′, x : C]A = [Γ ′, x : C]B.

By definition of substitution, [Γ ′]A = [Γ ′]B.
By i.h., [∆ ′]A = [∆ ′]B.

By definition of substitution, [∆ ′, x : C]A = [∆ ′, x : C]B.

• Case Γ ′ −→ ∆ ′

Γ ′, α −→ ∆ ′, α
−→Uvar

We have [Γ ′, α]A = [Γ ′, α]B.

By definition of substitution, [Γ ′]A = [Γ ′]B.
By i.h., [∆ ′]A = [∆ ′]B.

By definition of substitution, [∆ ′, α]A = [∆ ′, α]B.

• Case Γ ′ −→ ∆ ′

Γ ′, α̂ −→ ∆ ′, α̂
−→Unsolved

Similar to the −→Uvar case.

• Case Γ ′ −→ ∆ ′

Γ ′,◮α̂ −→ ∆ ′,◮α̂

−→Marker

Similar to the −→Uvar case.

• Case Γ −→ ∆ ′

Γ −→ ∆ ′, α̂
−→Add

We have [Γ ]A = [Γ ]B.

By i.h., [∆ ′]A = [∆ ′]B.

By definition of substitution, [∆ ′, α̂]A = [∆ ′, α̂]B.

• Case Γ −→ ∆ ′

Γ −→ ∆ ′, α̂ = τ
−→AddSolved

We have [Γ ]A = [Γ ]B.
By i.h., [∆ ′]A = [∆ ′]B.

We implicitly assume that ∆ is well-formed, so α̂ /∈ dom(∆ ′).

Since Γ −→ ∆ ′ and α̂ /∈ dom(∆ ′), it follows that α̂ /∈ dom(Γ).
We have Γ ⊢ A and Γ ⊢ B, so α̂ /∈ (FV(A) ∪ FV(B)).

Therefore, by definition of substitution, [∆ ′, α̂ = τ]A = [∆ ′, α̂ = τ]B.
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• Case Γ ′ −→ ∆ ′ [∆ ′]τ = [∆ ′]τ ′

Γ ′, α̂ = τ −→ ∆ ′, α̂ = τ ′
−→Solved

We have [Γ ′, α̂ = τ]A = [Γ ′, α̂ = τ]B.

By definition, [Γ ′, α̂ = τ]A = [Γ ′, α̂ = τ]τ, but we implicitly assume that Γ is well-formed, so
α̂ /∈ FV(τ), so actually [Γ ′, α̂ = τ]A = [Γ ′]τ.

Combined with similar reasoning for B, we get

[Γ ′][τ/α̂]A = [Γ ′][τ/α̂]B

By i.h., [∆ ′][τ/α̂]A = [∆ ′][τ/α̂]B.

By distributivity of substitution,
[

[∆ ′]τ/α̂
]

[∆ ′]A =
[

[∆ ′]τ/α̂
]

[∆ ′]B.
Using the premise [∆ ′]τ = [∆ ′]τ ′, we get [[∆ ′]τ ′/α̂][∆ ′]A = [[∆ ′]τ ′/α̂][∆ ′]B.

By distributivity of substitution (in the other direction), [∆ ′][τ ′/α̂]A = [∆ ′][τ ′/α̂]B.

It follows from the definition of substitution that [∆ ′, α̂ = τ ′]A = [∆ ′, α̂ = τ ′]B.

• Case Γ ′ −→ ∆ ′

Γ ′, α̂ −→ ∆ ′, α̂ = τ
−→Solve

We have [Γ ′, α̂]A = [Γ ′, α̂]B.

By definition of substitution, [Γ ′]A = [Γ ′]B.
By i.h., [∆ ′][τ/α̂]A = [∆ ′][τ/α̂]B.

It follows from the definition of substitution that [∆ ′, α̂ = τ]A = [∆ ′, α̂ = τ]B.

Lemma 20 (Reflexivity). If Γ is well-formed, then Γ −→ Γ .

Proof. By induction on the structure of Γ .

• Case Γ = ·: Apply rule −→ID.

• Case Γ = (Γ ′, α): By i.h., Γ ′ −→ Γ ′. By rule −→Uvar, we get Γ ′, α −→ Γ ′, α.

• Case Γ = (Γ ′, α̂): By i.h., Γ ′ −→ Γ ′. By rule −→Unsolved, we get Γ ′, α̂ −→ Γ ′, α̂.

• Case Γ = (Γ ′, α̂ = τ):

By i.h., Γ ′ −→ Γ ′.

Clearly, [Γ ′]τ = [Γ ′]τ, so we can apply −→Solved to get Γ ′, α̂ = τ −→ Γ ′, α̂ = τ.

• Case Γ = (Γ ′,◮α̂): By i.h., Γ ′ −→ Γ ′. By rule −→Marker, we get Γ ′,◮α̂ −→ Γ ′,◮α̂.

Lemma 21 (Transitivity). If Γ −→ ∆ and ∆ −→ Θ, then Γ −→ Θ.

Proof. By induction on the derivation of ∆ −→ Θ.

• Case −→ID:

In this case Θ = ∆.

Hence Γ −→ ∆ suffices.

• Case ∆ ′ −→ Θ ′

∆ ′, α −→ Θ ′, α
−→Uvar

We have ∆ = (∆ ′, α) and Θ = (Θ ′, α).
By inversion on Γ −→ ∆, we have Γ = (Γ ′, α) and Γ ′ −→ ∆ ′.

By i.h., Γ ′ −→ Θ ′.

Applying rule −→Uvar gives Γ ′, α −→ Θ ′, α.
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• Case ∆ ′ −→ Θ ′

∆ ′, α̂ −→ Θ ′, α̂
−→Uvar

We have ∆ = (∆ ′, α̂) and Θ = (Θ ′, α̂).

Either of two rules could have derived Γ −→ ∆:

– Case Γ ′ −→ ∆ ′

Γ ′, α̂ −→ ∆ ′, α̂
−→Unsolved

Here we have Γ = (Γ ′, α̂) and Γ ′ −→ ∆ ′.

By i.h., Γ ′ −→ Θ ′.
Applying rule −→Unsolved gives Γ ′, α̂ −→ Θ ′, α̂.

– Case Γ −→ ∆ ′

Γ −→ ∆ ′, α̂
−→Add

By i.h., Γ −→ Θ ′.
By rule −→Add, we get Γ −→ Θ ′, α̂.

• Case ∆ ′ −→ Θ ′ [Θ ′]τ1 = [Θ ′]τ2

∆ ′, α̂ = τ1 −→ Θ ′, α̂ = τ2
−→Solved

In this case ∆ = (∆ ′, α̂ = τ1) and Θ = (Θ ′, α̂ = τ2).

One of three rules must have derived Γ −→ ∆ ′, α̂ = τ:

– Case Γ ′ −→ ∆ ′ [∆ ′]τ0 = [∆ ′]τ1

Γ ′, α̂ = τ0 −→ ∆ ′, α̂ = τ1
−→Solved

Here, Γ = (Γ ′, α̂ = τ0) and ∆ = (∆ ′, α̂ = τ1).

By i.h., we have Γ ′ −→ Θ ′.
The premises of the respective −→ derivations give us [∆ ′]τ0 = [∆ ′]τ1 and [Θ ′]τ1 = [Θ ′]τ2.

We know that Γ ′ ⊢ τ0 and ∆ ′ ⊢ τ1 and Θ ′ ⊢ τ2.
By extension weakening (Lemma 25 (Extension Weakening)), Θ ′ ⊢ τ0.

By extension weakening (Lemma 25 (Extension Weakening)), Θ ′ ⊢ τ1.

Since [∆ ′]τ0 = [∆ ′]τ1, we know that [Θ ′][∆ ′]τ0 = [Θ ′][∆ ′]τ1.
By Lemma 18 (Substitution Extension Invariance), [Θ ′][∆ ′]τ0 = [Θ ′]τ0.

By Lemma 18 (Substitution Extension Invariance), [Θ ′][∆ ′]τ1 = [Θ ′]τ1.

So [Θ ′]τ0 = [Θ ′]τ1.

Hence by transitivity of equality, [Θ ′]τ0 = [Θ ′]τ1 = [Θ ′]τ2.

By rule −→Solved, Γ ′, α̂ = τ −→ Θ ′, α̂ = τ2.

– Case Γ −→ ∆ ′

Γ −→ ∆ ′, α̂ = τ1
−→AddSolved

By induction, we have Γ −→ Θ ′.

By rule −→AddSolved, we get Γ −→ Θ ′, α̂ = τ2.

– Case Γ ′ −→ ∆ ′

Γ ′, α̂ −→ ∆ ′, α̂ = τ1
−→Solve

We have Γ = (Γ ′, α̂).

By induction, Γ ′ −→ Θ ′.

By rule −→Solve, we get Γ ′, α̂ −→ Θ ′, α̂ = τ2.
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• Case ∆ ′ −→ Θ ′

∆ ′,◮α̂ −→ Θ ′,◮α̂

−→Marker

In this case we know ∆ = (∆ ′,◮α̂) and Θ = (Θ ′,◮α̂).

Since ∆ = (∆ ′,◮α̂), only −→Marker could derive Γ −→ ∆, so by inversion, Γ = (Γ ′,◮α̂) and
Γ ′ −→ ∆ ′.

By induction, we have Γ ′ −→ Θ ′.

Applying rule −→Marker gives Γ ′,◮α̂ −→ Θ ′,◮α̂.

• Case ∆ −→ Θ ′

∆ −→ Θ ′, α̂
−→Add

In this case, we have Θ = (Θ ′, α̂).

By induction, we get Γ −→ Θ ′.
By rule −→Add, we get Γ −→ Θ ′, α̂.

• Case ∆ −→ Θ ′

∆ −→ Θ ′, α̂ = τ
−→AddSolved

In this case, we have Θ = (Θ ′, α̂ = τ).

By induction, we get Γ −→ Θ ′.

By rule −→AddSolved, we get Γ −→ Θ ′, α̂ = τ.

• Case ∆ ′ −→ Θ ′

∆ ′, α̂ −→ Θ ′, α̂ = τ
−→Solve

In this case, we have ∆ = (∆ ′, α̂) and Θ = (Θ ′, α̂ = τ).
One of two rules could have derived Γ −→ ∆ ′, α̂:

– Case Γ ′ −→ ∆ ′

Γ ′, α̂ −→ ∆ ′, α̂
−→Unsolved

In this case, we have Γ = (Γ ′, α̂) and Γ ′ −→ ∆ ′ and ∆ ′ −→ Θ ′.

By induction, we have Γ ′ −→ Θ ′.

By rule −→Solve, we get Γ ′, α̂ −→ Θ ′, α̂ = τ.

– Case Γ −→ ∆ ′

Γ −→ ∆ ′, α̂
−→Add

In this case, we have Γ −→ ∆ ′ and ∆ ′ −→ Θ ′.

By induction, we have Γ −→ Θ ′.
By rule −→Solve, we get Γ −→ Θ ′, α̂ = τ.

Lemma 22 (Right Softness). If Γ −→ ∆ and Θ is soft (and (∆,Θ) is well-formed) then Γ −→ ∆,Θ.

Proof. By induction on Θ, applying rules −→Add and −→AddSolved as needed.

Lemma 23 (Evar Input).
If Γ, α̂ −→ ∆ then ∆ = (∆0, ∆α̂, Θ) where Γ −→ ∆0, and ∆α̂ is either α̂ or α̂ = τ, and Θ is soft.

Proof. By induction on the given derivation.

• Cases −→ID, −→Var, −→Uvar, −→Solved, −→Marker:

Impossible: the left-hand context cannot have the form Γ, α̂.
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• Case Γ −→ ∆0

Γ, α̂ −→ ∆0, α̂︸ ︷︷ ︸
∆

−→Unsolved

Let Θ = ·, which is vacuously soft. Therefore ∆ = (∆0, α̂) = (∆0, α̂, Θ); the subderivation is the

rest of the result.

• Case Γ −→ ∆0

Γ, α̂ −→ ∆0, α̂ = τ
︸ ︷︷ ︸

∆

−→Solve

Let Θ = ·, which is vacuously soft. Therefore ∆ = (∆0, α̂) = (∆0, α̂ = τ,Θ); the subderivation is
the rest of the result.

• Case Γ, α̂ −→ ∆0

Γ, α̂ −→ ∆0, β̂
︸ ︷︷ ︸

∆

−→Add

Suppose β̂ = α̂.

We have Γ, α̂ −→ ∆0. By Lemma 15 (Declaration Preservation), α̂ is declared in ∆0.
But then (∆0, β̂) = (∆0, α̂) with multiple α̂ declarations,

which violates the implicit assumption that ∆ is well-formed. Contradiction.

Therefore β̂ 6= α̂.

By i.h., ∆ ′ = (∆0, ∆α̂, Θ
′) where Γ −→ ∆0 and Θ ′ is soft.

Let Θ = (Θ ′, β̂). Therefore (∆ ′, β̂) = (∆0, ∆α̂, Θ
′, β̂). As Θ ′ is soft, (Θ ′, β̂) is soft. Since ∆ = (∆ ′, β̂),

this gives ∆ = (∆0, ∆α̂, Θ).

• Case −→AddSolved: Similar to the case for −→Add.

Lemma 24 (Extension Order).

(i) If ΓL, α, ΓR −→ ∆ then ∆ = (∆L, α, ∆R) where ΓL −→ ∆L.
Moreover, if ΓR is soft then ∆R is soft.

(ii) If ΓL,◮α̂, ΓR −→ ∆ then ∆ = (∆L,◮α̂, ∆R) where ΓL −→ ∆L.
Moreover, if ΓR is soft then ∆R is soft.

(iii) If ΓL, α̂, ΓR −→ ∆ then ∆ = ∆L, Θ, ∆R where ΓL −→ ∆L and Θ is either α̂ or α̂ = τ for some τ.

(iv) If ΓL, α̂ = τ, ΓR −→ ∆ then ∆ = ∆L, α̂ = τ ′, ∆R where ΓL −→ ∆L and [∆L]τ = [∆L]τ
′.

(v) If ΓL, x : A, ΓR −→ ∆ then ∆ = (∆L, x : A ′, ∆R) where ΓL −→ ∆L and [∆L]A = [∆L]A
′.

Moreover, ΓR is soft if and only if ∆R is soft.

Proof. (i) By induction on the derivation of ΓL, α, ΓR −→ ∆.

• Case

· −→ ·
−→ID

This case is impossible since (ΓL, α, ΓR) cannot have the form ·.

• Cases −→Uvar:

We have two cases, depending on whether or not the rightmost variable is α.

– Case Γ −→ ∆ ′

Γ, α −→ ∆ ′, α
−→Uvar

Let ∆L = ∆ ′, and let ∆R = · (which is soft).

We have Γ −→ ∆ ′, which is ΓL −→ ∆L.
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– Case ΓL, α, Γ
′

R −→ ∆ ′

ΓL, α, Γ
′

R, β︸ ︷︷ ︸
ΓR

−→ ∆ ′, β
︸ ︷︷ ︸

∆

−→Uvar

By i.h., ∆ ′ = (∆L, α, ∆
′

R) where ΓL −→ ∆L.
Hence ∆ = (∆L, α, ∆

′

R, β).

(Since β ∈ ΓR, it cannot be the case that ΓR is soft.)

• Case ΓL, α, Γ
′

R −→ ∆ ′

ΓL, α, Γ
′

R, x : A
︸ ︷︷ ︸

ΓR

−→ ∆ ′, x : A︸ ︷︷ ︸
∆

−→Var

By i.h., ∆ ′ = (∆L, α, ∆
′

R) where ΓL −→ ∆L.
Hence ∆ = (∆L, α, ∆

′

R, x : A).

(Since x : A ∈ ΓR, it cannot be the case that ΓR is soft.)

• Case ΓL, α, Γ
′

R −→ ∆ ′

ΓL, α, Γ
′

R, α̂︸ ︷︷ ︸
ΓR

−→ ∆ ′, α̂︸ ︷︷ ︸
∆

−→Unsolved

By i.h., ∆ ′ = (∆L, α, ∆
′

R) where ΓL −→ ∆L.

Hence ∆ = (∆L, α, ∆
′

R, α̂).

(If ΓR is soft, by i.h. ∆ ′

R is soft, so ∆R = (∆ ′

R, α̂) is soft.)

• Case ΓL, α, Γ
′

R −→ ∆ ′

ΓL, α, Γ
′

R,◮β̂
︸ ︷︷ ︸

Γ ′

R

−→ ∆ ′,◮β̂
︸ ︷︷ ︸

∆

−→Marker

By i.h., ∆ ′ = (∆L, α, ∆
′

R) where ΓL −→ ∆L.
Hence ∆ = (∆L, α, ∆

′

R,◮β̂).

(Since ◮β̂ ∈ ΓR, it cannot be the case that ΓR is soft.)

• Case ΓL, α, Γ
′

R −→ ∆ ′ [∆ ′]τ = [∆ ′]τ ′

ΓL, α, Γ
′

R, α̂ = τ
︸ ︷︷ ︸

ΓR

−→ ∆ ′, α̂ = τ ′

︸ ︷︷ ︸
∆ ′

−→Solved

By i.h., ∆ ′ = (∆L, α, ∆
′

R) where ΓL −→ ∆L.

Hence ∆ = (∆L, α, ∆
′

R, α̂ = τ ′).
(If ΓR is soft, by i.h. ∆ ′

R is soft, so ∆R = (∆ ′

R, α̂ = τ) is soft.)

• Case ΓL, α, Γ
′

R −→ ∆ ′

ΓL, α, Γ
′

R, α̂︸ ︷︷ ︸
ΓR

−→ ∆ ′, α̂ = τ ′

︸ ︷︷ ︸
∆

−→Solve

By i.h., ∆ ′ = (∆L, α, ∆
′

R) where ΓL −→ ∆L.
Therefore ∆ = (∆L, α, ∆R, α̂ = τ).

(If ΓR is soft, by i.h. ∆ ′

R is soft, so ∆R = (∆ ′

R, α̂ = τ) is soft.)

• Case ΓL, α, ΓR −→ ∆ ′

ΓL, α, ΓR −→ ∆ ′, α̂︸ ︷︷ ︸
∆

−→Add

By i.h., ∆ ′ = (∆L, α, ∆
′

R) where ΓL −→ ∆L.

Therefore ∆ = (∆L, α, ∆
′

R, α̂).
(If ΓR is soft, by i.h. ∆ ′

R is soft, so ∆R = (∆ ′

R, α̂) is soft.)

• Case ΓL, α, ΓR −→ ∆ ′

ΓL, α, ΓR −→ ∆ ′, α̂ = τ
−→AddSolved
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In this case, we know that ∆ = (∆ ′, α̂ = τ).

By i.h., ∆ ′ = (∆L, α, ∆
′

R) where ΓL −→ ∆L.
Hence ∆ = (∆L, α, ∆

′

R, α̂ = τ).

(If ΓR is soft, by i.h. ∆ ′

R is soft, so ∆R = (∆ ′

R, α̂ = τ) is soft.)

(ii) Similar to the proof of (i), except that the −→Marker and −→Uvar cases are swapped.

(iii) Similar to (i), with Θ = α̂ in the −→Unsolved case and Θ = (α̂ = τ) in the −→Solve case.

(iv) Similar to (iii).

(v) Similar to (i), but using the equality premise of −→Var.

Lemma 25 (Extension Weakening). If Γ ⊢ A and Γ −→ ∆ then ∆ ⊢ A.

Proof. By a straightforward induction on Γ ⊢ A.
In the UvarWF case, we use Lemma 24 (Extension Order) (i). In the EvarWF case, use Lemma 24

(Extension Order) (iii). In the SolvedEvarWF case, use Lemma 24 (Extension Order) (iv).

In the other cases, apply the i.h. to all subderivations, then apply the rule.

Lemma 26 (Solution Admissibility for Extension). If ΓL ⊢ τ then ΓL, α̂, ΓR −→ ΓL, α̂ = τ, ΓR.

Proof. By induction on ΓR.

• Case ΓR = ·:
By Lemma 20 (Reflexivity) (reflexivity), ΓL −→ ΓL.

Applying rule −→Solve gives ΓL, α̂ −→ ΓL, α̂ = τ.

• Case ΓR = (Γ ′

R, x : A):

By i.h., ΓL, α̂, Γ
′

R −→ ΓL, α̂ = τ, Γ ′

R.
Applying rule −→Var gives ΓL, α̂, Γ

′

R, x : A −→ ΓL, α̂ = τ, Γ ′

R, x : A.

• Case ΓR = (Γ ′

R, α): By i.h. and rule −→Uvar.

• Case ΓR = (Γ ′

R, β̂): By i.h. and rule −→Add.

• Case ΓR = (Γ ′

R, β̂ = τ ′): By i.h. and rule −→AddSolved.

• Case ΓR = (Γ ′

R,◮β̂): By i.h. and rule −→Marker.

Lemma 27 (Solved Variable Addition for Extension). If ΓL ⊢ τ then ΓL, ΓR −→ ΓL, α̂ = τ, ΓR.

Proof. By induction on ΓR. The proof is exactly the same as the proof of Lemma 26 (Solution Admissibility for Extension),

except that in the ΓR = ·, we apply rule −→AddSolved instead of −→Solve.

