// RUN: %clang_builtins %s %librt -o %t && %run %t // REQUIRES: librt_has_atomic //===-- atomic_test.c - Test support functions for atomic operations ------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file performs some simple testing of the support functions for the // atomic builtins. All tests are single-threaded, so this is only a sanity // check. // //===----------------------------------------------------------------------===// #include #include #include #include #include #undef NDEBUG #include // We directly test the library atomic functions, not using the C builtins. This // should avoid confounding factors, ensuring that we actually test the // functions themselves, regardless of how the builtins are lowered. We need to // use asm labels because we can't redeclare the builtins. // Note: we need to prepend an underscore to this name for e.g. macOS. #define _STRINGIFY(x) #x #define STRINGIFY(x) _STRINGIFY(x) #define EXTERNAL_NAME(name) asm(STRINGIFY(__USER_LABEL_PREFIX__) #name) bool __atomic_is_lock_free_c(size_t size, void *ptr) EXTERNAL_NAME(__atomic_is_lock_free); void __atomic_load_c(int size, void *src, void *dest, int model) EXTERNAL_NAME(__atomic_load); uint8_t __atomic_load_1(uint8_t *src, int model); uint16_t __atomic_load_2(uint16_t *src, int model); uint32_t __atomic_load_4(uint32_t *src, int model); uint64_t __atomic_load_8(uint64_t *src, int model); void __atomic_store_c(int size, void *dest, const void *src, int model) EXTERNAL_NAME(__atomic_store); void __atomic_store_1(uint8_t *dest, uint8_t val, int model); void __atomic_store_2(uint16_t *dest, uint16_t val, int model); void __atomic_store_4(uint32_t *dest, uint32_t val, int model); void __atomic_store_8(uint64_t *dest, uint64_t val, int model); void __atomic_exchange_c(int size, void *ptr, const void *val, void *old, int model) EXTERNAL_NAME(__atomic_exchange); uint8_t __atomic_exchange_1(uint8_t *dest, uint8_t val, int model); uint16_t __atomic_exchange_2(uint16_t *dest, uint16_t val, int model); uint32_t __atomic_exchange_4(uint32_t *dest, uint32_t val, int model); uint64_t __atomic_exchange_8(uint64_t *dest, uint64_t val, int model); int __atomic_compare_exchange_c(int size, void *ptr, void *expected, const void *desired, int success, int failure) EXTERNAL_NAME(__atomic_compare_exchange); bool __atomic_compare_exchange_1(uint8_t *ptr, uint8_t *expected, uint8_t desired, int success, int failure); bool __atomic_compare_exchange_2(uint16_t *ptr, uint16_t *expected, uint16_t desired, int success, int failure); bool __atomic_compare_exchange_4(uint32_t *ptr, uint32_t *expected, uint32_t desired, int success, int failure); bool __atomic_compare_exchange_8(uint64_t *ptr, uint64_t *expected, uint64_t desired, int success, int failure); uint8_t __atomic_fetch_add_1(uint8_t *ptr, uint8_t val, int model); uint16_t __atomic_fetch_add_2(uint16_t *ptr, uint16_t val, int model); uint32_t __atomic_fetch_add_4(uint32_t *ptr, uint32_t val, int model); uint64_t __atomic_fetch_add_8(uint64_t *ptr, uint64_t val, int model); uint8_t __atomic_fetch_sub_1(uint8_t *ptr, uint8_t val, int model); uint16_t __atomic_fetch_sub_2(uint16_t *ptr, uint16_t val, int model); uint32_t __atomic_fetch_sub_4(uint32_t *ptr, uint32_t val, int model); uint64_t __atomic_fetch_sub_8(uint64_t *ptr, uint64_t val, int model); uint8_t __atomic_fetch_and_1(uint8_t *ptr, uint8_t val, int model); uint16_t __atomic_fetch_and_2(uint16_t *ptr, uint16_t val, int model); uint32_t __atomic_fetch_and_4(uint32_t *ptr, uint32_t val, int model); uint64_t __atomic_fetch_and_8(uint64_t *ptr, uint64_t val, int model); uint8_t __atomic_fetch_or_1(uint8_t *ptr, uint8_t val, int model); uint16_t __atomic_fetch_or_2(uint16_t *ptr, uint16_t val, int model); uint32_t __atomic_fetch_or_4(uint32_t *ptr, uint32_t val, int model); uint64_t __atomic_fetch_or_8(uint64_t *ptr, uint64_t val, int model); uint8_t __atomic_fetch_xor_1(uint8_t *ptr, uint8_t val, int model); uint16_t __atomic_fetch_xor_2(uint16_t *ptr, uint16_t val, int model); uint32_t __atomic_fetch_xor_4(uint32_t *ptr, uint32_t val, int model); uint64_t __atomic_fetch_xor_8(uint64_t *ptr, uint64_t val, int model); uint8_t __atomic_fetch_nand_1(uint8_t *ptr, uint8_t val, int model); uint16_t __atomic_fetch_nand_2(uint16_t *ptr, uint16_t val, int model); uint32_t __atomic_fetch_nand_4(uint32_t *ptr, uint32_t val, int model); uint64_t __atomic_fetch_nand_8(uint64_t *ptr, uint64_t val, int model); // We conditionally test the *_16 atomic function variants based on the same // condition that compiler_rt (atomic.c) uses to conditionally generate them. // Currently atomic.c tests if __SIZEOF_INT128__ is defined (which can be the // case on 32-bit platforms, by using -fforce-enable-int128), instead of using // CRT_HAS_128BIT. #ifdef __SIZEOF_INT128__ #define TEST_16 #endif #ifdef TEST_16 typedef __uint128_t uint128_t; typedef uint128_t maxuint_t; uint128_t __atomic_load_16(uint128_t *src, int model); void __atomic_store_16(uint128_t *dest, uint128_t val, int model); uint128_t __atomic_exchange_16(uint128_t *dest, uint128_t val, int model); bool __atomic_compare_exchange_16(uint128_t *ptr, uint128_t *expected, uint128_t desired, int success, int failure); uint128_t __atomic_fetch_add_16(uint128_t *ptr, uint128_t val, int model); uint128_t __atomic_fetch_sub_16(uint128_t *ptr, uint128_t val, int model); uint128_t __atomic_fetch_and_16(uint128_t *ptr, uint128_t val, int model); uint128_t __atomic_fetch_or_16(uint128_t *ptr, uint128_t val, int model); uint128_t __atomic_fetch_xor_16(uint128_t *ptr, uint128_t val, int model); uint128_t __atomic_fetch_nand_16(uint128_t *ptr, uint128_t val, int model); #else typedef uint64_t maxuint_t; #endif #define U8(value) ((uint8_t)(value)) #define U16(value) ((uint16_t)(value)) #define U32(value) ((uint32_t)(value)) #define U64(value) ((uint64_t)(value)) #ifdef TEST_16 #define V ((((uint128_t)0x4243444546474849) << 64) | 0x4a4b4c4d4e4f5051) #define ONES ((((uint128_t)0x0101010101010101) << 64) | 0x0101010101010101) #else #define V 0x4243444546474849 #define ONES 0x0101010101010101 #endif #define LEN(array) (sizeof(array) / sizeof(array[0])) __attribute__((aligned(16))) static const char data[] = { 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f, }; uint8_t a8, b8; uint16_t a16, b16; uint32_t a32, b32; uint64_t a64, b64; #ifdef TEST_16 uint128_t a128, b128; #endif void set_a_values(maxuint_t value) { a8 = U8(value); a16 = U16(value); a32 = U32(value); a64 = U64(value); #ifdef TEST_16 a128 = value; #endif } void set_b_values(maxuint_t value) { b8 = U8(value); b16 = U16(value); b32 = U32(value); b64 = U64(value); #ifdef TEST_16 b128 = value; #endif } void test_loads(void) { static int atomic_load_models[] = { __ATOMIC_RELAXED, __ATOMIC_CONSUME, __ATOMIC_ACQUIRE, __ATOMIC_SEQ_CST, }; for (int m = 0; m < LEN(atomic_load_models); m++) { int