// RUN: %clang_analyze_cc1 -analyzer-checker=core.BitwiseShift \ // RUN: -analyzer-config core.BitwiseShift:Pedantic=true \ // RUN: -analyzer-output=text -verify=expected,c \ // RUN: -triple x86_64-pc-linux-gnu -x c %s \ // RUN: -Wno-shift-count-negative -Wno-shift-negative-value \ // RUN: -Wno-shift-count-overflow -Wno-shift-overflow \ // RUN: -Wno-shift-sign-overflow // // RUN: %clang_analyze_cc1 -analyzer-checker=core.BitwiseShift \ // RUN: -analyzer-config core.BitwiseShift:Pedantic=true \ // RUN: -analyzer-output=text -verify=expected,cxx \ // RUN: -triple x86_64-pc-linux-gnu -x c++ -std=c++14 %s \ // RUN: -Wno-shift-count-negative -Wno-shift-negative-value \ // RUN: -Wno-shift-count-overflow -Wno-shift-overflow \ // RUN: -Wno-shift-sign-overflow // This test file verifies the pedantic mode of the BitwiseShift checker, which // also reports issues that are undefined behavior (according to the standard, // under C and in C++ before C++20), but would be accepted by many compilers. // TEST NEGATIVE LEFT OPERAND //===----------------------------------------------------------------------===// int negative_left_operand_literal(void) { return -2 << 2; // expected-warning@-1 {{Left operand is negative in left shift}} // expected-note@-2 {{The result of left shift is undefined because the left operand is negative}} } int negative_left_operand_symbolic(int left, int right) { // expected-note@+2 {{Assuming 'left' is < 0}} // expected-note@+1 {{Taking false branch}} if (left >= 0) return 0; return left >> right; // expected-warning@-1 {{Left operand is negative in right shift}} // expected-note@-2 {{The result of right shift is undefined because the left operand is negative}} } int negative_left_operand_compound(short arg) { // expected-note@+2 {{Assuming 'arg' is < 0}} // expected-note@+1 {{Taking false branch}} if (arg >= 0) return 0; return (arg - 3) << 2; // expected-warning@-1 {{Left operand is negative in left shift}} // expected-note@-2 {{The result of left shift is undefined because the left operand is negative}} } int double_negative(void) { // In this case we still report that the right operand is negative, because // that's the more "serious" issue: return -2 >> -2; // expected-warning@-1 {{Right operand is negative in right shift}} // expected-note@-2 {{The result of right shift is undefined because the right operand is negative}} } int single_unknown_negative(int arg) { // In this case just one of the operands will be negative, so we end up // reporting the left operand after assuming that the right operand is // positive. // expected-note@+2 {{Assuming 'arg' is not equal to 0}} // expected-note@+1 {{Taking false branch}} if (!arg) return 0; // We're first checking the right operand, record that it must be positive, // then report that then the left argument must be negative. return -arg << arg; // expected-warning@-1 {{Left operand is negative in left shift}} // expected-note@-2 {{The result of left shift is undefined because the left operand is negative}} } void shift_negative_by_zero(int c) { // This seems to be innocent, but the standard (before C++20) clearly implies // that this is UB, so we should report it in pedantic mode. c = (-1) << 0; // expected-warning@-1 {{Left operand is negative in left shift}} // expected-note@-2 {{The result of left shift is undefined because the left operand is negative}} } // TEST OVERFLOW OF CONCRETE SIGNED LEFT OPERAND //===----------------------------------------------------------------------===// // (the most complex and least important part of the checker) int concrete_overflow_literal(void) { // 27 in binary is 11011 (5 bits), when shifted by 28 bits it becomes // 1_10110000_00000000_00000000_00000000 return 27 << 28; // expected-warning@-1 {{The shift '27 << 28' overflows the capacity of 'int'}} // cxx-note@-2 {{The shift '27 << 28' is undefined because 'int' can hold only 32 bits (including the sign bit), so 1 bit overflows}} // c-note@-3 {{The shift '27 << 28' is undefined because 'int' can hold only 31 bits (excluding the sign bit), so 2 bits overflow}} } int concrete_overflow_symbolic(int arg) { // 29 in binary is 11101 (5 bits), when shifted by 29 bits it becomes // 11_10100000_00000000_00000000_00000000 // expected-note@+2 {{Assuming 'arg' is equal to 29}} // expected-note@+1 {{Taking false branch}} if (arg != 29) return 0; return arg << arg; // expected-warning@-1 {{The shift '29 << 29' overflows the capacity of 'int'}} // cxx-note@-2 {{The shift '29 << 29' is undefined because 'int' can hold only 32 bits (including the sign bit), so 2 bits overflow}} // c-note@-3 {{The shift '29 << 29' is undefined because 'int' can hold only 31 bits (excluding the sign bit), so 3 bits overflow}} } int concrete_overflow_language_difference(void) { // 21 in binary is 10101 (5 bits), when shifted by 27 bits it becomes // 10101000_00000000_00000000_00000000 // This does not overflow the 32-bit capacity of int, but reaches the sign // bit, which is undefined under C (but accepted in C++ even before C++20). return 21 << 27; // c-warning@-1 {{The shift '21 << 27' overflows the capacity of 'int'}} // c-note@-2 {{The shift '21 << 27' is undefined because 'int' can hold only 31 bits (excluding the sign bit), so 1 bit overflows}} } int concrete_overflow_int_min(void) { // Another case that's undefined in C but valid in all C++ versions. // Note the "represented by 1 bit" special case return 1 << 31; // c-warning@-1 {{The shift '1 << 31' overflows the capacity of 'int'}} // c-note@-2 {{The shift '1 << 31' is undefined because 'int' can hold only 31 bits (excluding the sign bit), so 1 bit overflows}} } int concrete_overflow_vague(int arg) { // expected-note@+2 {{Assuming 'arg' is > 25}} // expected-note@+1 {{Taking false branch}} if (arg <= 25) return 0; return 1024 << arg; // expected-warning@-1 {{Left shift of '1024' overflows the capacity of 'int'}} // cxx-note@-2 {{Left shift of '1024' is undefined because 'int' can hold only 32 bits (including the sign bit), so some bits overflow}} // c-note@-3 {{Left shift of '1024' is undefined because 'int' can hold only 31 bits (excluding the sign bit), so some bits overflow}} } int concrete_overflow_vague_only_c(int arg) { // A third case that's undefined in C but valid in all C++ versions. // c-note@+2 {{Assuming 'arg' is > 20}} // c-note@+1 {{Taking false branch}} if (arg <= 20) return 0; return 1024 << arg; // c-warning@-1 {{Left shift of '1024' overflows the capacity of 'int'}} // c-note@-2 {{Left shift of '1024' is undefined because 'int' can hold only 31 bits (excluding the sign bit), so some bits overflow}} } int concrete_overflow_vague_left(int arg) { // This kind of overflow check only handles concrete values on the LHS. With // some effort it would be possible to report errors in cases like this; but // it's probably a waste of time especially considering that overflows of // left shifts became well-defined in C++20. if (arg <= 1024) return 0; return arg << 25; // no-warning } int concrete_overflow_shift_zero(void) { // This is legal, even in C. // The relevant rule (as paraphrased on cppreference.com) is: // "For signed LHS with nonnegative values, the value of LHS << RHS is // LHS * 2^RHS if it is representable in the promoted type of lhs, otherwise // the behavior is undefined." return 0 << 31; // no-warning }