Lemma 28 (Unsolved Variable Addition for Extension). We have that ΓL, ΓR −→ ΓL, α̂, ΓR.

Proof. By induction on ΓR. The proof is exactly the same as the proof of Lemma 26 (Solution Admissibility for Extension),
except that in the ΓR = · case, we apply rule −→Add instead of −→Solve.

Lemma 29 (Parallel Admissibility).
If ΓL −→ ∆L and ΓL, ΓR −→ ∆L, ∆R then:

(i) ΓL, α̂, ΓR −→ ∆L, α̂, ∆R

(ii) If ∆L ⊢ τ ′ then ΓL, α̂, ΓR −→ ∆L, α̂ = τ ′, ∆R.

(iii) If ΓL ⊢ τ and ∆L ⊢ τ ′ and [∆L]τ = [∆L]τ
′, then ΓL, α̂ = τ, ΓR −→ ∆L, α̂ = τ ′, ∆R.

Proof. By induction on ∆R. As always, we assume that all contexts mentioned in the statement of the

lemma are well-formed. Hence, α̂ /∈ dom(ΓL) ∪ dom(ΓR) ∪ dom(∆L) ∪ dom(∆R).
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(i) We proceed by cases of ∆R. Observe that in all the extension rules, the right-hand context gets

smaller, so as we enter subderivations of ΓL, ΓR −→ ∆L, ∆R, the context ∆R becomes smaller.

The only tricky part of the proof is that to apply the i.h., we need ΓL −→ ∆L. So we need to

make sure that as we drop items from the right of ΓR and ∆R, we don’t go too far and start de-

composing ΓL or ∆L! It’s easy to avoid decomposing ∆L: when ∆R = ·, we don’t need to apply
the i.h. anyway. To avoid decomposing ΓL, we need to reason by contradiction, using Lemma 15

(Declaration Preservation).

• Case ∆R = ·:
We have ΓL −→ ∆L. Applying −→Unsolved to that derivation gives the result.

• Case ∆R = (∆ ′

R, β̂): We have β̂ 6= α̂ by the well-formedness assumption.

The concluding rule of ΓL, ΓR −→ ∆L, ∆
′

R, β̂ must have been −→Unsolved or −→Add. In both

cases, the result follows by i.h. and applying −→Unsolved or −→Add.

Note: In −→Add, the left-hand context doesn’t change, so we clearly maintain ΓL −→ ∆L. In

−→Unsolved, we can correctly apply the i.h. because ΓR 6= ·. Suppose, for a contradiction, that
ΓR = ·. Then ΓL = (Γ ′

L, β̂). It was given that ΓL −→ ∆L, that is, Γ ′

L, β̂ −→ ∆L. By Lemma

15 (Declaration Preservation), ∆L has a declaration of β̂. But then ∆ = (∆L, ∆
′

R, β̂) is not

well-formed: contradiction. Therefore ΓR 6= ·.

• Case ∆R = (∆ ′

R, β̂ = τ): We have β̂ 6= α̂ by the well-formedness assumption.

The concluding rule must have been −→Solved, −→Solve or −→AddSolved. In each case,
apply the i.h. and then the corresponding rule. (In −→Solved and −→Solve, use Lemma 15

(Declaration Preservation) to show ΓR 6= ·.)

• Case ∆R = (∆ ′

R, α): The concluding rule must have been −→Uvar. The result follows by i.h.
and applying −→Uvar.

• Case ∆R = (∆ ′

R,◮β̂): Similar to the previous case, with rule −→Marker.

• Case ∆R = (∆ ′

R, x : A): Similar to the previous case, with rule −→Var.

(ii) Similar to part (i), except that when ∆R = ·, apply rule −→Solve.

(iii) Similar to part (i), except that when ∆R = ·, apply rule −→Solved, using the given equality to satisfy
the second premise.

Lemma 30 (Parallel Extension Solution).
If ΓL, α̂, ΓR −→ ∆L, α̂ = τ ′, ∆R and ΓL ⊢ τ and [∆L]τ = [∆L]τ

′ then ΓL, α̂ = τ, ΓR −→ ∆L, α̂ = τ ′, ∆R.

Proof. By induction on ∆R.
In the case where ∆R = (∆ ′

R, α̂ = τ ′), we know that rule −→Solve must have concluded the derivation

(we can use Lemma 15 (Declaration Preservation) to get a contradiction that rules out −→AddSolved);

then we have a subderivation ΓL −→ ∆L, to which we can apply −→Solved.

Lemma 31 (Parallel Variable Update).
If ΓL, α̂, ΓR −→ ∆L, α̂ = τ0, ∆R and ΓL ⊢ τ1 and ∆L ⊢ τ2 and [∆L]τ0 = [∆L]τ1 = [∆L]τ2
then ΓL, α̂ = τ1, ΓR −→ ∆L, α̂ = τ2, ∆R.

Proof. By induction on ∆R. Similar to the proof of Lemma 30 (Parallel Extension Solution), but applying

−→Solved at the end.

D ′.2 Instantiation Extends

Lemma 32 (Instantiation Extension).
If Γ ⊢ α̂ :=

< τ ⊣ ∆ or Γ ⊢ τ =
<: α̂ ⊣ ∆ then Γ −→ ∆.

Proof. By induction on the given instantiation derivation.
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• Case Γ ⊢ τ

Γ, α̂, Γ ′ ⊢ α̂ :=< τ ⊣ Γ, α̂ = τ, Γ ′
InstLSolve

By Lemma 26 (Solution Admissibility for Extension), Γ, α̂, Γ ′ −→ Γ, α̂ = τ, Γ ′.

• Case

Γ [α̂][β̂] ⊢ α̂ :=
< β̂ ⊣ Γ [α̂][β̂ = α̂]

InstLReach

Γ [α̂][β̂] = Γ0, α̂, Γ1, β̂, Γ2 for some Γ0, Γ1, Γ2.
By the definition of well-formedness, Γ0, α̂, Γ1 ⊢ α̂.

Therefore, by Lemma 26 (Solution Admissibility for Extension), Γ0, α̂, Γ1, β̂, Γ2 −→ Γ0, α̂, Γ1, β̂ = α̂, Γ2.

• Case
Γ [α̂2, α̂1, α̂ = α̂1 → α̂2] ⊢ A1 =

<: α̂1 ⊣ Γ ′ Γ ′ ⊢ α̂2 :=
< [Γ ′]A2 ⊣ ∆

Γ [α̂] ⊢ α̂ :=
< A1 → A2 ⊣ ∆

InstLArr

By Lemma 28 (Unsolved Variable Addition for Extension), we can insert an (unsolved) α̂2, giving

Γ [α̂] −→ Γ [α̂2, α̂].
By Lemma 28 (Unsolved Variable Addition for Extension) again, Γ [α̂2, α̂] −→ Γ [α̂2, α̂1, α̂].

By Lemma 26 (Solution Admissibility for Extension), we can solve α̂, giving Γ [α̂2, α̂1, α̂] −→ Γ [α̂2, α̂1, α̂ = α̂1 → α̂2].

Then by transitivity (Lemma 21 (Transitivity)), Γ [α̂] −→ Γ [α̂2, α̂1, α̂ = α̂1 → α̂2].
By i.h. on the first subderivation, Γ [α̂2, α̂1, α̂ = α̂1 → α̂2] −→ Γ ′.

By i.h. on the second subderivation, Γ ′ −→ ∆.

By transitivity (Lemma 21 (Transitivity)), Γ [α̂2, α̂1, α̂ = α̂1 → α̂2] −→ ∆.
By transitivity (Lemma 21 (Transitivity)), Γ [α̂] −→ ∆.

• Case
Γ [α̂], β ⊢ α̂ :=

< B ⊣ ∆,β,∆ ′

Γ [α̂] ⊢ α̂ :=
< ∀β. B ⊣ ∆

InstLAllR

By induction, Γ [α̂], β −→ ∆,β,∆ ′.
By Lemma 24 (Extension Order) (i), we have Γ [α̂] −→ ∆.

• Case Γ ⊢ τ

Γ, α̂, Γ ′ ⊢ τ =<: α̂ ⊣ Γ, α̂ = τ, Γ ′
InstRSolve

By Lemma 26 (Solution Admissibility for Extension), we can solve α̂, giving Γ, α̂, Γ ′ −→ Γ, α̂ = τ, Γ ′.

• Case

Γ [α̂][β̂] ⊢ β̂ =
<: α̂ ⊣ Γ [α̂][β̂ = α̂]

InstRReach

Γ [α̂][β̂] = Γ0, α̂, Γ1, β̂, Γ2 for some Γ0, Γ1, Γ2.
By the definition of well-formedness, Γ0, α̂, Γ1 ⊢ α̂.

Hence by Lemma 26 (Solution Admissibility for Extension), we can solve β̂, giving Γ0, α̂, Γ1, β̂, Γ2 −→
Γ0, α̂, Γ1, β̂ = α̂, Γ2.

• Case
Γ [α̂2, α̂1, α̂ = α̂1 → α̂2] ⊢ α̂1 :=

< A1 ⊣ Γ ′ Γ ′ ⊢ [Γ ′]A2 =
<: α̂2 ⊣ ∆

Γ [α̂] ⊢ A1 → A2 =
<: α̂ ⊣ ∆

InstRArr

Because the contexts here are the same as in InstLArr, this is the same as the InstLArr case.

• Case
Γ [α̂],◮β̂, β̂ ⊢ [β̂/β]B =<: α̂ ⊣ ∆,◮β̂, ∆

′

Γ [α̂] ⊢ ∀β. B =
<: α̂ ⊣ ∆

InstRAllL

By i.h., Γ [α̂],◮β̂, β̂ −→ ∆,◮β̂, ∆
′.

By Lemma 24 (Extension Order) (ii), Γ [α̂] −→ ∆.
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D ′.3 Subtyping Extends

Lemma 33 (Subtyping Extension).
If Γ ⊢ A <: B ⊣ ∆ then Γ −→ ∆.

Proof. By induction on the given derivation.

For cases <:Var, <:Unit, <:Exvar, we have ∆ = Γ , so Lemma 20 (Reflexivity) suffices.

• Case Γ ⊢ B1 <: A1 ⊣ Θ Θ ⊢ [Ω]A2 <: [Ω]B2 ⊣ ∆

Γ ⊢ A1 → A2 <: B1 → B2 ⊣ ∆
<:→

By IH on each subderivation, Γ −→ Θ and Θ −→ ∆.

By Lemma 21 (Transitivity) (transitivity), Γ −→ ∆, which was to be shown.

• Case Γ,◮α̂, α̂ ⊢ [α̂/α]A <: B ⊣ ∆,◮α̂, Θ

Γ ⊢ ∀α. A <: B ⊣ ∆
<:∀L

By IH, Γ,◮α̂, α̂ −→ ∆,◮α̂, Θ.

By Lemma 24 (Extension Order) (ii) with ΓL = Γ and Γ ′

L = ∆ and ΓR = α̂ and Γ ′

R = Θ, we obtain

Γ −→ ∆

• Case Γ, β ⊢ A <: B ⊣ ∆,β,Θ

Γ ⊢ A <: ∀β. B ⊣ ∆
<:∀R

By IH, we have Γ, β −→ ∆,β,Θ.

By Lemma 24 (Extension Order) (i), we obtain Γ −→ ∆, which was to be shown.

• Cases <:InstantiateL, <:InstantiateR: In each of these rules, the premise has the same input and

output contexts as the conclusion, so Lemma 32 (Instantiation Extension) suffices.

E ′ Decidability of Instantiation

Lemma 34 (Left Unsolvedness Preservation).
If Γ0, α̂, Γ1︸ ︷︷ ︸

Γ

⊢ α̂ :=
< A ⊣ ∆ or Γ0, α̂, Γ1︸ ︷︷ ︸

Γ

⊢ A =
<: α̂ ⊣ ∆, and β̂ ∈ unsolved(Γ0), then β̂ ∈ unsolved(∆).

Proof. By induction on the given derivation.

• Case Γ0 ⊢ τ

Γ0, α̂, Γ1︸ ︷︷ ︸
Γ

⊢ α̂ :=< τ ⊣ Γ0, α̂ = τ, Γ1
InstLSolve

Immediate, since to the left of α̂, the contexts ∆ and Γ are the same.

• Case

Γ [α̂][β̂] ⊢ α̂ :=
< β̂ ⊣ Γ [α̂][β̂ = α̂]

InstLReach

Immediate, since to the left of α̂, the contexts ∆ and Γ are the same.

• Case
Γ [α̂2, α̂1, α̂ = α̂1 → α̂2] ⊢ A1 =

<: α̂1 ⊣ Γ ′ Γ ′ ⊢ α̂2 :=
< [Γ ′]A2 ⊣ ∆

Γ [α̂] ⊢ α̂ :=
< A1 → A2 ⊣ ∆

InstLArr
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We have β̂ ∈ unsolved(Γ0). Therefore β̂ ∈ unsolved(Γ0, α̂2).

Clearly, α̂2 ∈ unsolved(Γ0, α̂2).
We have two subderivations:

Γ0, α̂2, α̂1, α̂ = α̂1 → α̂2, Γ1 ⊢ A1 =<: α̂1 ⊣ Γ ′ (1)

Γ ′ ⊢ α̂2 :=< [Γ ′]A2 ⊣ ∆ (2)

By induction on (1), β̂ ∈ unsolved(Γ ′).

Also by induction on (1), with α̂2 playing the role of β̂, we get α̂2 ∈ unsolved(Γ ′).

Since β̂ ∈ Γ0, it is declared to the left of α̂2 in Γ0, α̂2, α̂1, α̂ = α̂1 → α̂2, Γ1.
Hence by Lemma 16 (Declaration Order Preservation), β̂ is declared to the left of α̂2 in Γ ′. That is,

Γ ′ = (Γ ′

0, α̂2, Γ
′

1), where β̂ ∈ unsolved(Γ ′

0).
By induction on (2), β̂ ∈ unsolved(∆).

• Case
Γ0, α̂, Γ1, β ⊢ α̂ :=

< B ⊣ ∆,β,∆ ′

Γ0, α̂, Γ1 ⊢ α̂ :=
< ∀β. B ⊣ ∆

InstLAllR

We have β̂ ∈ unsolved(Γ0).

By induction, β̂ ∈ unsolved(∆,β,∆ ′).
Note that β̂ is declared to the left of β in Γ0, α̂, Γ1, β.

By Lemma 16 (Declaration Order Preservation), β̂ is declared to the left of β in (∆,β,∆ ′), that is,
in ∆. Since β̂ ∈ unsolved(∆,β,∆ ′), we have β̂ ∈ unsolved(∆).

• Cases InstRSolve, InstRReach: Similar to the InstLSolve and InstLReach cases.

• Case
Γ [α̂2, α̂1, α̂ = α̂1 → α̂2] ⊢ α̂1 :=< A1 ⊣ Γ ′ Γ ′ ⊢ [Γ ′]A2 =<: α̂2 ⊣ ∆

Γ [α̂] ⊢ A1 → A2 =<: α̂ ⊣ ∆
InstRArr

Similar to the InstLArr case.

• Case
Γ [α̂],◮γ̂, γ̂ ⊢ [γ̂/β]B =

<: α̂ ⊣ ∆,◮γ̂, ∆
′

Γ [α̂] ⊢ ∀β. B =
<: α̂ ⊣ ∆

InstRAllL

We have β̂ ∈ unsolved(Γ0).

By induction, β̂ ∈ unsolved(∆,◮γ̂, ∆
′).

Note that β̂ is declared to the left of ◮γ̂ in Γ0, α̂, Γ1,◮γ̂, γ̂.

By Lemma 16 (Declaration Order Preservation), β̂ is declared to the left of ◮γ̂ in ∆,◮γ̂, ∆
′.

Hence β̂ is declared in ∆, and we know it is in unsolved(∆,◮γ̂, ∆
′), so β̂ ∈ unsolved(∆).

Lemma 35 (Left Free Variable Preservation). If

Γ
︷ ︸︸ ︷
Γ0, α̂, Γ1 ⊢ α̂ :=< A ⊣ ∆ or

Γ
︷ ︸︸ ︷
Γ0, α̂, Γ1 ⊢ A =<: α̂ ⊣ ∆, and

Γ ⊢ B and α̂ /∈ FV([Γ ]B) and β̂ ∈ unsolved(Γ0) and β̂ /∈ FV([Γ ]B), then β̂ /∈ FV([∆]B).

Proof. By induction on the given instantiation derivation.

• Case Γ0 ⊢ τ

Γ0, α̂, Γ1︸ ︷︷ ︸
Γ

⊢ α̂ :=
< τ ⊣ Γ0, α̂ = τ, Γ1︸ ︷︷ ︸

∆

InstLSolve

We have α̂ /∈ FV([Γ ]B). Since ∆ differs from Γ only in α̂, it must be the case that [Γ ]B = [∆]B. It is

given that β̂ /∈ FV([Γ ]B), so β̂ /∈ FV([∆]B).

• Case

Γ ′[α̂][γ̂]
︸ ︷︷ ︸

Γ

⊢ α̂ :=
< γ̂ ⊣ Γ ′[α̂][γ̂ = α̂]

︸ ︷︷ ︸
∆

InstLReach

Since ∆ differs from Γ only in solving γ̂ to α̂, applying ∆ to a type will not introduce a β̂. We have

β̂ /∈ FV([Γ ]B), so β̂ /∈ FV([∆]B).
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• Case Γ0 ⊢ τ

Γ0, α̂, Γ1 ⊢ τ =<: α̂ ⊣ Γ0, α̂ = τ, Γ1
InstRSolve

Similar to the InstLSolve case.

• Case

Γ ′[α̂][γ̂] ⊢ γ̂ =
<: α̂ ⊣ Γ ′[α̂][γ̂ = α̂]

InstRReach

Similar to the InstLReach case.

• Case Γ ′

︷ ︸︸ ︷
Γ0, α̂2, α̂1, α̂ = α̂1 → α̂2, Γ1 ⊢ A1 =

<: α̂1 ⊣ ∆ ∆ ⊢ α̂2 :=
< [∆]A2 ⊣ ∆

Γ0, α̂, Γ1︸ ︷︷ ︸
Γ

⊢ α̂ :=
< A1 → A2 ⊣ ∆

InstLArr

We have Γ ⊢ B and α̂ /∈ FV([Γ ]B) and β̂ /∈ FV([Γ ]B).
By weakening, we get Γ ′ ⊢ B; since α̂ /∈ FV([Γ ]B) and Γ ′ only adds a solution for α̂, it follows that

[Γ ′]B = [Γ ]B.

Therefore α̂1 /∈ FV([Γ ′]B) and α̂2 /∈ FV([Γ ′]B) and β̂ /∈ FV([Γ ′]B).
Since we have β̂ ∈ Γ0, we also have β̂ ∈ (Γ0, α̂2).

By induction on the first premise, β̂ /∈ FV([∆]B).
Also by induction on the first premise, with α̂2 playing the role of β̂, we have α̂2 /∈ FV([∆]B).

Note that α̂2 ∈ unsolved(Γ0, α̂2).

By Lemma 34 (Left Unsolvedness Preservation), α̂2 ∈ unsolved(∆).
Therefore ∆ has the form (∆0, α̂2, ∆1).

Since β̂ 6= α̂2, we know that β̂ is declared to the left of α̂2 in Γ0, α̂2, so by Lemma 16 (Declaration Order Preservation),

β̂ is declared to the left of α̂2 in ∆. Hence β̂ ∈ ∆0.
Furthermore, by Lemma 32 (Instantiation Extension), we have Γ ′ −→ ∆.

Then by Lemma 25 (Extension Weakening), we have ∆ ⊢ B. Using induction on the second

premise, β̂ /∈ FV([∆]B).

• Case
Γ0, α̂, Γ1, γ ⊢ α̂ :=< C ⊣ ∆, γ,∆ ′

Γ0, α̂, Γ1︸ ︷︷ ︸
Γ

⊢ α̂ :=< ∀γ. C ⊣ ∆
InstLAllR

We have Γ ⊢ B and α̂ /∈ FV([Γ ]B) and β̂ ∈ Γ0 and β̂ /∈ FV([Γ ]B).

By weakening, Γ, γ ⊢ B; by the definition of substitution, [Γ, γ]B = [Γ ]B.
Substituting equals for equals, α̂ /∈ FV([Γ, γ]B) and β̂ /∈ FV([Γ, γ]B).

By induction, β̂ /∈ FV([∆, γ,∆ ′]B).

Since β̂ is declared to the left of γ in (Γ, γ), we can use Lemma 16 (Declaration Order Preservation)
to show that β̂ is declared to the left of γ in (∆, γ,∆ ′), that is, in ∆.

We have Γ ⊢ B, so γ /∈ FV(B). Thus each free variable u in B is in Γ , to the left of γ in (Γ, γ).
Therefore, by Lemma 16 (Declaration Order Preservation), each free variable u in B is in ∆.

Therefore [∆, γ,∆ ′]B = [∆]B.

Earlier, we obtained β̂ /∈ FV([∆, γ,∆ ′]B), so substituting equals for equals, β̂ /∈ FV([∆]B).

• Case
Γ0, α̂2, α̂1, α̂ = α̂1 → α̂2, Γ1 ⊢ α̂1 :=

< A1 ⊣ ∆ Γ ′ ⊢ [∆]A2 =
<: α̂2 ⊣ ∆

Γ0, α̂, Γ1 ⊢ A1 → A2 =
<: α̂ ⊣ ∆

InstRArr

Similar to the InstLArr case.

• Case
Γ [α̂],◮γ̂, γ̂ ⊢ [γ̂/γ]C =

<: α̂ ⊣ ∆,◮γ̂, ∆
′

Γ [α̂] ⊢ ∀γ. C =
<: α̂ ⊣ ∆

InstRAllL

We have Γ ⊢ B and α̂ /∈ FV([Γ ]B) and β̂ ∈ Γ0 and β̂ /∈ FV([Γ ]B).

By weakening, Γ,◮γ̂, γ̂ ⊢ B; by the definition of substitution, [Γ,◮γ̂, γ̂]B = [Γ ]B.
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Substituting equals for equals, α̂ /∈ FV([Γ,◮γ̂, γ̂]B) and β̂ /∈ FV([Γ,◮γ̂, γ̂]B).

By induction, β̂ /∈ FV([∆,◮γ̂, ∆
′]B).

Note that β̂ is declared to the left of ◮γ̂ in Γ,◮γ̂, γ̂.

By Lemma 16 (Declaration Order Preservation), β̂ is declared to the left of ◮γ̂ in ∆,◮γ̂, ∆
′.

So β̂ is declared in ∆.
Now, note that each free variable u in B is in Γ , which is to the left of ◮γ̂ in Γ,◮γ̂, γ̂.

Therefore, by Lemma 16 (Declaration Order Preservation), each free variable u in B is in ∆.
Therefore [∆,◮γ̂, ∆

′]B = [∆]B.

Earlier, we obtained β̂ /∈ FV([∆,◮γ̂, ∆
′]B), so substituting equals for equals, β̂ /∈ FV([∆]B).

Lemma 36 (Instantiation Size Preservation). If

Γ
︷ ︸︸ ︷
Γ0, α̂, Γ1 ⊢ α̂ :=

< A ⊣ ∆ or

Γ
︷ ︸︸ ︷
Γ0, α̂, Γ1 ⊢ A =

<: α̂ ⊣ ∆, and
Γ ⊢ B and α̂ /∈ FV([Γ ]B), then |[Γ ]B| = |[∆]B|, where |C| is the plain size of the term C.

Proof. By induction on the given derivation.

• Case Γ0 ⊢ τ

Γ0, α̂, Γ1︸ ︷︷ ︸
Γ

⊢ α̂ :=
< τ ⊣ Γ0, α̂ = τ, Γ1

InstLSolve

Since ∆ differs from Γ only in solving α̂, and we know α̂ /∈ FV([Γ ]B), we have [∆]B = [Γ ]B; therefore
|[∆]B = [Γ ]B|.

• Case

Γ [α̂][β̂] ⊢ α̂ :=
< β̂ ⊣ Γ [α̂][β̂ = α̂]

InstLReach

Here, ∆ differs from Γ only in solving β̂ to α̂. However, α̂ has the same size as β̂, so even if

β̂ ∈ FV([Γ ]B), we have |[∆]B = [Γ ]B|.

• Case Γ ′

︷ ︸︸ ︷
Γ0, α̂2, α̂1, α̂ = α̂1 → α̂2, Γ1 ⊢ A1 =

<: α̂1 ⊣ Θ Θ ⊢ α̂2 :=
< [Θ]A2 ⊣ ∆

Γ0, α̂, Γ1︸ ︷︷ ︸
Γ

⊢ α̂ :=
< A1 → A2 ⊣ ∆

InstLArr

We have Γ ⊢ B and α̂ /∈ FV([Γ ]B). Since α̂1, α̂2 /∈ dom(Γ), we have α̂, α̂1, α̂2 /∈ FV([Γ ]B). It follows

that [Γ ′]B = [Γ ]B.

By weakening, Γ ′ ⊢ B.
By induction on the first premise, |[Γ ′]B| = |[Θ]B|.

By Lemma 16 (Declaration Order Preservation), since α̂2 is declared to the left of α̂1 in Γ ′, we have
that α̂2 is declared to the left of α̂1 in Θ.

By Lemma 34 (Left Unsolvedness Preservation), since α̂2 ∈ unsolved(Γ ′), it is unsolved in Θ: that

is, Θ = (Θ0, α̂2, Θ1).
By Lemma 32 (Instantiation Extension), we have Γ ′ −→ Θ.

By Lemma 25 (Extension Weakening), Θ ⊢ B.

Since α̂2 /∈ FV([Γ ′]B), Lemma 35 (Left Free Variable Preservation) gives α̂2 /∈ FV([Θ]B).
By induction on the second premise, |[Θ]B| = |[∆]B|, and by transitivity of equality, |[Γ ]B| = |[∆]B|.

• Case
Γ0, α̂, Γ1, β ⊢ α̂ :=

< A0 ⊣ ∆,β,∆ ′

Γ0, α̂, Γ1︸ ︷︷ ︸
Γ

⊢ α̂ :=
< ∀β. A0 ⊣ ∆

InstLAllR

We have Γ ⊢ B and α̂ /∈ FV([Γ ]B).

By weakening, Γ, β ⊢ B.
From the definition of substitution, [Γ ]B = [Γ, β]B. Hence α̂ /∈ FV([Γ, β]B).

The input context of the premise is (Γ0, α̂, Γ1, β), which is (Γ, β), so by induction, |[Γ, β]B| = |[∆,β,∆ ′]B|.

Suppose u is a free variable in B. Then u is declared in Γ , and so occurs before β in Γ, β.
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By Lemma 16 (Declaration Order Preservation), u is declared before β in ∆,β,∆ ′.

So every free variable u in B is declared in ∆.
Hence [∆,β,∆ ′]B = [∆]B.

We have [Γ ]B = [Γ, β]B, so |[Γ ]B| = |[Γ, β]B|; by transitivity of equality, |[Γ ]B| = |[∆]B|.

• Case Γ0 ⊢ τ

Γ0, α̂, Γ1 ⊢ τ =
<: α̂ ⊣ Γ0, α̂ = τ, Γ1

InstRSolve

Similar to the InstLSolve case.

• Case

Γ [α̂][β̂] ⊢ β̂ =<: α̂ ⊣ Γ [α̂][β̂ = α̂]
InstRReach

Similar to the InstLReach case.

• Case Γ ′

︷ ︸︸ ︷
Γ0, α̂2, α̂1, α̂ = α̂1 → α̂2, Γ1 ⊢ α̂1 :=

< A1 ⊣ Θ Θ ⊢ [Θ]A2 =
<: α̂2 ⊣ ∆

Γ0, α̂, Γ1︸ ︷︷ ︸
Γ

⊢ A1 → A2 =
<: α̂ ⊣ ∆

InstRArr

Similar to the InstLArr case.

• Case
Γ ′[α̂],◮β̂, β̂ ⊢ [β̂/β]A0 =<: α̂ ⊣ ∆,◮β̂, ∆

′

Γ ′[α̂] ⊢ ∀β. A0 =
<: α̂ ⊣ ∆

InstRAllL

We have Γ ⊢ B and α̂ /∈ FV([Γ ]B).
By weakening, Γ,◮β̂, β̂ ⊢ B.

From the definition of substitution, [Γ ]B = [Γ,◮β̂, β̂]B. Hence α̂ /∈ FV([Γ,◮β̂, β̂]B).

By induction, |[Γ,◮β̂, β̂]B| = |[∆,◮β̂, ∆
′]B|.

Suppose u is a free variable in B.
Then u is declared in Γ , and so occurs before ◮β̂ in Γ,◮β̂, β̂.

By Lemma 16 (Declaration Order Preservation), u is declared before ◮β̂ in ∆,◮β̂, ∆
′.

So every free variable u in B is declared in ∆.

Hence [∆,◮β̂, ∆
′]B = [∆]B.

Since [Γ ]B = [Γ,◮β̂, β̂]B, we have |[Γ ]B| = |[Γ,◮β̂, β̂]B|; by transitivity of equality, |[Γ ]B| = |[∆]B|.

Theorem 7 (Decidability of Instantiation). If Γ = Γ0[α̂] and Γ ⊢ A such that [Γ ]A = A and α̂ /∈ FV(A),
then:

(1) Either there exists ∆ such that Γ0[α̂] ⊢ α̂ :=
< A ⊣ ∆, or not.

(2) Either there exists ∆ such that Γ0[α̂] ⊢ A =
<: α̂ ⊣ ∆, or not.

Proof. By induction on the derivation of Γ ⊢ A.

(1) Γ ⊢ α̂ :=
< A ⊣ ∆ is decidable.

• Case

ΓL, α̂, ΓR︸ ︷︷ ︸
Γ ′[α]

⊢ α
UvarWF

If α ∈ ΓL, then by UvarWF we have ΓL ⊢ α, and by rule InstLSolve we have a derivation.

Otherwise no rule matches, and so no derivation exists.

• Case UnitWF: By rule InstLSolve.
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• Case

ΓL, α̂, ΓR︸ ︷︷ ︸
Γ

⊢ β̂
EvarWF

By inversion, we have β̂ ∈ Γ , and [Γ ]β̂ = β̂. Since α̂ /∈ FV([Γ ]β̂) = FV(β̂) = {β̂}, it follows that

α̂ 6= β̂: Either β̂ ∈ ΓL or β̂ ∈ ΓR.
If β̂ ∈ ΓL, then we have a derivation by InstLSolve.

If β̂ ∈ ΓR, then we have a derivation by InstLReach.

• Case

Γ ′[β̂ = τ]
︸ ︷︷ ︸

Γ

⊢ β̂
SolvedEvarWF

It is given that [Γ ]β̂ = β̂, so this case is impossible.

• Case Γ ⊢ A1 Γ ⊢ A2

ΓL, α̂, ΓR︸ ︷︷ ︸
Γ

⊢ A1 → A2

ArrowWF

By assumption, [Γ ](A1 → A2) = A1 → A2 and α̂ /∈ FV([Γ ](A1 → A2)).
If A1 → A2 is a monotype and is well-formed under ΓL, we can apply InstLSolve.

Otherwise, the only rule with a conclusion matching A1 → A2 is InstLArr.

First, consider whether ΓL, α̂2, α̂1, α̂ = α̂1 → α̂2, ΓR ⊢ A =
<: α̂1 ⊣ − is decidable.

By definition of substitution, [Γ ](A1 → A2) = ([Γ ]A1) → ([Γ ]A2). Since [Γ ](A1 → A2) = A1 →

A2, we have [Γ ]A1 = A1 and [Γ ]A2 = A2.

By weakening, ΓL, α̂2, α̂1, α̂ = α̂1 → α̂2, ΓR ⊢ A1 → A2.
Since Γ ⊢ A1 and Γ ⊢ A2, we have α̂1, α̂2 /∈ FV(A1) ∪ FV(A2).

Since α̂ /∈ FV(A) ⊇ FV(A1), it follows that [Γ ′]A1 = A1.
By i.h., either there exists Θ such that ΓL, α̂2, α̂1, α̂ = α̂1 → α̂2, ΓR ⊢ A1 =<: α̂1 ⊣ Θ, or not.

If not, then no derivation by InstLArr exists.

If so, then we have ΓL, α̂2, α̂1, α̂ = α̂1 → α̂2, ΓR ⊢ α̂1 :=
< A1 ⊣ Θ.

By Lemma 34 (Left Unsolvedness Preservation), we know that α̂2 ∈ unsolved(Θ).

By Lemma 35 (Left Free Variable Preservation), we know that α̂2 /∈ FV([Θ]A2).

Clearly, [Θ]([Θ]A2) = [Θ]A2.
Hence by i.h., either there exists ∆ such that Θ ⊢ α̂2 :=

< [Θ]A2 ⊣ ∆, or not.

If not, then no derivation by InstLArr exists.

If it does, then by rule InstLArr, we have Γ ⊢ α̂ :=
< A ⊣ ∆.

• Case Γ, α ⊢ A0

Γ ⊢ ∀α. A0

ForallWF

We have ∀α. A0 = [Γ ](∀α. A0). By definition of substitution, [Γ ](∀α. A0) = ∀α. [Γ ]A0, so

A0 = [Γ ]A0.

By definition of substitution, [Γ, α]A0 = [Γ ]A0.
We have α̂ /∈ FV([Γ ](∀α. A0)). Therefore α̂ /∈ FV([Γ ]A0) = FV([Γ, α]A0).

By i.h., either there exists Θ such that Γ, α ⊢ α̂ :=
< A0 ⊣ Θ, or not.

Suppose Γ, α ⊢ α̂ :=< A0 ⊣ Θ.

By Lemma 32 (Instantiation Extension), Γ −→ Θ;

by Lemma 24 (Extension Order) (i), Θ = ∆,α,∆ ′.
Hence by rule InstLAllR, Γ ⊢ α̂ :=< ∀α. A0 ⊣ ∆.

Suppose not.

Then there is no derivation, since InstLAllR is the only rule matching ∀α. A0.

(2) Γ ⊢ A =
<: α̂ ⊣ ∆ is decidable.

• Case UvarWF:

Similar to the UvarWF case in part (1), but applying rule InstRSolve instead of InstLSolve.
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• Case UnitWF: Apply InstRSolve.

• Case

ΓL, α̂, ΓR︸ ︷︷ ︸
Γ

⊢ β̂
EvarWF

Similar to the EvarWF case in part (1), but applying InstRSolve/InstRReach instead of InstLSolve/InstLReach.

• Case SolvedEvarWF:
Impossible, for exactly the same reasons as in the SolvedEvarWF case of part (1).

• Case Γ ⊢ A1 Γ ⊢ A2

ΓL, α̂, ΓR︸ ︷︷ ︸
Γ

⊢ A1 → A2

ArrowWF

As the ArrowWF case of part (1), except applying InstRArr instead of InstLArr.

• Case Γ, β ⊢ B

ΓL, α̂, ΓR︸ ︷︷ ︸
Γ

⊢ ∀β. B
ForallWF

By assumption, [Γ ](∀β. B) = ∀β. B. With the definition of substitution, we get [Γ ]B = B. Hence
[Γ ]B = B.

Hence [β̂/β][Γ ]B = [β̂/β]B. Since β̂ is fresh, [β̂/β][Γ ]B = [Γ ][β̂/β]B.
By definition of substitution, [Γ,◮β̂, β̂][β̂/β]B = [Γ ][β̂/β]B, which by transitivity of equality is

[β̂/β]B.

We have α̂ /∈ FV([Γ ](∀β. B)), so α̂ /∈ FV([Γ,◮β̂, β̂][β̂/β]B).

Therefore, by induction, either Γ,◮β̂, β̂ ⊢ [β̂/β]B =
<: α̂ ⊣ Θ or not.

Suppose Γ,◮β̂, β̂ ⊢ [β̂/β]B =
<: α̂ ⊣ Θ.

By Lemma 32 (Instantiation Extension), Γ,◮β̂, β̂ −→ Θ;

by Lemma 24 (Extension Order) (ii), Θ = ∆,◮β̂, ∆
′.

Hence by rule InstRAllL, Γ ⊢ ∀β. B =
<: α̂ ⊣ ∆.

Suppose not.

Then there is no derivation, since InstRAllL is the only rule matching ∀β. B.

F ′ Decidability of Algorithmic Subtyping

F ′.1 Lemmas for Decidability of Subtyping

Lemma 37 (Monotypes Solve Variables). If Γ ⊢ α̂ :=
< τ ⊣ ∆ or Γ ⊢ τ =

<: α̂ ⊣ ∆, then if [Γ ]τ = τ and
α̂ /∈ FV([Γ ]τ), then |unsolved(Γ)| = |unsolved(∆)| + 1.

Proof. By induction on the given derivation.

• Case ΓL ⊢ τ

ΓL, α̂, ΓR ⊢ α̂ :=< τ ⊣ ΓL, α̂ = τ, ΓR︸ ︷︷ ︸
∆

InstLSolve

It is evident that |unsolved(ΓL, α̂, ΓR)| = |unsolved(ΓL, α̂ = τ, ΓR)|+ 1.

• Case

Γ [α̂][β̂] ⊢ α̂ :=
< β̂ ⊣ Γ [α̂][β̂ = α̂]

InstLReach

Similar to the previous case.
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• Case
Γ0[α̂2, α̂1, α̂ = α̂1 → α̂2] ⊢ τ1 =<: α̂1 ⊣ Θ Θ ⊢ α̂2 :=< [Θ]τ2 ⊣ ∆

Γ0[α̂] ⊢ α̂ :=< τ1 → τ2 ⊣ ∆
InstLArr

|unsolved(Γ0[α̂2, α̂1, α̂ = α̂1 → α̂2])| = |unsolved(Γ0[α̂])|+ 1 Immediate

|unsolved(Γ0[α̂2, α̂1, α̂ = α̂1 → α̂2])| = |unsolved(Θ)|+ 1 By i.h.

|unsolved(Γ)| = |unsolved(Θ)| Subtracting 1

Z = |unsolved(∆)| + 1 By i.h.

• Case
Γ, β ⊢ α̂ :=

< B ⊣ ∆,β,∆ ′

Γ ⊢ α̂ :=
< ∀β. B ⊣ ∆

InstLAllR

This case is impossible, since a monotype cannot have the form ∀β. B.

• Cases InstRSolve, InstRReach: Similar to the InstLSolve and InstLReach cases.

• Case InstRArr: Similar to the InstLArr case.

• Case
Γ [α̂], β ⊢ B =<: α̂ ⊣ ∆,β,∆ ′

Γ [α̂] ⊢ ∀β. B =
<: α̂ ⊣ ∆

InstRAllL

This case is impossible, since a monotype cannot have the form ∀β. B.

Lemma 38 (Monotype Monotonicity). If Γ ⊢ τ1 <: τ2 ⊣ ∆ then |unsolved(∆)| ≤ |unsolved(Γ)|.

Proof. By induction on the given derivation.

• Cases <:Var, <:Exvar:
In these rules, ∆ = Γ , so unsolved(∆) = unsolved(Γ); therefore |unsolved(∆)| ≤ |unsolved(Γ)|.

• Case <:→: We have an intermediate context Θ.

By inversion, τ1 = τ11 → τ12 and τ2 = τ21 → τ22. Therefore, we have monotypes in the first and

second premises.

By induction on the first premise, |unsolved(Θ)| ≤ |unsolved(Γ)|. By induction on the second premise,
|unsolved(∆)| ≤ |unsolved(Θ)|. By transitivity of ≤, |unsolved(∆)| ≤ |unsolved(Γ)|, which was to be

shown.

• Cases <:∀L, <:∀R: We are given a derivation of subtyping on monotypes, so these cases are

impossible.

• Cases <:InstantiateL, <:InstantiateR: The input and output contexts in the premise exactly match
the conclusion, so the result follows by Lemma 37 (Monotypes Solve Variables).

Lemma 39 (Substitution Decreases Size). If Γ ⊢ A then |Γ ⊢ [Γ ]A| ≤ |Γ ⊢A|.

Proof. By induction on |Γ ⊢A|. If A = 1 or A = α, or A = α̂ and α̂ ∈ unsolved(Γ) then [Γ ]A = A.

Therefore, |Γ ⊢ [Γ ]A| = |Γ ⊢A|.
If A = α̂ and (α̂ = τ) ∈ Γ , then by induction hypothesis, |Γ ⊢ [Γ ]τ| ≤ |Γ ⊢ τ|. Of course |Γ ⊢ τ| ≤

|Γ ⊢ τ|+ 1. By definition of substitution, [Γ ]τ = [Γ ]α̂, so

|Γ ⊢ [Γ ]α̂| ≤ |Γ ⊢ τ|+ 1

By the definition of type size, |Γ ⊢ α̂| = |Γ ⊢ τ|+ 1, so

|Γ ⊢ [Γ ]α̂| ≤ |Γ ⊢ α̂|

which was to be shown.

If A = A1 → A2, the result follows via the induction hypothesis (twice).

If A = ∀α. A0, the result follows via the induction hypothesis.
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Lemma 40 (Monotype Context Invariance).
If Γ ⊢ τ <: τ ′ ⊣ ∆ where [Γ ]τ = τ and [Γ ]τ ′ = τ ′ and |unsolved(Γ)| = |unsolved(∆)| then Γ = ∆.

Proof. By induction on the derivation of Γ ⊢ τ <: τ ′ ⊣ ∆.

• Cases <:Var, <:Unit, <:Exvar:

In these rules, the output context is the same as the input context, so the result is immediate.

• Case Γ ⊢ τ ′

1 <: τ1 ⊣ Θ Θ ⊢ [Θ]τ2 <: [Θ]τ ′

2 ⊣ ∆

Γ ⊢ τ1 → τ2 <: τ ′

1 → τ ′

2 ⊣ ∆
<:→

We have that [Γ ](τ1 → τ2) = τ1 → τ2. By definition of substitution, [Γ ]τ1 = τ1 and [Γ ]τ2 = τ2.

Similarly, [Γ ]τ1 = τ ′

1 and [Γ ]τ2 = τ ′

2.

By i.h., Θ = Γ .
Since Θ is predicative, [Θ]τ2 and [Θ]τ ′

2 are monotypes.

Substitution is idempotent: [Θ][Θ]τ2 = [Θ]τ2 and [Θ][Θ]τ ′

2 = [Θ]τ ′

2.

By i.h., ∆ = Θ. Hence ∆ = Γ .

• Cases <:∀L, <:∀R: Impossible, since τ and τ ′ are monotypes.

• Case
α̂ /∈ FV(A) Γ0[α̂] ⊢ α̂ :=

< A ⊣ ∆

Γ0[α̂] ⊢ α̂ <: A ⊣ ∆
<:InstantiateL

By Lemma 37 (Monotypes Solve Variables), |unsolved(∆)| < |unsolved(Γ0[α̂])|, but it is given that

|unsolved(Γ0[α̂])| = |unsolved(∆)|, so this case is impossible.

• Case <:InstantiateR: Impossible, as for the <:InstantiateL case.

F ′.2 Decidability of Subtyping

Theorem 8 (Decidability of Subtyping).
Given a context Γ and types A, B such that Γ ⊢ A and Γ ⊢ B and [Γ ]A = A and [Γ ]B = B, it is decidable
whether there exists ∆ such that Γ ⊢ A <: B ⊣ ∆.

Proof. Let the judgment Γ ⊢ A <: B ⊣ ∆ be measured lexicographically by

(S1) the number of ∀ quantifiers in A and B;

(S2) |unsolved(Γ)|, the number of unsolved existential variables in Γ ;

(S3) |Γ ⊢A|+ |Γ ⊢B|.

For each subtyping rule, we show that every premise is smaller than the conclusion. The condition

that [Γ ]A = A and [Γ ]B = B is easily satisfied at each inductive step, using the definition of substitution.

• Rules <:Var, <:Unit and <:Exvar have no premises.

• Case Γ ⊢ B1 <: A1 ⊣ Θ Θ ⊢ [Θ]A2 <: [Θ]B2 ⊣ ∆

Γ ⊢ A1 → A2 <: B1 → B2 ⊣ ∆
<:→

If A2 or B2 has a quantifier, then the first premise is smaller by (S1). Otherwise, the first premise
shares an input context with the conclusion, so it has the same (S2). The types B1 and A1 are

subterms of the conclusion’s types, so the first premise is smaller by (S3).

If B1 or A1 has a quantifier, then the second premise is smaller by (S1). Otherwise, by Lemma 38
(Monotype Monotonicity) on the first premise, |unsolved(Θ)| ≤ |unsolved(Γ)|.

– If |unsolved(Θ)| < |unsolved(Γ)|, then the second premise is smaller by (S2).
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– If |unsolved(Θ)| = |unsolved(Γ)|, we have the same (S2).

However, by Lemma 40 (Monotype Context Invariance), Θ = Γ , so |Θ ⊢ [Θ]A2| = |Γ ⊢ [Γ ]A2|,

which by Lemma 39 (Substitution Decreases Size) is less than or equal to |Γ ⊢A2|.

By the same logic, |Θ ⊢ [Θ]B2| ≤ |Γ ⊢B2|.

Therefore,

|Θ ⊢ [Θ]A2| + |Θ ⊢ [Θ]B2| ≤ |Γ ⊢ (A1 → A2)| + |Γ ⊢ (B1 → B2)|

and the second premise is smaller by (S3).

• Cases <:∀L, <:∀R: In each of these rules, the premise has one less quantifier than the conclusion,

so the premise is smaller by (S1).

• Cases <:InstantiateL, <:InstantiateR: Follows from Theorem 7.

G ′ Decidability of Typing

Theorem 9 (Decidability of Typing).

(i) Synthesis: Given a context Γ and a term e,
it is decidable whether there exist a type A and a context ∆ such that
Γ ⊢ e ⇒ A ⊣ ∆.

(ii) Checking: Given a context Γ , a term e, and a type B such that Γ ⊢ B,
it is decidable whether there is a context ∆ such that
Γ ⊢ e ⇐ B ⊣ ∆.

(iii) Application: Given a context Γ , a term e, and a type A such that Γ ⊢ A,
it is decidable whether there exist a type C and a context ∆ such that
Γ ⊢ A • e ⇒⇒ C ⊣ ∆.

Proof. For rules deriving judgments of the form

Γ ⊢ e ⇒ − ⊣ −

Γ ⊢ e ⇐ B ⊣ −

Γ ⊢ A • e ⇒⇒ − ⊣ −

(where we write “−” for parts of the judgments that are outputs), the following induction measure on

such judgments is adequate to prove decidability:

〈

e,

⇒

⇐, |Γ ⊢B|

⇒⇒, |Γ ⊢A|

〉

where 〈. . . 〉 denotes lexicographic order, and where (when comparing two judgments typing terms of the

same size) the synthesis judgment (top line) is considered smaller than the checking judgment (second
line), which in turn is considered smaller than the application judgment (bottom line). That is,

⇒ ≺ ⇐ ≺ ⇒⇒

Note that this measure only uses the input parts of the judgments, leading to a straightforward decid-
ability argument.

We will show that in each rule, every synthesis/checking/application premise is smaller than the

conclusion.

• Case Var: No premises.
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• Case Sub: The first premise has the same subject term e as the conclusion, but the judgment is

smaller because the measure considers a synthesis judgment to be smaller than a checking judg-
ment.

The second premise is a subtyping judgment, which by Theorem 8 is decidable.

• Case Anno:

It is easy to show that the judgment Γ ⊢ A is decidable.

The second premise types e, but the conclusion types (e : A), so the first part of the measure gets
smaller.

• Case 1I: No premises.

• Case →I: In the premise, the term is smaller.

• Case →E: In both premises, the term is smaller.

• Case ∀I: Both the premise and conclusion type e, and both are checking; however, |Γ, α ⊢A| <

|Γ ⊢∀α. A|, so the premise is smaller.

• Case →App: Both the premise and conclusion type e, but the premise is a checking judgment,

so the premise is smaller.

• Case Subst⇐: Both the premise and conclusion type e, and both are checking; however, since
we can apply this rule only when Γ has a solution for α̂—that is, when Γ = Γ0[α̂ = τ]—we have

that |Γ ⊢ [Γ ]α̂| < |Γ ⊢ α̂|, making the last part of the measure smaller.

• Case SubstApp: Similar to Subst⇐.

• Case ∀App: Both the premise and conclusion type e, and both are application judgments;

however, by the definition of |Γ ⊢−|, the size of the type in the premise [α̂/α]A is smaller than
∀α. A.

• Case α̂App: Both the premise and conclusion type e, but we switch to checking in the premise,

so the premise is smaller.

• Case 1I⇒: No premises.

• Case →I⇒: In the premise, the term is smaller.

H ′ Soundness of Subtyping

H ′.1 Lemmas for Soundness

Lemma 42 (Variable Preservation).
If (x : A) ∈ ∆ or (x : A) ∈ Ω and ∆ −→ Ω then (x : [Ω]A) ∈ [Ω]∆.

Proof. By mutual induction on ∆ and Ω.

Suppose (x : A) ∈ ∆. In the case where ∆ = (∆ ′, x : A) and Ω = (Ω ′, x : AΩ), inversion on ∆ −→ Ω

gives [Ω ′]A = [Ω ′]AΩ; by the definition of context application, [Ω ′, x : AΩ](∆ ′, x : A) = [Ω ′]∆ ′, x :

[Ω ′]AΩ, which contains x : [Ω ′]AΩ, which is equal to x : [Ω ′]A. By well-formedness of Ω, we know that

[Ω ′]A = [Ω]A.
Suppose (x : A) ∈ Ω. The reasoning is similar, because equality is symmetric.

Lemma 43 (Substitution Typing). If Γ ⊢ A then Γ ⊢ [Γ ]A.

Proof. By induction on |Γ ⊢A| (the size of A under Γ).

• Cases UvarWF, UnitWF: Here A = α or A = 1, so applying Γ to A does not change it: A = [Γ ]A.

Since Γ ⊢ A, we have Γ ⊢ [Γ ]A, which was to be shown.
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• Case EvarWF: In this case A = α̂, but Γ = Γ0[α̂], so applying Γ to A does not change it, and we

proceed as in the UnitWF case above.

• Case SolvedEvarWF: In this case A = α̂ and Γ = ΓL, α̂ = τ, ΓR. Thus [Γ ]A = [Γ ]α = [ΓL]τ.
We assume contexts are well-formed, so all free variables in τ are declared in ΓL. Consequently,

|ΓL ⊢ τ| = |Γ ⊢ τ|, which is less than |Γ ⊢ α̂|. We can therefore apply the i.h. to τ, yielding Γ ⊢ [Γ ]τ.

By the definition of substitution, [Γ ]τ = [Γ ]α̂, so we have Γ ⊢ [Γ ]α̂.

• Case ArrowWF: In this case A = A1 → A2. By i.h., Γ ⊢ [Γ ]A1 and Γ ⊢ [Γ ]A2. By ArrowWF,
Γ ⊢ ([Γ ]A1) → ([Γ ]A2), which by the definition of substitution is Γ ⊢ [Γ ](A1 → A2).

• Case ForallWF: In this case A = ∀α. A0. By i.h., Γ, α ⊢ [Γ, α]A0. By the definition of substitution,

[Γ, α]A0 = [Γ ]A0, so by ForallWF, Γ ⊢ ∀α. [Γ ]A0, which by the definition of substitution is Γ ⊢
[Γ ](∀α. A0).

Lemma 44 (Substitution for Well-Formedness). If Ω ⊢ A then [Ω]Ω ⊢ [Ω]A.

Proof. By induction on |Ω ⊢A|, the size of A under Ω (Definition 2).

We consider cases of the well-formedness rule concluding the derivation of Ω ⊢ A.

• Case

Ω ⊢ 1
UnitWF

[Ω]Ω ⊢ 1 By DeclUnitWF

[Ω]Ω ⊢ [Ω]1 By definition of substitution

• Case

Ω ′[α]
︸ ︷︷ ︸

Ω

⊢ α
UvarWF

Ω −→ Ω By Lemma 20 (Reflexivity)

α ∈ [Ω]Ω By Lemma 41 (Uvar Preservation)

[Ω]Ω ⊢ α By DeclUvarWF

[Ω]Ω ⊢ [Ω]α By definition of substitution

• Case

Ω ′[α̂ = τ]
︸ ︷︷ ︸

Ω

⊢ α̂
SolvedEvarWF

Ω ⊢ α̂ Given

Ω −→ Ω By Lemma 20 (Reflexivity)

Ω ⊢ [Ω]α̂ By Lemma 43 (Substitution Typing)

|Ω ⊢ [Ω]α̂| < |Ω ⊢ α̂| Follows from definition of type size

[Ω]Ω ⊢ [Ω][Ω]α̂ By i.h.

[Ω][Ω]α̂ = [Ω]α̂ By Lemma 18 (Substitution Extension Invariance)

[Ω]Ω ⊢ [Ω]α̂ Applying equality

• Case

Ω ′[α̂]
︸ ︷︷ ︸

Ω

⊢ α̂
EvarWF

Impossible: the grammar for Ω does not allow unsolved declarations.

• Case Ω ⊢ A1 Ω ⊢ A2

Ω ⊢ A1 → A2

ArrowWF
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Ω ⊢ A1 Subderivation

|Ω ⊢A1| < |Ω ⊢A1 → A2| Follows from definition of type size

[Ω]Ω ⊢ [Ω]A1 By i.h.

[Ω]Ω ⊢ [Ω]A2 By similar reasoning on 2nd subderivation

[Ω]Ω ⊢ [Ω]A1 → [Ω]A2 By DeclArrowWF

[Ω]Ω ⊢ [Ω](A1 → A2) By definition of substitution

• Case Ω,α ⊢ A0

Ω ⊢ ∀α. A0

ForallWF

Ω,α ⊢ A0 Subderivation

Let Ω ′ = (Ω,α).

|Ω ′ ⊢A0| < |Ω ⊢∀α. A0| Follows from definition of type size

[Ω ′](Ω,α) ⊢ [Ω ′]A0 By i.h.

[Ω]Ω,α ⊢ [Ω ′]A0 By definition of context application

[Ω]Ω,α ⊢ [Ω]A0 By definition of substitution

[Ω]Ω ⊢ ∀α. [Ω]A0 By DeclForallWF

[Ω]Ω ⊢ [Ω](∀α. A0) By definition of substitution

Lemma 45 (Substitution Stability).
For any well-formed complete context (Ω,ΩZ), if Ω ⊢ A then [Ω]A = [Ω,ΩZ]A.

Proof. By induction on ΩZ. If ΩZ = ·, the result is immediate. Otherwise, use the i.h. and the fact that
Ω ⊢ A implies FV(A) ∩ dom(ΩZ) = ∅.

Lemma 46 (Context Partitioning).
If ∆,◮α̂, Θ −→ Ω,◮α̂,ΩZ then there is a Ψ such that [Ω,◮α̂,ΩZ](∆,◮α̂, Θ) = [Ω]∆,Ψ.

Proof. By induction on the given derivation.

• Case −→ID: Impossible: ∆,◮α̂, Θ cannot have the form ·.

• Case −→Var: We have ΩZ = (Ω ′

Z, x : A) and Θ = (Θ ′, x : A ′). By i.h., there is Ψ ′ such that
[Ω,◮α̂,Ω

′

Z](∆,◮α̂, Θ
′) = [Ω]∆,Ψ ′. Then by the definition of context application, [Ω,◮α̂,Ω

′

Z, x :

A](∆,◮α̂, Θ
′, x : A ′) = [Ω]∆,Ψ ′, x : [Ω ′]A. Let Ψ = (Ψ ′, x : [Ω ′]A).

• Case −→Uvar: Similar to the −→Var case, with Ψ = (Ψ ′, α).

• Cases −→Unsolved, −→Solve, −→Marker, −→Add, −→AddSolved: Broadly similar to the −→Uvar

case, but since the rightmost context element is soft it disappears in context application, so we let
Ψ = Ψ ′.

Lemma 49 (Stability of Complete Contexts).
If Γ −→ Ω then [Ω]Γ = [Ω]Ω.

Proof. By induction on the derivation of Γ −→ Ω.

• Case

· −→ ·
−→ID

In this case, Ω = Γ = ·.
By definition, [·]· = ·, which gives us the conclusion.
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• Case Γ ′ −→ Ω ′ [Ω ′]AΓ = [Ω ′]A

Γ ′, x : AΓ −→ Ω ′, x : A
−→Var

[Ω ′]Γ ′ = [Ω ′]Ω ′ By i.h.

[Ω ′]AΓ = [Ω ′]A Premise

[Ω]Γ = [Ω ′, x : A](Γ ′, x : AΓ ) Expanding Ω and Γ

= [Ω ′]Γ ′, x : [Ω ′]AΓ By definition of context application

(using [Ω ′]AΓ = [Ω ′]A)

= [Ω ′]Ω ′, x : [Ω ′]A By above equalities

= [Ω]Ω By definition of context application

• Case Γ ′ −→ Ω ′

Γ ′, α −→ Ω ′, α
−→Uvar

[Ω]Γ = [Ω ′, α](Γ ′, α) Expanding Ω and Γ

= [Ω ′]Γ ′, α By definition of context application

= [Ω ′]Ω ′, α By i.h.

= [Ω ′, α](Ω ′, α) By definition of context application

= [Ω]Ω By Ω = (Ω ′, α)

• Case Γ ′ −→ Ω ′

Γ ′,◮α̂ −→ Ω ′,◮α̂

−→Marker

Similar to the −→Uvar case.

• Case Γ −→ Ω ′

Γ −→ Ω ′, α̂ = τ
−→AddSolved

[Ω]Γ = [Ω ′, α̂ = τ]Γ Expanding Ω

= [Ω ′]Γ By α̂ /∈ dom(Γ)

= [Ω ′]Ω ′ By i.h.

= [Ω ′, α̂ = τ](Ω ′, α̂ = τ) By definition of context application

= [Ω]Ω By Ω = (Ω ′, α̂ = τ)

• Case Γ ′ −→ Ω ′ [Ω ′]τΓ = [Ω ′]τ

Γ ′, α̂ = τΓ −→ Ω ′, α̂ = τ
−→Solved

[Ω]Γ = [Ω ′, α̂ = τ](Γ ′, α̂ = τΓ ) Expanding Ω and Γ

= [Ω ′]Γ ′ By definition of context application

= [Ω ′]Ω ′ By i.h.

= [Ω ′, α̂ = τ](Ω ′, α̂ = τ) By definition of context application

= [Ω]Ω By Ω = (Ω ′, α̂ = τ)

• Case Γ ′ −→ Ω ′

Γ ′, α̂ −→ Ω ′, α̂ = τ
−→Solve

[Ω]Γ = [Ω ′, α̂ = τ](Γ ′, α̂) Expanding Ω and Γ

= [Ω ′]Γ ′ By definition of context application

= [Ω ′]Ω ′ By i.h.

= [Ω ′, α̂ = τ](Ω ′, α̂ = τ) By definition of context application

= [Ω]Ω By Ω = (Ω ′, α̂ = τ)

• Case Γ −→ ∆

Γ, α̂ −→ ∆, α̂
−→Unsolved
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Impossible: Ω cannot have the form ∆, α̂.

• Case Γ −→ ∆

Γ −→ ∆, α̂
−→Add

Impossible: Ω cannot have the form ∆, α̂.

Lemma 50 (Finishing Types).
If Ω ⊢ A and Ω −→ Ω ′ then [Ω]A = [Ω ′]A.

Proof. By Lemma 18 (Substitution Extension Invariance), [Ω ′]A = [Ω ′][Ω]A.

If FEV(C) = ∅ then [Ω ′]C = C.

Since Ω is complete and Ω ⊢ A, we have FEV([Ω]A) = ∅. Therefore [Ω ′][Ω]A = [Ω]A.

Lemma 51 (Finishing Completions).
If Ω −→ Ω ′ then [Ω]Ω = [Ω ′]Ω ′.

Proof. By induction on the given derivation of Ω −→ Ω ′.

Only cases −→ID, −→Var, −→Uvar, −→Solved, −→Marker and −→AddSolved are possible. In all of

these cases, we use the i.h. and the definition of context application; in cases −→Var and −→Solved, we
also use the equality in the premise of the respective rule.

Lemma 52 (Confluence of Completeness).
If ∆1 −→ Ω and ∆2 −→ Ω then [Ω]∆1 = [Ω]∆2.

Proof.

∆1 −→ Ω Given

[Ω]∆1 = [Ω]Ω By Lemma 49 (Stability of Complete Contexts)

∆2 −→ Ω Given

[Ω]∆2 = [Ω]Ω By Lemma 49 (Stability of Complete Contexts)

[Ω]∆1 = [Ω]∆2 By transitivity of equality

H ′.2 Instantiation Soundness

Theorem 10 (Instantiation Soundness).
Given ∆ −→ Ω and [Γ ]B = B and α̂ /∈ FV(B):

(1) If Γ ⊢ α̂ :=
< B ⊣ ∆ then [Ω]∆ ⊢ [Ω]α̂ ≤ [Ω]B.

(2) If Γ ⊢ B =
<: α̂ ⊣ ∆ then [Ω]∆ ⊢ [Ω]B ≤ [Ω]α̂.

Proof. By induction on the given instantiation derivation.

(1) • Case Γ0 ⊢ τ

Γ0, α̂, Γ1︸ ︷︷ ︸
Γ

⊢ α̂ :=
< τ ⊣ Γ0, α̂ = τ, Γ1︸ ︷︷ ︸

∆

InstLSolve

In this case [∆]α̂ = [∆]τ. By reflexivity of subtyping (Lemma 3 (Reflexivity of Declarative Subtyping)),

[Ω]∆ ⊢ [∆]α̂ ≤ [∆]τ.

• Case

Γ [α̂][β̂] ⊢ α̂ :=
< β̂ ⊣ Γ [α̂][β̂ = α̂]

︸ ︷︷ ︸
∆

InstLReach

We have ∆ = Γ [α̂][β̂ = α̂]. Therefore [∆]α̂ = α̂ = [∆]β̂.

By reflexivity of subtyping (Lemma 3 (Reflexivity of Declarative Subtyping)), [Ω]∆ ⊢ [∆]α̂ ≤
[∆]β̂.
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• Case Γ1
︷ ︸︸ ︷

Γ [α̂2, α̂1, α̂ = α̂1 → α̂2] ⊢ A1 =
<: α̂1 ⊣ Γ ′ Γ ′ ⊢ α̂2 :=

< [Γ ′]A2 ⊣ ∆

Γ [α̂] ⊢ α̂ :=
< A1 → A2 ⊣ ∆

InstLArr

[Γ ](A1 → A2) = [Γ1](A1 → A2) α̂ /∈ FV(A1 → A2)

α̂1, α̂2 /∈ FV(A1) ∪ FV(A2) α̂1, α̂2 fresh

Γ ′ ⊢ α̂2 :=
< [Γ ′]A2 ⊣ ∆ Subderivation

Γ ′ −→ ∆ By Lemma 32 (Instantiation Extension)

∆ −→ Ω Given

Γ ′ −→ Ω By Lemma 21 (Transitivity)

Γ1 ⊢ A1 =
<: α̂1 ⊣ Γ ′ Subderivation

[Ω]∆ ⊢ [Ω]A1 ≤ [Ω]α̂1 By i.h. and Lemma 52 (Confluence of Completeness)

Γ ′ ⊢ α̂2 :=
< [Γ ′]A2 ⊣ ∆ Subderivation

[Ω]∆ ⊢ [Ω][Γ ′]α̂2 ≤ [Ω][Γ ′]A2 By i.h.

Γ ′ −→ Ω Above

[Ω]∆ ⊢ [Ω]α̂2 ≤ [Ω]A2 By Lemma 18 (Substitution Extension Invariance)

[Ω]∆ ⊢ [Ω](α̂1 → α̂2) ≤ [Ω]A1 → [Ω]A2 By ≤→ and definition of substitution

Since (α̂ = α̂1 → α̂2) ∈ Γ1 and Γ1 −→ ∆, we know that [Ω]α̂ = [Ω](α̂1 → α̂2).
Therefore [Ω]∆ ⊢ [Ω]α̂ ≤ [Ω](A1 → A2).

• Case
Γ [α̂], β ⊢ α̂ :=< B0 ⊣ ∆,β,∆ ′

Γ [α̂] ⊢ α̂ :=< ∀β. B0 ⊣ ∆
InstLAllR

We have ∆ −→ Ω and [Γ [α̂]](∀β. B0) = ∀β. B0 and α̂ /∈ FV(∀β. B0).

Hence α̂ /∈ FV(B0) and by definition, [Γ [α̂], β]B0 = B0.

By Lemma 48 (Filling Completes), ∆,β,∆ ′ −→ Ω,β, |∆ ′|.
By induction, [Ω,β, |∆ ′|](∆,β,∆ ′) ⊢ [Ω,β, |∆ ′|]α̂ ≤ [Ω,β, |∆ ′|]B0.

Each free variable in α̂ and B0 is declared in (Ω,β), so Ω,β, |∆ ′| behaves as [Ω,β] on α̂ and on
B0, yielding [Ω,β, |∆ ′|](∆,β,∆ ′) ⊢ [Ω,β]α̂ ≤ [Ω,β]B0.

By Lemma 46 (Context Partitioning) and thinning, [Ω,β](∆,β) ⊢ [Ω,β]α̂ ≤ [Ω,β]B0.

By the definition of context application, [Ω]∆,β ⊢ [Ω,β]α̂ ≤ [Ω,β]B0.
By the definition of substitution, [Ω]∆,β ⊢ [Ω]α̂ ≤ [Ω]B0.

Since α̂ is declared to the left of β, we have β /∈ FV([Ω]α̂).

Applying rule ≤∀L gives [Ω]∆ ⊢ [Ω]α̂ ≤ ∀β. [Ω]B0.

(2) • Case Γ0 ⊢ τ

Γ0, α̂, Γ1︸ ︷︷ ︸
Γ

⊢ τ =
<: α̂ ⊣ Γ0, α̂ = τ, Γ1︸ ︷︷ ︸

Γ ′

InstRSolve

Similar to the InstLSolve case.

• Case

Γ [α̂][β̂] ⊢ β̂ =
<: α̂ ⊣ Γ [α̂][β̂ = α̂]

︸ ︷︷ ︸
Γ ′

InstRReach

Similar to the InstLReach case.

• Case
Γ [α̂2, α̂1, α̂ = α̂1 → α̂2] ⊢ α̂1 :=< A1 ⊣ Γ ′ Γ ′ ⊢ [Γ ′]A2 =<: α̂2 ⊣ ∆

Γ [α̂] ⊢ A1 → A2 =
<: α̂ ⊣ ∆

InstRArr

Similar to the InstLArr case.

• Case
Γ [α̂],◮β̂, β̂ ⊢ [β̂/β]B0 =

<: α̂ ⊣ ∆,◮β̂, ∆
′

Γ [α̂] ⊢ ∀β. B0 =
<: α̂ ⊣ ∆

InstRAllL
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[

Γ [α̂]
]

(∀β. B0) = ∀β. B0 Given
[

Γ [α̂]
]

B0 = B0
[

Γ [α̂],◮β̂, β̂
]

[β̂/β]B0 = [β̂/β]B0

∆ −→ Ω Given

∆,◮β̂, ∆
′ −→ Ω,◮β̂, |∆

′| By Lemma 48 (Filling Completes)

α̂ /∈ FV(∀β. B0) Given

α̂ /∈ FV(B0) By definition of FV(−)

Γ [α̂],◮β̂, β̂ ⊢ [β̂/β]B0 =
<: α̂ ⊣ ∆,◮β̂, ∆

′ Subderivation

[Ω,◮β̂, |∆
′|](∆,◮β̂, ∆

′) ⊢ [Ω,◮β̂, |∆
′|][β̂/β]B0 ≤ [Ω,◮β̂, |∆

′|]α̂ By i.h.

Γ [α̂],◮β̂, β̂ −→ ∆,◮β̂, ∆
′ By Lemma 32 (Instantiation Extension)

By Lemma 16 (Declaration Order Preservation), α̂ is declared before ◮β̂, that is, in Ω.

Thus,
[

Ω,◮β̂, |∆
′|
]

α̂ = [Ω]α̂.

By Lemma 23 (Evar Input), we know that ∆ ′ is soft, so by Lemma 47 (Softness Goes Away),
[Ω,◮β̂, |∆

′|](∆,◮β̂, ∆
′) = [Ω,◮β̂](∆,◮β̂) = [Ω]∆.

Applying these equalities to the derivation above gives

[Ω]∆ ⊢
[

Ω,◮β̂, |∆
′|
]

[β̂/β]B0 ≤ [Ω]α̂

By distributivity of substitution,

[Ω]∆ ⊢
[

[Ω,◮β̂, |∆
′|]β̂/β

][

Ω,◮β̂, |∆
′|
]

B0 ≤ [Ω]α̂

Furthermore, [Ω,◮β̂, |∆
′|]B0 = [Ω]B0, since B0’s free variables are either β or in Ω, giving

[Ω]∆ ⊢
[

[Ω,◮β̂, |∆
′|]β̂/β

]

[Ω]B0 ≤ [Ω]α̂

Now apply ≤∀L and the definition of substitution to get [Ω]∆ ⊢ [Ω](∀β. B0) ≤ [Ω]α̂.

H ′.3 Soundness of Subtyping

Theorem 11 (Soundness of Algorithmic Subtyping).
If Γ ⊢ A <: B ⊣ ∆ where [Γ ]A = A and [Γ ]B = B and ∆ −→ Ω then [Ω]∆ ⊢ [Ω]A ≤ [Ω]B.

Proof. By induction on the derivation of Γ ⊢ A <: B ⊣ ∆.

• Case

Γ ′[α]
︸ ︷︷ ︸

Γ

⊢ α <: α ⊣ Γ ′[α]
︸ ︷︷ ︸

∆

<:Var

α ∈ ∆ ∆ = Γ ′[α]

α ∈ [Ω]∆ Follows from definition of context application

[Ω]∆ ⊢ α ≤ α By ≤Var

[Ω]∆ ⊢ [Ω]α ≤ [Ω]α By def. of substitution

• Case <:Unit: Similar to the <:Var case, applying rule ≤Unit instead of ≤Var.

• Case

ΓL, α̂, ΓR ⊢ α̂ <: α̂ ⊣ ΓL, α̂, ΓR
<:Exvar

[Ω]α̂ defined Follows from definition of context application

[Ω]∆ ⊢ [Ω]α̂ Assumption that [Ω]∆ is well-formed

[Ω]∆ ⊢ [Ω]α̂ ≤ [Ω]α̂ By Lemma 3 (Reflexivity of Declarative Subtyping)
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• Case Γ ⊢ B1 <: A1 ⊣ Θ Θ ⊢ [Θ]A2 <: [Θ]B2 ⊣ ∆

Γ ⊢ A1 → A2︸ ︷︷ ︸
A

<: B1 → B2︸ ︷︷ ︸
B

⊣ ∆
<:→

Γ ⊢ B1 <: A1 ⊣ Θ Subderivation

∆ −→ Ω Given

Θ −→ Ω By Lemma 21 (Transitivity)

[Ω]Θ ⊢ [Ω]B1 ≤ [Ω]A1 By i.h.

[Ω]∆ ⊢ [Ω]B1 ≤ [Ω]A1 By Lemma 52 (Confluence of Completeness)

Θ ⊢ [Θ]A2 <: [Θ]B2 ⊣ ∆ Subderivation

[Ω]∆ ⊢ [Ω][Θ]A2 ≤ [Ω][Θ]B2 By i.h.

[Ω][Θ]A2 = [Ω]A2 By Lemma 18 (Substitution Extension Invariance)

[Ω][Θ]B2 = [Ω]B2 By Lemma 18 (Substitution Extension Invariance)

[Ω]∆ ⊢ [Ω]A2 ≤ [Ω]B2 Above equations

[Ω]∆ ⊢ ([Ω]A1) → ([Ω]A2) ≤ ([Ω]B1) → ([Ω]B2) By ≤→

[Ω]∆ ⊢ [Ω](A1 → A2) ≤ [Ω](B1 → B2) By def. of substitution

• Case Γ,◮α̂, α̂ ⊢ [α̂/α]A0 <: B ⊣ ∆,◮α̂, Θ

Γ ⊢ ∀α. A0 <: B ⊣ ∆
<:∀L

Let Ω ′ = (Ω, |◮α̂, Θ|).

Γ,◮α̂, α̂ ⊢ [α̂/α]A0 <: B ⊣ ∆,◮α̂, Θ Subderivation

∆ −→ Ω Given

(∆,◮α̂, Θ) −→ Ω ′ By Lemma 48 (Filling Completes)

[Ω ′](∆,◮α̂, Θ) ⊢ [Ω ′][α̂/α]A0 ≤ [Ω ′]B By i.h.

[Ω ′](∆,◮α̂, Θ) ⊢ [Ω ′][α̂/α]A0 ≤ [Ω]B By [Ω ′]B = [Ω]B (Lemma 45 (Substitution Stability))

[Ω ′](∆,◮α̂, Θ) ⊢
[

[Ω ′]α̂/α
]

[Ω ′]A0 ≤ [Ω]B By distributivity of substitution

Γ,◮α̂, α̂ ⊢ α̂ By EvarWF

Γ,◮α̂, α̂ −→ ∆,◮α̂, Θ By Lemma 33 (Subtyping Extension)

∆,◮α̂, Θ ⊢ α̂ By Lemma 25 (Extension Weakening)

(∆,◮α̂, Θ) −→ Ω ′ Above

[Ω ′]Ω ′ ⊢ [Ω ′]α̂ By Lemma 44 (Substitution for Well-Formedness)

[Ω ′](∆,◮α̂, Θ) ⊢ [Ω ′]α̂ By Lemma 49 (Stability of Complete Contexts)

[Ω ′](∆,◮α̂, Θ) ⊢ ∀α. [Ω ′]A0 ≤ [Ω]B By ≤∀L

[Ω ′](∆,◮α̂, Θ) ⊢ ∀α. [Ω,α]A0 ≤ [Ω]B By Lemma 45 (Substitution Stability)

[Ω]∆ ⊢ ∀α. [Ω,α]A0 ≤ [Ω]B By Lemma 46 (Context Partitioning) and thinning

[Ω]∆ ⊢ ∀α. [Ω]A0 ≤ [Ω]B By def. of substitution

[Ω]∆ ⊢ [Ω](∀α. A0) ≤ [Ω]B By def. of substitution

• Case Γ, α ⊢ A <: B0 ⊣ ∆,α,Θ

Γ ⊢ A <: ∀α. B0 ⊣ ∆
<:∀R
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Γ, α ⊢ A <: B0 ⊣ ∆,α,Θ Subderivation

Let ΩZ = |Θ| .

Let Ω ′ = (Ω,α,ΩZ).

(∆,α,Θ) −→ Ω ′ By Lemma 48 (Filling Completes)

[Ω ′](∆,α,Θ) ⊢ [Ω ′]A ≤ [Ω ′]B0 By i.h.

[Ω,α](∆,α) ⊢ [Ω,α]A ≤ [Ω,α]B0 By Lemma 45 (Substitution Stability)

[Ω,α](∆,α) ⊢ [Ω]A ≤ [Ω]B0 By def. of substitution

[Ω]∆ ⊢ [Ω]A ≤ ∀α. [Ω]B0 By ≤∀R

[Ω]∆ ⊢ [Ω]A ≤ [Ω](∀α. B0) By def. of substitution

• Case
α̂ /∈ FV(B) Γ ⊢ α̂ :=

< B ⊣ ∆

Γ︸︷︷︸
Γ0[α̂]

⊢ α̂ <: B ⊣ ∆
<:InstantiateL

Γ ⊢ α̂ :=< B ⊣ ∆ Subderivation

[Ω]∆ ⊢ [Ω]α̂ ≤ [Ω]B By Theorem 10

• Case <:InstantiateR: Similar to the case for <:InstantiateL.

Corollary 53 (Soundness, Pretty Version). If Ψ ⊢ A <: B ⊣ ∆, then Ψ ⊢ A ≤ B.

Proof. By reflexivity (Lemma 20 (Reflexivity)), Ψ −→ Ψ.
Since Ψ has no existential variables, it is a complete context Ω.

By Theorem 11, [Ψ]Ψ ⊢ [Ψ]A ≤ [Ψ]B.

Since Ψ has no existential variables, [Ψ]Ψ = Ψ, and [Ψ]A = A, and [Ψ]B = B.
Therefore Ψ ⊢ A ≤ B.

I ′ Typing Extension

Lemma 54 (Typing Extension).
If Γ ⊢ e ⇐ A ⊣ ∆ or Γ ⊢ e ⇒ A ⊣ ∆ or Γ ⊢ A • e ⇒⇒ C ⊣ ∆ then Γ −→ ∆.

Proof. By induction on the given derivation.

• Cases Var, 1I, 1I⇒:

Since ∆ = Γ , the result follows by Lemma 20 (Reflexivity).

• Case Γ ⊢ e ⇒ B ⊣ Θ Θ ⊢ [Θ]B <: [Θ]A ⊣ ∆

Γ ⊢ e ⇐ A ⊣ ∆
Sub

Γ −→ Θ By i.h.

Θ −→ ∆ By Lemma 33 (Subtyping Extension)

Z Γ −→ ∆ By Lemma 21 (Transitivity)

• Case Γ ⊢ A Γ ⊢ e ⇐ A ⊣ ∆

Γ ⊢ (e : A) ⇒ A ⊣ ∆
Anno

Z Γ −→ ∆ By i.h.

• Case Γ, α ⊢ e ⇐ A0 ⊣ ∆,α,Θ

Γ ⊢ e ⇐ ∀α. A0 ⊣ ∆
∀I

Γ, α −→ ∆,α,Θ By i.h.

Z Γ −→ ∆ By Lemma 24 (Extension Order) (i)
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• Case Γ, α̂ ⊢ [α̂/α]A0 • e ⇒⇒ C ⊣ ∆

Γ ⊢ ∀α. A0 • e ⇒⇒ C ⊣ ∆
∀App

Γ, α̂ −→ ∆ By i.h.

Γ −→ Γ, α̂ By −→Add

Z Γ −→ ∆ By Lemma 21 (Transitivity)

• Case Γ, x : A1 ⊢ e ⇐ A2 ⊣ ∆, x : A1, Θ

Γ ⊢ λx. e ⇐ A1 → A2 ⊣ ∆
→I

Γ, x : A1 −→ ∆, x : A1, Θ By i.h.

Z Γ −→ ∆ By Lemma 24 (Extension Order) (v)

• Case Γ ⊢ e1 ⇒ B ⊣ Θ Θ ⊢ [Θ]B • e2 ⇒⇒ A ⊣ ∆

Γ ⊢ e1 e2 ⇒ A ⊣ ∆
→E

By the i.h. on each premise, then Lemma 21 (Transitivity).

• Case
Γ, α̂, β̂, x : α̂ ⊢ e ⇐ β̂ ⊣ ∆, x : α̂, Θ

Γ ⊢ λx. e ⇒ α̂ → β̂ ⊣ ∆
→I⇒

Γ, α̂, β̂, x : α̂ −→ ∆, x : α̂, Θ By i.h.

Γ, α̂, β̂ −→ ∆ By Lemma 24 (Extension Order) (v)

Γ −→ Γ, α̂, β̂ By −→Add (twice)

Z Γ −→ ∆ By Lemma 21 (Transitivity)

• Case Γ ⊢ e ⇐ A ⊣ ∆

Γ ⊢ A → C • e ⇒⇒ C ⊣ ∆
→App

Z Γ −→ ∆ By i.h.

• Case Γ [α̂2, α̂1, α̂ = α̂1 → α̂2] ⊢ e ⇐ α̂1 ⊣ ∆

Γ [α̂] ⊢ α̂ • e ⇒⇒ α̂2 ⊣ ∆
α̂App

Γ [α̂2, α̂1, α̂ = α̂1 → α̂2] −→ ∆ By i.h.

Γ [α̂] −→ Γ [α̂2, α̂1, α̂ = α̂1 → α̂2] By Lemma 27 (Solved Variable Addition for Extension)

then Lemma 29 (Parallel Admissibility) (ii)

Z Γ −→ ∆ By Lemma 21 (Transitivity)

J ′ Soundness of Typing

Theorem 12 (Soundness of Algorithmic Typing). Given ∆ −→ Ω:

(i) If Γ ⊢ e ⇐ A ⊣ ∆ then [Ω]∆ ⊢ e ⇐ [Ω]A.

(ii) If Γ ⊢ e ⇒ A ⊣ ∆ then [Ω]∆ ⊢ e ⇒ [Ω]A.

(iii) If Γ ⊢ A • e ⇒⇒ C ⊣ ∆ then [Ω]∆ ⊢ [Ω]A • e ⇒⇒ [Ω]C.

Proof. By induction on the given algorithmic typing derivation.

• Case (x : A) ∈ Γ

Γ ⊢ x ⇒ A ⊣ Γ
Var
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(x : A) ∈ Γ Premise

(x : A) ∈ ∆ By Γ = ∆

∆ −→ Ω Given

(x : [Ω]A) ∈ [Ω]Γ By Lemma 42 (Variable Preservation)

Z [Ω]Γ ⊢ x ⇒ [Ω]A By DeclVar

• Case Γ ⊢ e ⇒ A ⊣ Θ Θ ⊢ [Θ]A <: [Θ]B ⊣ ∆

Γ ⊢ e ⇐ B ⊣ ∆
Sub

Γ ⊢ e ⇒ A ⊣ Θ Subderivation

Θ ⊢ [Θ]A <: [Θ]B ⊣ ∆ Subderivation

Θ −→ ∆ By Lemma 54 (Typing Extension)

∆ −→ Ω Given

Θ −→ Ω By Lemma 21 (Transitivity)

[Ω]Θ ⊢ e ⇒ [Ω]A By i.h.

[Ω]Θ = [Ω]∆ By Lemma 52 (Confluence of Completeness)

[Ω]∆ ⊢ e ⇒ [Ω]A By above equalities

Θ ⊢ [Θ]A <: [Θ]B ⊣ ∆ Subderivation

[Ω]∆ ⊢ [Ω][Θ]A ≤ [Ω][Θ]B By Theorem 11

[Ω][Θ]A = [Ω]A By Lemma 18 (Substitution Extension Invariance)

[Ω][Θ]B = [Ω]B By Lemma 18 (Substitution Extension Invariance)

[Ω]∆ ⊢ [Ω]A ≤ [Ω]B By above equalities

Z [Ω]∆ ⊢ e ⇐ [Ω]B By DeclSub

• Case Γ ⊢ A Γ ⊢ e0 ⇐ A ⊣ ∆

Γ ⊢ (e0 : A) ⇒ A ⊣ ∆
Anno

Γ ⊢ e0 ⇐ A ⊣ ∆ Subderivation

[Ω]∆ ⊢ e0 ⇐ [Ω]A By i.h.

Γ ⊢ A Subderivation

Γ −→ ∆ By Lemma 54 (Typing Extension)

∆ −→ Ω Given

Γ −→ Ω By Lemma 21 (Transitivity)

Ω ⊢ A By Lemma 25 (Extension Weakening)

[Ω]Ω ⊢ [Ω]A By Lemma 44 (Substitution for Well-Formedness)

[Ω]∆ = [Ω]Ω By Lemma 49 (Stability of Complete Contexts)

[Ω]∆ ⊢ [Ω]A By above equality

[Ω]∆ ⊢ (e0 : [Ω]A) ⇒ [Ω]A By DeclAnno

A contains no existential variables Assumption about source programs

[Ω]A = A From definition of substitution

Z [Ω]∆ ⊢ (e0 : A) ⇒ [Ω]A By above equality

• Case

Γ ⊢ () ⇐ 1 ⊣ Γ︸︷︷︸
∆

1I

[Ω]∆ ⊢ () ⇐ 1 By Decl1I

Z [Ω]∆ ⊢ () ⇐ [Ω]1 By definition of substitution

• Case Γ, x : A1 ⊢ e0 ⇐ A2 ⊣ ∆, x : A1, Θ

Γ ⊢ λx. e ⇐ A1 → A2 ⊣ ∆
→I
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∆ −→ Ω Given

∆, x : A1 −→ Ω, x : [Ω]A1 By −→Var

Γ, x : A1 −→ ∆, x : A1, Θ By Lemma 54 (Typing Extension)

Θ is soft By Lemma 24 (Extension Order) (v)

(with ΓR = ·, which is soft)

∆, x : A1, Θ︸ ︷︷ ︸
∆ ′

−→ Ω, x : [Ω]A1, |Θ|
︸ ︷︷ ︸

Ω ′

By Lemma 48 (Filling Completes)

Γ, x : A1 ⊢ e0 ⇐ A2 ⊣ ∆ ′ Subderivation

[Ω ′]∆ ′ ⊢ e0 ⇐ [Ω ′]A2 By i.h.

[Ω ′]A2 = [Ω]A2 By Lemma 45 (Substitution Stability)

[Ω ′]∆ ′ ⊢ e0 ⇐ [Ω]A2 By above equality

∆, x : A1, Θ︸ ︷︷ ︸
∆ ′

−→ Ω, x : [Ω]A1, |Θ|
︸ ︷︷ ︸

Ω ′

Above

Θ is soft Above

[Ω ′]∆ ′ = [Ω]∆, x : [Ω]A1 By Lemma 47 (Softness Goes Away)

[Ω]∆, x : [Ω]A1 ⊢ e0 ⇐ [Ω]A2 By above equality

[Ω]∆ ⊢ λx. e0 ⇐ ([Ω]A1) → ([Ω]A2) By Decl→I

Z [Ω]∆ ⊢ λx. e0 ⇐ [Ω](A1 → A2) By definition of substitution

• Case Γ ⊢ e1 ⇒ A1 ⊣ Θ Θ ⊢ A1 • e2 ⇒⇒ A2 ⊣ ∆

Γ ⊢ e1 e2 ⇒ A2 ⊣ ∆
→E

Γ ⊢ e1 ⇒ A1 ⊣ Θ Subderivation

Θ ⊢ A1 <: B ⊣ ∆ Subderivation

Θ −→ ∆ By Lemma 54 (Typing Extension)

∆ −→ Ω Given

Θ −→ Ω By Lemma 21 (Transitivity)

[Ω]Θ ⊢ e1 ⇒ [Ω]A1 By i.h.

[Ω]Θ = [Ω]∆ By Lemma 52 (Confluence of Completeness)

[Ω]∆ ⊢ e1 ⇒ [Ω]A1 By above equality

Θ ⊢ A1 • e2 ⇒⇒ A2 ⊣ ∆ Subderivation

∆ −→ Ω Given

[Ω]∆ ⊢ [Ω]A1 • e2 ⇒⇒ [Ω]A2 By i.h.

Z [Ω]∆ ⊢ e1e2 ⇒ [Ω]A2 By Decl→E

• Case Γ, α ⊢ e ⇐ A0 ⊣ ∆,α,Θ

Γ ⊢ e ⇐ ∀α. A0 ⊣ ∆
∀I

(Similar to →I, using a different subpart of Lemma 24 (Extension Order) and applying Decl∀I;
written out anyway.)
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∆ −→ Ω Given

∆,α −→ Ω,α By −→Uvar

Γ, α −→ ∆,α,Θ By Lemma 54 (Typing Extension)

Θ is soft By Lemma 24 (Extension Order) (i) (with ΓR = ·, which is soft)

∆,α,Θ︸ ︷︷ ︸
∆ ′

−→ Ω,α, |Θ|
︸ ︷︷ ︸

Ω ′

By Lemma 48 (Filling Completes)

Γ, α ⊢ e ⇐ A0 ⊣ ∆ ′ Subderivation

[Ω ′]∆ ′ ⊢ e ⇐ [Ω ′]A0 By i.h.

[Ω ′]A0 = [Ω]A0 By Lemma 45 (Substitution Stability)

[Ω ′]∆ ′ ⊢ e ⇐ [Ω]A0 By above equality

∆,α,Θ︸ ︷︷ ︸
∆ ′

−→ Ω,α, |Θ|
︸ ︷︷ ︸

Ω ′

Above

Θ is soft Above

[Ω ′]∆ ′ = [Ω]∆,α By Lemma 47 (Softness Goes Away)

[Ω]∆,α ⊢ e ⇐ [Ω]A0 By above equality

[Ω]∆ ⊢ e ⇐ ∀α. [Ω]A0 By Decl∀I

Z [Ω]∆ ⊢ e ⇐ [Ω](∀α. A0) By definition of substitution

• Case Γ, α̂ ⊢ [α̂/α]A0 • e ⇒⇒ C ⊣ ∆

Γ ⊢ ∀α. A0 • e ⇒⇒ C ⊣ ∆
∀App

Γ, α̂ ⊢ [α̂/α]A0 • e ⇒⇒ C ⊣ ∆ Subderivation

∆ −→ Ω Given

[Ω]∆ ⊢ [Ω][α̂/α]A0 • e ⇒⇒ [Ω]C By i.h.

[Ω]∆ ⊢
[

[Ω]α̂ / α
]

[Ω]A0 • e ⇒⇒ [Ω]C By distributivity of substitution

Γ, α̂ −→ ∆ By Lemma 54 (Typing Extension)

Γ, α̂ −→ Ω By Lemma 21 (Transitivity)

Γ, α̂ ⊢ α̂ By EvarWF

Ω ⊢ α̂ By Lemma 25 (Extension Weakening)

[Ω]Ω ⊢ [Ω]α̂ By Lemma 44 (Substitution for Well-Formedness)

[Ω]Ω = [Ω]∆ By Lemma 49 (Stability of Complete Contexts)

[Ω]∆ ⊢ [Ω]α̂ By above equality

[Ω]∆ ⊢ ∀α. [Ω]A0 • e ⇒⇒ [Ω]C By Decl∀App

Z [Ω]∆ ⊢ [Ω](∀α. A0) • e ⇒⇒ [Ω]C By definition of substitution

• Case Γ ⊢ e ⇐ B ⊣ ∆

Γ ⊢ B → C • e ⇒⇒ C ⊣ ∆
→App

Γ ⊢ e ⇐ B ⊣ ∆ Subderivation

∆ −→ Ω Given

[Ω]∆ ⊢ e ⇐ [Ω]B By i.h.

[Ω]∆ ⊢ ([Ω]B) → ([Ω]C) • e ⇒⇒ [Ω]C By Decl→App

Z [Ω]∆ ⊢ [Ω](B → C) • e ⇒⇒ [Ω]C By definition of substitution

• Case Γ0[α̂2, α̂1, α̂ = α̂1 → α̂2] ⊢ e ⇐ α̂1 ⊣ ∆

Γ0[α̂]
︸ ︷︷ ︸

Γ

⊢ α̂ • e ⇒⇒ α̂2 ⊣ ∆
α̂App
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Γ ′

︷ ︸︸ ︷

Γ0[α̂2, α̂1, α̂ = α̂1 → α̂2] ⊢ e ⇐ α̂1 ⊣ ∆ Subderivation

∆ −→ Ω Given

[Ω]∆ ⊢ e ⇐ [Ω]α̂1 By i.h.

[Ω]∆ ⊢ ([Ω]α̂1) → ([Ω]α̂2) • e ⇒⇒ [Ω]α̂2 By Decl→App

Γ ′ −→ ∆ By Lemma 54 (Typing Extension)

∆ −→ Ω Given

Γ ′ −→ Ω By Lemma 21 (Transitivity)

[Γ ′]α̂ = [Γ ′](α̂1 → α̂2) By definition of [Γ ′](−)

[Ω][Γ ′]α̂ = [Ω][Γ ′](α̂1 → α̂2) Applying Ω to both sides

[Ω]α̂ = [Ω](α̂1 → α̂2) By Lemma 18 (Substitution Extension Invariance), twice

= ([Ω]α̂1) → ([Ω]α̂2) By definition of substitution

Z [Ω]∆ ⊢ [Ω]α̂ • e ⇒⇒ [Ω]α̂2 By above equality

• Case

Γ ⊢ () ⇒ 1 ⊣ Γ︸︷︷︸
∆

1I⇒

Z [Ω]∆ ⊢ () ⇒ [Ω]1 By Decl1I⇒ and definition of substitution

• Case
Γ, α̂, β̂, x : α̂ ⊢ e0 ⇐ β̂ ⊣ ∆, x : α̂, Θ

Γ ⊢ λx. e0 ⇒ α̂ → β̂ ⊣ ∆
→I⇒

Γ, α̂, β̂, x : α̂ −→ ∆, x : α̂, Θ By Lemma 54 (Typing Extension)

Θ is soft By Lemma 24 (Extension Order) (v) (with ΓR = ·, which is soft)

Γ, α̂, β̂ −→ ∆ ′′

∆ −→ Ω Given

∆, x : α̂ −→ Ω, x : [Ω]α̂ By −→Var

∆, x : α̂, Θ︸ ︷︷ ︸
∆ ′

−→ Ω, x : [Ω]α̂, |Θ|
︸ ︷︷ ︸

Ω ′

By Lemma 48 (Filling Completes)

Γ, α̂, β̂, x : α̂ ⊢ e ⇐ β̂ ⊣ ∆, x : α̂, Θ Subderivation

[Ω ′]∆ ′ ⊢ e0 ⇐ [Ω ′]β̂ By i.h.

[Ω ′]β̂ =
[

Ω, x : [Ω]α̂
]

β̂ By Lemma 45 (Substitution Stability)

= [Ω]β̂ By definition of substitution

[Ω ′]∆ ′ =
[

Ω, x : [Ω]α̂
](

∆, x : α̂
)

By Lemma 47 (Softness Goes Away)

= [Ω]∆, x : [Ω]α̂ By definition of context substitution

[Ω]∆, x : [Ω]α̂ ⊢ e0 ⇐ [Ω]β̂ By above equalities

Γ, α̂, β̂ −→ ∆ Above

Γ, α̂, β̂ −→ Ω By Lemma 21 (Transitivity)

Γ, α̂, β̂ ⊢ α̂ By EvarWF

Ω ⊢ α̂ By Lemma 25 (Extension Weakening)

[Ω]∆ ⊢ [Ω]α̂ By Lemma 44 (Substitution for Well-Formedness)

and Lemma 49 (Stability of Complete Contexts)

[Ω]∆ ⊢ [Ω]β̂ By similar reasoning

[Ω]∆ ⊢ ([Ω]α̂) → ([Ω]β̂) By DeclArrowWF

[Ω]α̂, [Ω]β̂ monotypes Ω predicative

[Ω]∆ ⊢ λx. e0 ⇒ ([Ω]α̂) → ([Ω]β̂) By Decl→I⇒

Z [Ω]∆ ⊢ λx. e0 ⇒ [Ω](α̂ → β̂) By definition of substitution
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K ′ Completeness

K ′.1 Instantiation Completeness

Theorem 13 (Instantiation Completeness).
Given Γ −→ Ω and A = [Γ ]A and α̂ ∈ unsolved(Γ) and α̂ /∈ FV(A):

(1) If [Ω]Γ ⊢ [Ω]α̂ ≤ [Ω]A

then there are ∆, Ω ′ such that Ω −→ Ω ′ and ∆ −→ Ω ′ and Γ ⊢ α̂ :=
< A ⊣ ∆.

(2) If [Ω]Γ ⊢ [Ω]A ≤ [Ω]α̂

then there are ∆, Ω ′ such that Ω −→ Ω ′ and ∆ −→ Ω ′ and Γ ⊢ A =<: α̂ ⊣ ∆.

Proof. By mutual induction on the given declarative subtyping derivation.

(1) We have [Ω]Γ ⊢ [Ω]α̂ ≤ [Ω]A. We now case-analyze the shape of A.

• Case A = β̂:

It is given that α̂ /∈ FV(β̂), so α̂ 6= β̂.
Since A = β̂, we have [Ω]Γ ⊢ [Ω]α̂ ≤ [Ω]β̂.

Since Ω is predicative, [Ω]α̂ = τ1 and [Ω]β̂ = τ2, so we have [Ω]Γ ⊢ τ1 ≤ τ2.
By Lemma 9 (Monotype Equality), τ1 = τ2.

We have A = β̂ and [Γ ]A = A, so [Γ ]β̂ = β̂. Thus β̂ ∈ unsolved(Γ).

Let Ω ′ be Ω. By Lemma 20 (Reflexivity), Ω −→ Ω.
Now consider whether α̂ is declared to the left of β̂, or vice versa.

– Case Γ = (Γ0, α̂, Γ1, β̂, Γ2):

Let ∆ be Γ0, α̂, Γ1, β̂ = α̂, Γ2.

By rule InstLReach, Γ ⊢ α̂ :=
< β̂ ⊣ ∆.

It remains to show that ∆ −→ Ω.

We have [Ω]α̂ = [Ω]β̂. Then by Lemma 30 (Parallel Extension Solution), ∆ −→ Ω.

– Case (Γ = Γ0, β̂, Γ1, α̂, Γ2):

Let ∆ be Γ0, β̂, Γ1, α̂ = β̂, Γ2.

By rule InstLSolve, Γ ⊢ α̂ :=
< β̂ ⊣ ∆.

It remains to show that ∆ −→ Ω.

We have [Ω]β̂ = [Ω]α̂. Then by Lemma 30 (Parallel Extension Solution), ∆ −→ Ω.

• Case A = α:

Since A = α, we have [Ω]Γ ⊢ [Ω]α̂ ≤ [Ω]α.

Since [Ω]α = α, we have [Ω]Γ ⊢ [Ω]α̂ ≤ α.

By inversion, ≤Var was used, so [Ω]α̂ = α; therefore, since Ω is well-formed, α is declared to
the left of α̂ in Ω.

We have Γ −→ Ω.
By Lemma 17 (Reverse Declaration Order Preservation), we know that α is declared to the left

of α̂ in Γ ; that is, Γ = Γ0[α][α̂].

Let ∆ = Γ0[α][α̂ = α] and Ω ′ = Ω.
By InstLSolve, Γ0[α][α̂] ⊢ α̂ :=

< α ⊣ ∆.

By Lemma 30 (Parallel Extension Solution), Γ0[α][α̂ = α] −→ Ω.

• Case A = A1 → A2:

By the definition of substitution, [Ω]A = ([Ω]A1) → ([Ω]A2).
Therefore [Ω]Γ ⊢ [Ω]α̂ ≤ ([Ω]A1) → ([Ω]A2).

Since we have an arrow as the supertype, only ≤∀L or ≤→ could have been used, and the

subtype [Ω]α̂ must be either a quantifier or an arrow. But Ω is predicative, so [Ω]α̂ cannot be
a quantifier. Therefore, it is an arrow: [Ω]α̂ = τ1 → τ2, and ≤→ concluded the derivation.

Inverting ≤→ gives [Ω]Γ ⊢ [Ω]A2 ≤ τ2 and [Ω]Γ ⊢ τ1 ≤ [Ω]A1.

Since α̂ ∈ unsolved(Γ), we know that Γ has the form Γ0[α̂].

By Lemma 28 (Unsolved Variable Addition for Extension) twice, inserting unsolved variables
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α̂2 and α̂1 into the middle of the context extends it, that is: Γ0[α̂] −→ Γ0[α̂2, α̂1, α̂].

Clearly, α̂1 → α̂2 is well-formed in (. . . , α̂2, α̂1), so by Lemma 26 (Solution Admissibility for Extension),
solving α̂ extends the context: Γ0[α̂2, α̂1, α̂] −→ Γ0[α̂2, α̂1, α̂ = α̂1 → α̂2]. Then by Lemma 21

(Transitivity), Γ0[α̂] −→ Γ0[α̂2, α̂1, α̂ = α̂1 → α̂2].

Since α̂ ∈ unsolved(Γ) and Γ −→ Ω, we know that Ω has the form Ω0[α̂ = τ0]. To show that we

can extend this context, we apply Lemma 27 (Solved Variable Addition for Extension) twice to
introduce α̂2 = τ2 and α̂1 = τ1, and then Lemma 26 (Solution Admissibility for Extension) to

overwrite τ0:

Ω0[α̂ = τ0]
︸ ︷︷ ︸

Ω

−→ Ω0[α̂2 = τ2, α̂1 = τ1, α̂ = α̂1 → α̂2]

We have Γ −→ Ω, that is,

Γ0[α̂] −→ Ω0[α̂ = τ0]

By Lemma 29 (Parallel Admissibility) (i) twice, inserting unsolved variables α̂2 and α̂1 on both

contexts in the above extension preserves extension:

Γ0[α̂2, α̂1, α̂] −→ Ω0[α̂2 = τ2, α̂1 = τ1, α̂ = τ0] By Lemma 29 (Parallel Admissibility) (ii) twice

Γ0[α̂2, α̂1, α̂ = α̂1→α̂2]
︸ ︷︷ ︸

Γ1

−→ Ω0[α̂2 = τ2, α̂1 = τ1, α̂ = α̂1→α̂2]
︸ ︷︷ ︸

Ω1

By Lemma 31 (Parallel Variable Update)

Since α̂ /∈ FV(A), it follows that [Γ1]A = [Γ ]A = A.

Therefore α̂1 /∈ FV(A1) and α̂1, α̂2 /∈ FV(A2).

By Lemma 51 (Finishing Completions) and Lemma 50 (Finishing Types), [Ω1]Γ1 = [Ω]Γ and
[Ω1]α̂1 = τ1.

By i.h., there are ∆2 and Ω2 such that Γ1 ⊢ A1 =
<: α̂1 ⊣ ∆2 and ∆2 −→ Ω2 and Ω1 −→ Ω2.

Next, note that [∆2][∆2]A2 = [∆2]A2.

By Lemma 34 (Left Unsolvedness Preservation), we know that α̂2 ∈ unsolved(∆2).
By Lemma 35 (Left Free Variable Preservation), we know that α̂2 /∈ FV([∆2]A2).

By Lemma 21 (Transitivity), Ω −→ Ω2.

We know [Ω2]∆2 = [Ω]Γ because:

[Ω2]∆2 = [Ω2]Ω2 By Lemma 49 (Stability of Complete Contexts)

= [Ω]Ω By Lemma 51 (Finishing Completions)

= [Ω]Γ By Lemma 49 (Stability of Complete Contexts)

By Lemma 50 (Finishing Types), we know that [Ω2]α̂2 = [Ω1]α̂2 = τ2.

By Lemma 50 (Finishing Types), we know that [Ω2]A2 = [Ω]A2.
Hence we know that [Ω2]∆2 ⊢ [Ω2]α̂2 ≤ [Ω2]A2.

By i.h., we have ∆ and Ω ′ such that ∆2 ⊢ α̂2 :=
< [∆2]A2 ⊣ ∆ and Ω2 −→ Ω ′ and ∆ −→ Ω ′.

By rule InstLArr, Γ ⊢ α̂ :=
< A ⊣ ∆.

By Lemma 21 (Transitivity), Ω −→ Ω ′.

• Case A = 1:

We have A = 1, so [Ω]Γ ⊢ [Ω]α̂ ≤ [Ω]1.

Since [Ω]1 = 1, we have [Ω]Γ ⊢ [Ω]α̂ ≤ 1.

The only declarative subtyping rules that can have 1 as the supertype in the conclusion are ≤∀L

and ≤Unit. However, since Ω is predicative, [Ω]α̂ cannot be a quantifier, so ≤∀L cannot have

been used. Hence ≤Unit was used and [Ω]α̂ = 1.
Let ∆ = Γ [α̂ = 1] and Ω ′ = Ω.

By InstLSolve, Γ [α̂] ⊢ α̂ :=
< 1 ⊣ ∆.

By Lemma 30 (Parallel Extension Solution), Γ [α̂ = 1] −→ Ω.

• Case A = ∀β. B:

We have [Ω]Γ ⊢ [Ω]α̂ ≤ [Ω](∀β. B).
By definition of substitution, [Ω](∀β. B) = ∀β. [Ω]B, so we have [Ω]Γ ⊢ [Ω]α̂ ≤ ∀β. [Ω]B.

The only declarative subtyping rules that can have a quantifier as supertype are ≤∀L and ≤∀R.

However, since Ω is predicative, [Ω]α̂ cannot be a quantifier, so ≤∀L cannot have been used.
Hence ≤∀R was used, and we have a subderivation of [Ω]Γ, β ⊢ [Ω]α̂ ≤ [Ω]B.
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Let Ω1 = (Ω,β) and Γ1 = (Γ, β).

By −→Uvar, Γ1 −→ Ω1.
By the definition of substitution, [Ω1]B = [Ω]B and [Ω1]α̂ = [Ω]α̂.

Note that [Ω1]Γ1 = [Ω]Γ, β.

Since α̂ ∈ unsolved(Γ), we have α̂ ∈ unsolved(Γ1).
Since α̂ /∈ FV(A) and A = ∀β. B, we have α̂ /∈ FV(B).

By i.h., there are Ω2 and ∆2 such that Γ, β ⊢ α̂ :=
< B ⊣ ∆2 and ∆2 −→ Ω2 and Ω1 −→ Ω2.

By Lemma 32 (Instantiation Extension), Γ1 −→ ∆2, that is, Γ, β −→ ∆2.

Therefore by Lemma 24 (Extension Order), ∆2 = (∆ ′, β,Ω ′′) where Γ −→ ∆ ′.

By equality, we know ∆ ′, β, ∆ ′′ −→ Ω2.
By Lemma 24 (Extension Order), Ω2 = (Ω ′, β,Ω ′′) where Z ∆ ′ −→ Ω ′.

We have Ω1 −→ Ω2, that is, Ω,β −→ Ω ′, β,Ω ′′, so Lemma 24 (Extension Order) gives

Z Ω −→ Ω ′.
By rule InstLAllR, Γ ⊢ α̂ :=

< ∀β. B ⊣ ∆ ′.

(2) [Ω]Γ ⊢ [Ω]A ≤ [Ω]α̂

These cases are mostly symmetric. The one exception is the one connective that is not treated

symmetrically in the declarative subtyping rules:

• Case A = ∀α. B:

Since A = ∀α. B, we have [Ω]Γ ⊢ [Ω]∀β. B ≤ [Ω]α̂.

By symmetric reasoning to the previous case (the last case of part (1) above), ≤∀L must have
been used, with a subderivation of [Ω]Γ ⊢ [Ω]α̂ ≤ [τ/β][Ω]B.

Since [Ω]Γ ⊢ τ, the type τ has no existential variables and is therefore invariant under substi-
tution: τ = [Ω]τ. Therefore

[

τ/β
][

Ω
]

B =
[

[Ω]τ/β
][

Ω
]

B.

By distributivity of substitution, this is
[

Ω
]

[τ/β]B. Interposing β̂, this is equal to [Ω][τ/β̂][β̂/β]B.

Therefore [Ω]Γ ⊢ [Ω]α̂ ≤ [Ω][τ/β̂][β̂/β]B.
Let Ω1 be Ω,◮β̂, β̂ = τ and let Γ1 be Γ,◮β̂, β̂.

– By the definition of context application, [Ω1]Γ1 = [Ω]Γ .

– From the definition of substitution, [Ω1]α̂ = [Ω]α̂.

– It follows from the definition of substitution that [Ω][τ/β̂]C = [Ω1]C for all C. Therefore

[Ω][τ/β̂][β̂/β]B = [Ω1][β̂/β]B.

Applying these three equalities, [Ω1]Γ1 ⊢ [Ω1]α̂ ≤ [Ω1][β̂/β]B.
By the definition of substitution, [Γ,◮β̂, β̂]B = [Γ ]B = B, so α̂ /∈ FV([Γ1]B).

Since α̂ ∈ unsolved(Γ), we have α̂ ∈ unsolved(Γ1).

By i.h., there exist ∆2 and Ω2 such that Γ1 ⊢ B =
<: α̂ ⊣ ∆2 and Ω1 −→ Ω2 and ∆2 −→ Ω2.

By Lemma 32 (Instantiation Extension), Γ1 −→ ∆2, which is, Γ,◮β̂, β̂ −→ ∆2.
By Lemma 24 (Extension Order), ∆2 = (∆ ′,◮β̂, ∆

′′) and Γ −→ ∆ ′.

By equality, ∆ ′,◮β̂, ∆
′′ −→ Ω2.

By Lemma 24 (Extension Order), Ω2 = (Ω ′,◮β̂,Ω
′′) and Z ∆ ′ −→ Ω ′.

By equality, Ω,◮β̂, β̂ = τ −→ Ω ′,◮β̂,Ω
′′.

Z By Lemma 24 (Extension Order), Ω −→ Ω ′.

By InstRAllL, Γ ⊢ ∀β. B =
<: α̂ ⊣ ∆ ′.
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K ′.2 Completeness of Subtyping

Theorem 14 (Generalized Completeness of Subtyping). If Γ −→ Ω and Γ ⊢ A and Γ ⊢ B and [Ω]Γ ⊢
[Ω]A ≤ [Ω]B then there exist ∆ and Ω ′ such that ∆ −→ Ω ′ and Ω −→ Ω ′ and Γ ⊢ [Γ ]A <: [Γ ]B ⊣ ∆.

Proof. By induction on the derivation of [Ω]Γ ⊢ [Ω]A ≤ [Ω]B.

We distinguish cases of [Γ ]B and [Γ ]A that are impossible , fully written out, and similar to fully-

written-out cases.

[Γ ]B

∀β. B ′ 1 α β̂ B1 → B2

∀α. A ′ 1 (B poly) 2.Poly 2.Poly 2.Poly 2.Poly

1 1 (B poly) 2.Units impossible 2.BEx.Unit impossible

[Γ ]A α 1 (B poly) impossible 2.Uvars 2.BEx.Uvar impossible

α̂ 1 (B poly) 2.AEx.Unit 2.AEx.Uvar
2.AEx.SameEx
2.AEx.OtherEx

2.AEx.Arrow

A1 → A2 1 (B poly) impossible impossible 2.BEx.Arrow 2.Arrows

The impossibility of the “impossible” entries follows from inspection of the declarative subtyping

rules.

We first split on [Γ ]B.

• Case 1 (B poly): [Γ ]B polymorphic: [Γ ]B = ∀β. B ′:

B = ∀β. B0 Γ predicative

B ′ = [Γ ]B0 Γ predicative

[Ω]B = [Ω](∀β. B0) Applying Ω to both sides

= ∀β. [Ω]B0 By definition of substitution

D :: [Ω]Γ ⊢ [Ω]A ≤ [Ω]B Given

D :: [Ω]Γ ⊢ [Ω]A ≤ ∀β. [Ω]B0 By above equality

D ′ :: [Ω]Γ, β ⊢ [Ω]A ≤ [Ω]B0 By Lemma 7 (Invertibility)

D ′ < D ′′

D ′ :: [Ω,β](Γ, β) ⊢ [Ω,β]A ≤ [Ω,β]B0 By definitions of substitution

Γ, β ⊢ [Γ, β]A <: [Γ, β]B0 ⊣ ∆ ′ By i.h.

∆ ′ −→ Ω ′

0
′′

Ω,β −→ Ω ′

0
′′

Γ, β ⊢ [Γ ]A <: [Γ ]B0 ⊣ ∆ ′ By definition of substitution

Γ, β −→ ∆ ′ By Lemma 32 (Instantiation Extension)

∆ ′ = ∆,β,Θ By Lemma 24 (Extension Order) (i)

Γ −→ ∆ ′′

∆,β,Θ −→ Ω ′

0 By ∆ ′ −→ Ω ′

0 and above equality

Ω ′

0 = Ω ′, β,ΩR By Lemma 24 (Extension Order) (i)

Z ∆ −→ Ω ′ ′′

Γ, β ⊢ [Γ ]A <: [Γ ]B0 ⊣ ∆,β,Θ By above equality

Ω,β −→ Ω ′, β,ΩR By above equality

Z Ω −→ Ω ′ By Lemma 21 (Transitivity)

Γ ⊢ [Γ ]A <: ∀β. [Γ ]B0 ⊣ ∆ By <:∀R

Z Γ ⊢ [Γ ]A <: ∀β. B ′ ⊣ ∆ By above equality
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• Cases 2.*: [Γ ]B not polymorphic:

We split on the form of [Γ ]A.

– Case 2.Poly: [Γ ]A is polymorphic: [Γ ]A = ∀α. A ′:

A = ∀α. A0 Γ predicative

A ′ = [Γ ]A0 Γ predicative

[Ω]A = [Ω](∀α. A0) Applying Ω to both sides

[Ω]A = ∀α. [Ω]A0 By definition of substitution

[Ω]Γ ⊢ [Ω]A ≤ [Ω]B Given

[Ω]Γ ⊢ ∀α. [Ω]A0 ≤ [Ω]B By above equality

[Γ ]B 6= (∀β. · · ·) We are in the “[Γ ]B not polymorphic” subcase

B 6= (∀β. . . .) Γ predicative

[Ω]Γ ⊢ [τ/α][Ω]A0 ≤ [Ω]B By inversion on ≤∀L

[Ω]Γ ⊢ τ ′′

Γ −→ Ω Given

Γ,◮α̂ −→ Ω,◮α̂ By −→Marker

Γ,◮α̂, α̂ −→ Ω,◮α̂, α̂ = τ
︸ ︷︷ ︸

Ω0

By −→Solve

[Ω]Γ = [Ω0](Γ,◮α̂, α̂) By definition of context application (lines 16, 13)

[Ω]Γ ⊢ [τ/α][Ω]A0 ≤ [Ω]B Above

[Ω0](Γ,◮α̂, α̂) ⊢ [τ/α][Ω]A0 ≤ [Ω]B By above equality

[Ω0](Γ,◮α̂, α̂) ⊢
[

[Ω0]α̂/α
]

[Ω]A0 ≤ [Ω]B By definition of substitution

[Ω0](Γ,◮α̂, α̂) ⊢
[

[Ω0]α̂/α
]

[Ω0]A0 ≤ [Ω0]B By definition of substitution

[Ω0](Γ,◮α̂, α̂) ⊢ [Ω0][α̂/α]A0 ≤ [Ω0]B By distributivity of substitution

Γ,◮α̂, α̂ ⊢ [Γ,◮α̂, α̂][α̂/α]A0 <: [Γ,◮α̂, α̂]B ⊣ ∆0 By i.h.

∆0 −→ Ω ′′ ′′

Ω0 −→ Ω ′′ ′′

Γ,◮α̂, α̂ ⊢ [Γ ][α̂/α]A0 <: [Γ ]B ⊣ ∆0 By definition of substitution

Γ,◮α̂, α̂ −→ ∆0 By Lemma 33 (Subtyping Extension)

∆0 = (∆,◮α̂, Θ) By Lemma 24 (Extension Order) (ii)

Γ −→ ∆ ′′

Ω ′′ = (Ω ′,◮α̂,ΩZ) By Lemma 24 (Extension Order) (ii)

Z ∆ −→ Ω ′ ′′

Ω0 −→ Ω ′′ Above

Ω,◮α̂, α̂ = τ −→ Ω ′,◮α̂,ΩZ By above equalities

Z Ω −→ Ω ′ By Lemma 24 (Extension Order) (ii)

Γ,◮α̂, α̂ ⊢ [Γ ][α̂/α]A0 <: [Γ ]B ⊣ ∆,◮α̂, Θ By above equality ∆0 = (∆,◮α̂, Θ)

Γ,◮α̂, α̂ ⊢ [α̂/α][Γ ]A0 <: [Γ ]B ⊣ ∆,◮α̂, Θ By def. of subst. ([Γ ]α̂ = α̂ and [Γ ]α = α)

Γ ⊢ ∀α. [Γ ]A0 <: [Γ ]B ⊣ ∆ By <:∀L

Z Γ ⊢ ∀α. A ′ <: [Γ ]B ⊣ ∆ By above equality

– Case 2.AEx: A is an existential variable [Γ ]A = α̂:

We split on the form of [Γ ]B.

∗ Case 2.AEx.SameEx: [Γ ]B is the same existential variable [Γ ]B = α̂:
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Γ ⊢ α̂ <: α̂ ⊣ Γ By <:Exvar

Z Γ ⊢ [Γ ]A <: [Γ ]B ⊣ Γ By [Γ ]A = [Γ ]B = α̂

Z ∆ −→ Ω ∆ = Γ

Z Ω −→ Ω ′ By Lemma 20 (Reflexivity) and Ω ′ = Ω

∗ Case 2.AEx.OtherEx: [Γ ]B is a different existential variable [Γ ]B = β̂ where β̂ 6= α̂:
Either α̂ ∈ FV([Γ ]β̂), or α̂ /∈ FV([Γ ]β̂).

· α̂ ∈ FV([Γ ]β̂):
We have α̂ � [Γ ]β̂.

Therefore α̂ = [Γ ]β̂, or α̂ ≺ [Γ ]β̂.

But we are in Case 2.AEx.OtherEx, so the former is impossible.
Therefore, α̂ ≺ [Γ ]β̂.

Since Γ is predicative, [Γ ]β̂ cannot have the form ∀β. · · · , so the only way that α̂ can

be a proper subterm of [Γ ]β̂ is if [Γ ]β̂ has the form B1 → B2 such that α̂ is a subterm
of B1 or B2, that is: α̂ ≺

→ [Γ ]β̂.

Then by a property of substitution, [Ω]α̂ ≺
→ [Ω][Γ ]β̂.

By Lemma 18 (Substitution Extension Invariance), [Ω][Γ ]β̂ = [Ω]β̂, so [Ω]α̂ ≺
→ [Ω]β̂.

We have [Ω]Γ ⊢ [Ω]α̂ ≤ [Ω]β̂, and we know that [Ω]α̂ is a monotype, so we can use

Lemma 8 (Occurrence) (ii) to show that [Ω]α̂ ≺6
→ [Ω]β̂, a contradiction.

· α̂ /∈ FV([Γ ]β̂):

Γ ⊢ α̂ :=
< [Γ ]β̂ ⊣ ∆ By Theorem 13 (1)

Z Γ ⊢ α̂ <: β̂ ⊣ ∆ By <:InstantiateL

Z ∆ −→ Ω ′ ′′

Z Ω −→ Ω ′ ′′

∗ Case 2.AEx.Unit: [Γ ]B = 1:

Γ −→ Ω Given

1 = [Ω]1 By definition of substitution

α̂ /∈ FV(1) By definition of FV(−)

[Ω]Γ ⊢ [Ω]α̂ ≤ [Ω]1 Given

Γ ⊢ α̂ :=< 1 ⊣ ∆ By Theorem 13 (1)

Z Ω −→ Ω ′ ′′

Z ∆ −→ Ω ′ ′′

1 = [Γ ]1 By definition of substitution

α̂ /∈ FV(1) By definition of FV(−)

Z Γ ⊢ α̂ <: 1 ⊣ ∆ By <:InstantiateL

∗ Case 2.AEx.Uvar: [Γ ]B = β:
Similar to Case 2.AEx.Unit, using β = [Ω]β = [Γ ]β and α̂ /∈ FV(β).

∗ Case 2.AEx.Arrow: [Γ ]B = B1 → B2:
Since [Γ ]B is an arrow, it cannot be exactly α̂.

Suppose, for a contradiction, that α̂ ∈ FV([Γ ]B).
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α̂ � [Γ ]B α̂ ∈ FV([Γ ]B)

[Ω]α̂ � [Ω][Γ ]B By a property of substitution

Γ −→ Ω Given

[Ω][Γ ]B = [Ω]B By Lemma 18 (Substitution Extension Invariance)

[Ω]α̂ � [Ω]B By above equality

[Γ ]B 6= α̂ Given (2.AEx.Arrow)

[Ω][Γ ]B 6= [Ω]α̂ By a property of substitution

[Ω]B 6= [Ω]α̂ By Lemma 18 (Substitution Extension Invariance)

[Ω]α̂ ≺ [Ω]B Follows from � and 6=

[Ω]α̂ ≺
→ [Ω]B [Ω]A has the form · · · → · · ·

[Ω]Γ ⊢ [Ω]α̂ ≤ [Ω]B Given

[Ω]B is a monotype Ω is predicative

[Ω]α̂ ≺6
→ [Ω]B By Lemma 8 (Occurrence) (ii)

⇒⇐

α̂ /∈ FV([Γ ]B) By contradiction

Γ ⊢ α̂ :=
< [Γ ]B ⊣ ∆ By Theorem 13 (1)

Z ∆ −→ Ω ′ ′′

Z Ω −→ Ω ′ ′′

Z Γ ⊢ α̂ <: [Γ ]B
︸︷︷︸

B1→B2

⊣ ∆ By <:InstantiateL

– Case 2.BEx: [Γ ]A is not polymorphic and [Γ ]B is an existential variable: [Γ ]B = β̂

We split on the form of [Γ ]A.

∗ Case 2.BEx.Unit ([Γ ]A = 1),
Case 2.BEx.Uvar ([Γ ]A = α),

Case 2.BEx.Arrow ([Γ ]A = A1 → A2):

Similar to Cases 2.AEx.Unit, 2.AEx.Uvar and 2.AEx.Arrow, but using part (2) of Theo-
rem 13 instead of part (1), and applying <:InstantiateR instead of <:InstantiateL as the

final step.

– Case 2.Units: [Γ ]A = [Γ ]B = 1:

Z Γ ⊢ 1 <: 1 ⊣ Γ By <:Unit

Γ −→ Ω Given

Z ∆ −→ Ω ∆ = Γ

Z Ω −→ Ω ′ By Lemma 20 (Reflexivity) and Ω ′ = Ω

– Case 2.Uvars: [Γ ]A = [Γ ]B = α:

α ∈ Ω By inversion on ≤Var

Γ −→ Ω Given

α ∈ Γ By Lemma 24 (Extension Order)

Z Γ ⊢ α <: α ⊣ Γ By <:Var

Z ∆ −→ Ω ∆ = Γ

Z Ω −→ Ω ′ By Lemma 20 (Reflexivity) and Ω ′ = Ω

– Case 2.Arrows: A = A1 → A2 and B = B1 → B2:

Only rule ≤→ could have been used.
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[Ω]Γ ⊢ [Ω]B1 ≤ [Ω]A1 Subderivation

Γ ⊢ [Γ ]B1 <: [Γ ]A1 ⊣ Θ By i.h.

Θ −→ Ω0
′′

Ω −→ Ω0
′′

Γ −→ Ω Given

Γ −→ Ω0 By Lemma 21 (Transitivity)

Θ −→ Ω0 Above

[Ω]Γ = [Ω]Θ By Lemma 52 (Confluence of Completeness)

[Ω]Γ ⊢ [Ω]A2 ≤ [Ω]B2 Subderivation

[Ω]Θ ⊢ [Ω]A2 ≤ [Ω]B2 By above equality

[Ω]A2 = [Ω][Γ ]A2 By Lemma 18 (Substitution Extension Invariance)

[Ω]B2 = [Ω][Γ ]B2 By Lemma 18 (Substitution Extension Invariance)

[Ω]Θ ⊢ [Ω][Γ ]A2 ≤ [Ω][Γ ]B2 By above equalities

Θ ⊢ [Θ][Γ ]A2 <: [Θ][Γ ]B2 ⊣ ∆ By i.h.

Z ∆ −→ Ω ′ ′′

Ω0 −→ Ω ′ ′′

Γ ⊢ ([Γ ]A1) → ([Γ ]A2) <: ([Γ ]B1) → ([Γ ]B2) ⊣ ∆ By <:→

Z Γ ⊢ [Γ ](A1 → A2) <: [Γ ](B1 → B2) ⊣ ∆ By definition of substitution

Z Ω −→ Ω ′ By Lemma 21 (Transitivity)

Corollary 55 (Completeness of Subtyping). If Ψ ⊢ A ≤ B then there is a ∆ such that Ψ ⊢ A <: B ⊣ ∆.

Proof. Let Ω = Ψ and Γ = Ψ.

By Lemma 20 (Reflexivity), Ψ −→ Ψ, so Γ −→ Ω.

By Lemma 4 (Well-Formedness), Ψ ⊢ A and Ψ ⊢ B; since Γ = Ψ, we have Γ ⊢ A and Γ ⊢ B.
By Theorem 14, there exists ∆ such that Γ ⊢ [Γ ]A <: [Γ ]B ⊣ ∆.

Since Γ = Ψ and Ψ is a declarative context with no existentials, [Ψ]C = C for all C, so we actually have

Ψ ⊢ A <: B ⊣ ∆, which was to be shown.
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L ′ Completeness of Typing

Theorem 15 (Completeness of Algorithmic Typing). Given Γ −→ Ω and Γ ⊢ A:

(i) If [Ω]Γ ⊢ e ⇐ [Ω]A

then there exist ∆ and Ω ′

such that ∆ −→ Ω ′ and Ω −→ Ω ′ and Γ ⊢ e ⇐ [Γ ]A ⊣ ∆.

(ii) If [Ω]Γ ⊢ e ⇒ A

then there exist ∆, Ω ′, and A ′

such that ∆ −→ Ω ′ and Ω −→ Ω ′ and Γ ⊢ e ⇒ A ′ ⊣ ∆ and A = [Ω ′]A ′.

(iii) If [Ω]Γ ⊢ [Ω]A • e ⇒⇒ C

then there exist ∆, Ω ′, and C ′

such that ∆ −→ Ω ′ and Ω −→ Ω ′ and Γ ⊢ [Γ ]A • e ⇒⇒ C ′ ⊣ ∆ and C = [Ω ′]C ′.

Proof. By induction on the given declarative derivation.

• Case (x : A) ∈ [Ω]Γ

[Ω]Γ ⊢ x ⇒ A
DeclVar

(x : A) ∈ [Ω]Γ Premise

Γ −→ Ω Given

(x : A ′) ∈ Γ where [Ω]A ′ = [Ω]A From definition of context application

Let ∆ = Γ .

Let Ω ′ = Ω.

Z Γ −→ Ω Given

Z Ω −→ Ω By Lemma 20 (Reflexivity)

Z Γ ⊢ x ⇒ A ′ ⊣ Γ By Var

[Ω]A ′ = [Ω]A Above

Z = A FEV(A) = ∅

• Case [Ω]Γ ⊢ e ⇒ B [Ω]Γ ⊢ B ≤ [Ω]A

[Ω]Γ ⊢ e ⇐ [Ω]A
DeclSub

[Ω]Γ ⊢ e ⇒ B Subderivation

Γ ⊢ e ⇒ B ′ ⊣ Θ By i.h.

B = [Ω]B ′ ′′

Θ −→ Ω0
′′

Ω −→ Ω0
′′

Γ −→ Ω Given

Γ −→ Ω0 By Lemma 21 (Transitivity)

[Ω]Γ ⊢ B ≤ [Ω]A Subderivation

[Ω]Γ = [Ω]Θ By Lemma 52 (Confluence of Completeness)

[Ω]Θ ⊢ B ≤ [Ω]A By above equalities

Θ −→ Ω0 Above

Θ ⊢ [Θ]B ′ <: [Θ]A ⊣ ∆ By Theorem 14

∆ −→ Ω ′ ′′

Ω0 −→ Ω ′ ′′

Z ∆ −→ Ω ′ By Lemma 21 (Transitivity)

Z Ω −→ Ω ′ By Lemma 21 (Transitivity)

Z Γ ⊢ e ⇐ A ⊣ ∆ By Sub
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• Case [Ω]Γ ⊢ A [Ω]Γ ⊢ e0 ⇐ A

[Ω]Γ ⊢ (e0 : A) ⇒ A
DeclAnno

A = [Ω]A Source type annotations cannot contain evars

= [Γ ]A ′′

[Ω]Γ ⊢ e0 ⇐ A Subderivation

[Ω]Γ ⊢ e0 ⇐ [Ω]A By above equality

Γ ⊢ e0 ⇐ [Γ ]A ⊣ ∆ By i.h.

Z ∆ −→ Ω ′′

Z Ω −→ Ω ′ ′′

Γ ⊢ A Given

Γ ⊢ (e0 : A) ⇒ A ⊣ ∆ By Anno

A = [Ω ′]A Source type annotations cannot contain evars

Z Γ ⊢ (e0 : [Ω ′]A) ⇒ [Ω ′]A ⊣ ∆ By above equality

• Case

[Ω]Γ ⊢ () ⇐ 1
Decl1I

We have [Ω]A = 1. Either [Γ ]A = 1 or [Γ ]A = α̂ ∈ unsolved(Γ).

In the former case:

Let ∆ = Γ .

Let Ω ′ = Ω.

Z Γ −→ Ω Given

Z Ω −→ Ω ′ By Lemma 20 (Reflexivity)

Γ ⊢ () ⇐ 1 ⊣ Γ By 1I

Z Γ ⊢ () ⇐ [Γ ]1 ⊣ Γ 1 = [Γ ]1

In the latter case:

Γ ⊢ () ⇒ 1 ⊣ Γ By 1I⇒

[Ω]Γ ⊢ 1 ≤ 1 By ≤Unit

1 = [Ω]1 By definition of substitution

= [Ω][Γ ]α̂ By [Ω]A = 1

= [Ω]α̂ By Lemma 18 (Substitution Extension Invariance)

[Ω]Γ ⊢ [Ω]1 ≤ [Ω]α̂ By above equalities

Γ ⊢ 1 <: α̂ ⊣ ∆ By Theorem 13 (1)

1 = [Γ ]1 By definition of substitution

α̂ = [Γ ]α̂ α̂ ∈ unsolved(Γ)

Γ ⊢ [Γ ]1 <: [Γ ]α̂ ⊣ ∆ By above equalities

Z Ω −→ Ω ′ ′′

Z ∆ −→ Ω ′ ′′

Γ ⊢ () ⇐ α̂ ⊣ ∆ By Sub

Z Γ ⊢ () ⇐ [Γ ]A ⊣ ∆ By [Γ ]A = α̂

• Case [Ω]Γ, α ⊢ e ⇐ A0

[Ω]Γ ⊢ e ⇐ ∀α. A0

Decl∀I
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[Ω]A = ∀α. A0 Given

= ∀α. [Ω]A ′ By def. of subst. and predicativity of Ω

A0 = [Ω]A ′ Follows from above equality

[Ω]Γ, α ⊢ e ⇐ [Ω]A ′ Subderivation and above equality

Γ −→ Ω Given

Γ, α −→ Ω,α By −→Uvar

[Ω]Γ, α = [Ω,α](Γ, α) By definition of context substitution

[Ω,α](Γ, α) ⊢ e ⇐ [Ω]A ′ By above equality

[Ω,α](Γ, α) ⊢ e ⇐ [Ω,α]A ′ By definition of substitution

Γ, α ⊢ e ⇐ [Γ, α]A ′ ⊣ ∆ ′ By i.h.

∆ ′ −→ Ω ′

0
′′

Ω,α −→ Ω ′

0
′′

Γ, α −→ ∆ ′ By Lemma 54 (Typing Extension)

∆ ′ = ∆,α,Θ By Lemma 24 (Extension Order) (i)

∆,α,Θ −→ Ω ′

0 By above equality

Ω ′

0 = Ω ′, α,ΩZ By Lemma 24 (Extension Order) (i)

Z ∆ −→ Ω ′ ′′

Z Ω −→ Ω ′ By Lemma 24 (Extension Order) on Ω,α −→ Ω ′

0

Γ, α ⊢ e ⇐ [Γ, α]A ′ ⊣ ∆,α,Θ By above equality

Γ, α ⊢ e ⇐ [Γ ]A ′ ⊣ ∆,α,Θ By definition of substitution

Γ ⊢ e ⇐ ∀α. [Γ ]A ′ ⊣ ∆ By ∀I

Z Γ ⊢ e ⇐ [Γ ](∀α. A ′) ⊣ ∆ By definition of substitution

• Case [Ω]Γ ⊢ τ [Ω]Γ ⊢ [τ/α]A0 • e ⇒⇒ C

[Ω]Γ ⊢ ∀α. A0︸ ︷︷ ︸
[Ω]A

• e ⇒⇒ C
Decl∀App

[Ω]Γ ⊢ τ Subderivation

[Ω]A = ∀α. A0 Given

= ∀α. [Ω]A ′ By def. of subst. and predicativity of Ω

[Ω]Γ ⊢ [τ/α][Ω]A ′ • e ⇒⇒ C Subderivation and above equality

Γ −→ Ω Given

Γ, α̂ −→ Ω, α̂ = τ By −→Solve

[Ω]Γ = [Ω, α̂ = τ](Γ, α̂) By definition of context application

[Ω, α̂ = τ](Γ, α̂) ⊢ [τ/α][Ω]A ′ • e ⇒⇒ C By above equality

[Ω, α̂ = τ](Γ, α̂) ⊢ [τ/α][Ω, α̂ = τ]A ′ • e ⇒⇒ C By def. of subst.
([

[Ω]τ/α
][

Ω, α̂ = τ
]

A ′
)

=
(

[Ω, α̂ = τ][α̂/α]A ′
)

By distributivity of substitution

τ = [Ω]τ FEV(τ) = ∅
([

τ/α
][

Ω, α̂ = τ
]

A ′
)

=
(

[Ω, α̂ = τ][α̂/α]A ′
)

By above equality

[Ω, α̂ = τ](Γ, α̂) ⊢ [Ω, α̂ = τ][α̂/α]A ′ • e ⇒⇒ C By above equality

Γ, α̂ ⊢ [α̂/α]A ′ • e ⇒⇒ C ′ ⊣ ∆ By i.h.

Z C = [Ω]C ′ ′′

Z ∆ −→ Ω ′ ′′

Z Ω −→ Ω ′ ′′

Z Γ ⊢ ∀α. A ′ • e ⇒⇒ C ′ ⊣ ∆ By ∀App
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• Case [Ω]Γ, x : A ′

1 ⊢ e0 ⇐ A ′

2

[Ω]Γ ⊢ λx. e0 ⇐ A ′

1 → A ′

2

Decl→I

We have [Ω]A = A ′

1 → A ′

2. Either [Γ ]A = A1 → A2 where A ′

1 = [Ω]A1 and A ′

2 = [Ω]A2—or

[Γ ]A = α̂ and [Ω]α̂ = A ′

1 → A ′

2.

In the former case:

[Ω]Γ, x : A ′

1 ⊢ e0 ⇐ A ′

2 Subderivation

A ′

1 = [Ω]A1 Known in this subcase

= [Ω][Γ ]A1 By Lemma 18 (Substitution Extension Invariance)

[Ω]A ′

1 = [Ω][Ω][Γ ]A1 Applying Ω on both sides

= [Ω][Γ ]A1 By idempotence of substitution

[Ω]Γ, x : A ′

1 = [Ω, x : A ′

1](Γ, x : [Γ ]A1) By definition of context application

[Ω, x : A ′

1](Γ, x : [Γ ]A1) ⊢ e0 ⇐ A ′

2 By above equality

Γ −→ Ω Given

Γ, x : [Γ ]A1 −→ Ω, x : A ′

1 By −→Var

Γ, x : [Γ ]A1 ⊢ e0 ⇐ A2 ⊣ ∆ ′ By i.h.

∆ ′ −→ Ω ′

0
′′

Ω, x : A ′

1 −→ Ω ′

0
′′

Ω ′

0 = Ω ′, x : A ′

1, Θ By Lemma 24 (Extension Order) (v)

Z Ω −→ Ω ′ ′′

Γ, x : [Γ ]A1 −→ ∆ ′ By Lemma 54 (Typing Extension)

∆ ′ = ∆, x : · · · , Θ By Lemma 24 (Extension Order) (v)

∆, x : · · · , Θ −→ Ω ′, x : A ′

1, Θ By above equalities

Z ∆ −→ Ω ′ By Lemma 24 (Extension Order) (v)

Γ, x : [Γ ]A1 ⊢ e0 ⇐ [Γ ]A2 ⊣ ∆,α,Θ By above equality

Γ ⊢ λx. e0 ⇐ ([Γ ]A1) → ([Γ ]A2) ⊣ ∆ By →I

Z Γ ⊢ λx. e0 ⇐ [Γ ](A1 → A2) ⊣ ∆ By definition of substitution

In the latter case:

[Ω]α̂ = A ′

1 → A ′

2 Known in this subcase

[Ω]Γ, x : A ′

1 ⊢ e0 ⇐ A ′

2 Subderivation

Γ −→ Ω Given

Γ, α̂, β̂ −→ Ω, α̂ = A ′

1, β̂ = A ′

2 By −→Solve twice

[Ω]α̂ = [Ω]A ′

1 By definition of substitution

Γ, α̂, β̂, x : α̂ −→ Ω, α̂ = A ′

1, β̂ = A ′

2, x : A ′

1 By −→Var

[Ω]Γ, x : A ′

1 =
[

Ω, α̂ = A ′

1, β̂ = A ′

2, x : A ′

1

](

Γ, α̂, β̂, x : α̂
)

By definition of context application

Let Ω0 = (Ω, α̂ = A ′

1, β̂ = A ′

2, x : A ′

1).

[Ω0](Γ, α̂, β̂, x : α̂) ⊢ e0 ⇐ A ′

2 By above equality

Γ, α̂, β̂, x : α̂ ⊢ e0 ⇐ β̂ ⊣ ∆ ′ By i.h. with Ω0

∆ ′ −→ Ω ′

0
′′

Ω0 −→ Ω ′

0
′′
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Γ, α̂, β̂, x : α̂ −→ ∆ ′ By Lemma 54 (Typing Extension)

∆ ′ = ∆, x : α̂, Θ By Lemma 24 (Extension Order) (v)

∆, x : α̂, Θ −→ Ω ′

0 By above equality

Ω ′

0 = Ω ′′, x : · · · ,ΩZ By Lemma 54 (Typing Extension)

Z ∆ −→ Ω ′′ ′′

Γ, α̂, β̂ −→ ∆ ′′

Ω0 −→ Ω ′′, x : · · · ,ΩZ︸ ︷︷ ︸
Ω ′

0

By above equality

Ω, α̂ = A ′

1, β̂ = A ′

2, x : A ′

1 −→ Ω ′′, x : · · · ,ΩZ By def. of Ω0

Ω ′′ = Ω ′, α̂ = . . ., . . . By Lemma 24 (Extension Order) (iii)

Z Ω −→ Ω ′ ′′

Γ, α̂, β̂, x : α̂ ⊢ e0 ⇐ β̂ ⊣ ∆, x : α̂, Θ By above equality

Γ ⊢ λx. e0 ⇐ α̂ → β̂ ⊣ ∆ By →I⇒

[Γ ]α̂ = α̂ By definition of substitution

[Γ ]β̂ = β̂ By definition of substitution

Γ ⊢ λx. e0 ⇐ ([Γ ]α̂) → ([Γ ]β̂) ⊣ ∆ By above equalities

Z Γ ⊢ λx. e0 ⇐ [Γ ](α̂ → β̂) ⊣ ∆ By definition of substitution

• Case [Ω]Γ ⊢ e1 ⇒ B [Ω]Γ ⊢ B • e2 ⇒⇒ A

[Ω]Γ ⊢ e1 e2 ⇒ A
Decl→E

[Ω]Γ ⊢ e1 ⇒ B Subderivation

Γ −→ Ω Given

Γ ⊢ e1 ⇒ B ′ ⊣ Θ By i.h.

B = [Ω]B ′ ′′

Θ −→ Ω ′

0
′′

Ω −→ Ω ′

0
′′

[Ω]Γ ⊢ B • e2 ⇒⇒ A Subderivation

[Ω]Γ ⊢ [Ω]B ′ • e2 ⇒⇒ A By above equality

Γ −→ Ω ′

0 By Lemma 21 (Transitivity)

[Ω]Γ = [Ω]Ω By Lemma 49 (Stability of Complete Contexts)

= [Ω ′

0]Ω
′

0 By Lemma 51 (Finishing Completions)

= [Ω ′

0]Γ By Lemma 49 (Stability of Complete Contexts)

= [Ω ′

0]Θ By Lemma 52 (Confluence of Completeness)

[Ω ′

0]Θ ⊢ [Ω]B ′ • e2 ⇒⇒ A By above equality

[Ω]B ′ = [Ω ′

0]B
′ By Lemma 50 (Finishing Types)

[Ω ′

0]B
′ = [Ω ′

0][Θ]B ′ By Lemma 18 (Substitution Extension Invariance)

[Ω ′

0]Θ ⊢ [Ω][Θ]B ′ • e2 ⇒⇒ A By above equalities

Θ ⊢ [Θ]B ′ • e2 ⇒⇒ A ′ ⊣ ∆ By i.h. with Ω ′

0

Z A = [Ω]A ′ ′′

Z ∆ −→ Ω ′ ′′

Ω ′

0 −→ Ω ′ ′′

Ω −→ Ω ′ By Lemma 21 (Transitivity)

Z Γ ⊢ e1 e2 ⇒ A ′ ⊣ ∆ By →E
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• Case [Ω]Γ ⊢ e ⇐ B

[Ω]Γ ⊢ B → C︸ ︷︷ ︸
[Ω]A

• e ⇒⇒ C
Decl→App

We have [Ω]A = B → C. Either [Γ ]A = B0 → C0 where B = [Ω]B0 and C = [Ω]C0—or [Γ ]A = α̂

where α̂ ∈ unsolved(Γ) and [Ω]α̂ = B → C.

In the former case:

[Ω]Γ ⊢ e ⇐ B Subderivation

B = [Ω]B0 Known in this subcase

Γ −→ Ω Given

Γ ⊢ e ⇐ [Γ ]B0 ⊣ ∆ By i.h.

Γ ⊢ ([Γ ]B0) → ([Γ ]C0) • e ⇒⇒ [Γ ]C0 ⊣ ∆ By →App

Z ∆ −→ Ω ′ ′′

Z Ω −→ Ω ′ ′′

Let C ′ = [Γ ]C0.

C = [Ω]C0 Known in this subcase

= [Ω][Γ ]C0 By Lemma 18 (Substitution Extension Invariance)

Z = [Ω]C ′ [Γ ]C0 = C ′

Z Γ ⊢ [Γ ](B0 → C0) • e ⇒⇒ [Γ ]C0 ⊣ ∆ By definition of substitution

In the latter case, α̂ ∈ unsolved(Γ), so the context Γ must have the form Γ0[α̂].

Γ −→ Ω Given

Γ0[α̂] −→ Ω Γ = Γ0[α̂]

[Ω]A = B → C Above

[Ω]α̂ = B → C A = α̂

Ω = Ω0[α̂ = A0] and [Ω]A0 = B → C Follows from [Ω]α̂ = B → C

Let Γ ′ = Γ0[α̂2, α̂1, α̂ = α̂1 → α̂2].

Let Ω ′

0 = Ω0[α̂2 = [Ω]C, α̂1 = [Ω]B, α̂ = α̂1 → α̂2].

Γ ′ −→ Ω ′

0 By Lemma 29 (Parallel Admissibility) (ii) twice

[Ω]Γ ⊢ e ⇐ B Subderivation

Ω −→ Ω ′

0 By Lemma 27 (Solved Variable Addition for Extension)

then Lemma 29 (Parallel Admissibility) (iii)

[Ω]Γ = [Ω]Ω By Lemma 49 (Stability of Complete Contexts)

= [Ω ′

0]Ω
′

0 By Lemma 51 (Finishing Completions)

= [Ω ′

0]Γ
′ By Lemma 52 (Confluence of Completeness)

B = [Ω ′

0]α̂1 By definition of Ω ′

0

[Ω ′

0]Γ
′ ⊢ e ⇐ [Ω ′

0]α̂1 By above equalities

Γ ′ ⊢ e ⇐ [Γ ′]α̂1 ⊣ ∆ By i.h.

Z ∆ −→ Ω ′ ′′

Ω ′

0 −→ Ω ′ ′′

Z Ω −→ Ω ′ By Lemma 21 (Transitivity)

[Γ ′]α̂1 = α̂1 α̂1 ∈ unsolved(Γ ′)

Γ ′ ⊢ e ⇐ α̂1 ⊣ ∆ By above equality
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Γ ⊢ α̂ • e ⇒⇒ α̂2 ⊣ ∆ By α̂App

Let C ′ = α̂2.

C = [Ω ′

0]α̂2 By definition of Ω ′

0

= [Ω ′]α̂2 By Lemma 50 (Finishing Types)

Z = [Ω ′]C ′ By above equality

Z Γ ⊢ [Γ ]A • e ⇒⇒ C ′ ⊣ ∆ α̂ = [Γ ]A and α̂2 = C ′

• Case

[Ω]Γ ⊢ () ⇒ 1
Decl1I⇒

1 = A Given

Γ ⊢ () ⇒ 1 ⊣ Γ By 1I⇒

Let ∆ = Γ .

Let Ω ′ = Ω.

Γ −→ Ω Given

Z ∆ −→ Ω By above equality

Z Ω −→ Ω ′ By Lemma 20 (Reflexivity)

Let A ′ = 1.

Z Γ ⊢ () ⇒ A ′ ⊣ ∆ By above equalities

Z 1 = [Ω]A ′ By definition of substitution

• Case [Ω]Γ ⊢ σ → τ [Ω]Γ, x : σ ⊢ e0 ⇐ τ

[Ω]Γ ⊢ λx. e0 ⇒ σ → τ
Decl→I⇒

(σ → τ) = A Given

[Ω]Γ, x : σ ⊢ e0 ⇐ τ Subderivation

Let Γ ′ = (Γ, α̂, β̂, x : α̂).

Let Ω0 = (Ω, α̂ = σ, β̂ = τ, x : σ).

Γ −→ Ω Given

Γ ′ −→ Ω0 By −→Solve twice, then −→Var

[Ω0]Γ
′ =

(

[Ω]Γ, x : σ
)

By definition of context application

τ = [Ω0]β̂ By definition of Ω0

[Ω0]Γ
′ ⊢ e0 ⇐ [Ω0]β̂ By above equalities

Γ ′ ⊢ e0 ⇐ β̂ ⊣ ∆ ′ By i.h.

∆ ′ −→ Ω ′

0
′′

Ω0 −→ Ω ′

0
′′

∆ ′ = (∆, x : α̂, Θ) By Lemma 24 (Extension Order) (v)

Γ, α̂, β̂, x : α̂ ⊢ e0 ⇐ β̂ ⊣ ∆, x : α̂, Θ By above equalities

(∆, x : α̂, Θ) −→ Ω ′

0 By above equality

Ω ′

0 = Ω ′, x : σ,ΩZ By Lemma 24 (Extension Order) (v)

Z ∆ −→ Ω ′ ′′

Γ ⊢ λx. e0 ⇒ α̂ → β̂ ⊣ ∆ By →I⇒
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Let A ′ = (α̂ → β̂).

Z Γ ⊢ λx. e0 ⇒ A ′ ⊣ ∆ By above equality

σ → τ = ([Ω0]α̂) → ([Ω0]β̂) By definition of Ω0

σ → τ = [Ω0](α̂ → β̂) By definition of substitution

A = [Ω0]A
′ By above equalities

Z A = [Ω ′]A ′ By Lemma 50 (Finishing Types)

Γ ′ −→ ∆ ′ By Lemma 54 (Typing Extension)

Z Ω −→ Ω ′ By Lemma 21 (Transitivity)
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