model = atomic_load_models[m]; // Test with aligned data. for (int n = 1; n <= LEN(data); n++) { __attribute__((aligned(16))) char dst[LEN(data)] = {0}; __atomic_load_c(n, data, dst, model); if (memcmp(dst, data, n) != 0) abort(); } // Test with unaligned data. for (int n = 1; n < LEN(data); n++) { __attribute__((aligned(16))) char dst[LEN(data)] = {0}; __atomic_load_c(n, data + 1, dst + 1, model); if (memcmp(dst + 1, data + 1, n) != 0) abort(); } set_a_values(V + m); if (__atomic_load_1(&a8, model) != U8(V + m)) abort(); if (__atomic_load_2(&a16, model) != U16(V + m)) abort(); if (__atomic_load_4(&a32, model) != U32(V + m)) abort(); if (__atomic_load_8(&a64, model) != U64(V + m)) abort(); #ifdef TEST_16 if (__atomic_load_16(&a128, model) != V + m) abort(); #endif } } void test_stores(void) { static int atomic_store_models[] = { __ATOMIC_RELAXED, __ATOMIC_RELEASE, __ATOMIC_SEQ_CST, }; for (int m = 0; m < LEN(atomic_store_models); m++) { int model = atomic_store_models[m]; // Test with aligned data. for (int n = 1; n <= LEN(data); n++) { __attribute__((aligned(16))) char dst[LEN(data)]; __atomic_store_c(n, dst, data, model); if (memcmp(data, dst, n) != 0) abort(); } // Test with unaligned data. for (int n = 1; n < LEN(data); n++) { __attribute__((aligned(16))) char dst[LEN(data)]; __atomic_store_c(n, dst + 1, data + 1, model); if (memcmp(data + 1, dst + 1, n) != 0) abort(); } __atomic_store_1(&a8, U8(V + m), model); if (a8 != U8(V + m)) abort(); __atomic_store_2(&a16, U16(V + m), model); if (a16 != U16(V + m)) abort(); __atomic_store_4(&a32, U32(V + m), model); if (a32 != U32(V + m)) abort(); __atomic_store_8(&a64, U64(V + m), model); if (a64 != U64(V + m)) abort(); #ifdef TEST_16 __atomic_store_16(&a128, V + m, model); if (a128 != V + m) abort(); #endif } } void test_exchanges(void) { static int atomic_exchange_models[] = { __ATOMIC_RELAXED, __ATOMIC_ACQUIRE, __ATOMIC_RELEASE, __ATOMIC_ACQ_REL, __ATOMIC_SEQ_CST, }; set_a_values(V); for (int m = 0; m < LEN(atomic_exchange_models); m++) { int model = atomic_exchange_models[m]; // Test with aligned data. for (int n = 1; n <= LEN(data); n++) { __attribute__((aligned(16))) char dst[LEN(data)]; __attribute__((aligned(16))) char old[LEN(data)]; for (int i = 0; i < LEN(dst); i++) dst[i] = i + m; __atomic_exchange_c(n, dst, data, old, model); for (int i = 0; i < n; i++) { if (dst[i] != 0x10 + i || old[i] != i + m) abort(); } } // Test with unaligned data. for (int n = 1; n < LEN(data); n++) { __attribute__((aligned(16))) char dst[LEN(data)]; __attribute__((aligned(16))) char old[LEN(data)]; for (int i = 1; i < LEN(dst); i++) dst[i] = i - 1 + m; __atomic_exchange_c(n, dst + 1, data + 1, old + 1, model); for (int i = 1; i < n; i++) { if (dst[i] != 0x10 + i || old[i] != i - 1 + m) abort(); } } if (__atomic_exchange_1(&a8, U8(V + m + 1), model) != U8(V + m)) abort(); if (__atomic_exchange_2(&a16, U16(V + m + 1), model) != U16(V + m)) abort(); if (__atomic_exchange_4(&a32, U32(V + m + 1), model) != U32(V + m)) abort(); if (__atomic_exchange_8(&a64, U64(V + m + 1), model) != U64(V + m)) abort(); #ifdef TEST_16 if (__atomic_exchange_16(&a128, V + m + 1, model) != V + m) abort(); #endif } } void test_compare_exchanges(void) { static int atomic_compare_exchange_models[] = { __ATOMIC_RELAXED, __ATOMIC_CONSUME, __ATOMIC_ACQUIRE, __ATOMIC_SEQ_CST, __ATOMIC_RELEASE, __ATOMIC_ACQ_REL, }; for (int m1 = 0; m1 < LEN(atomic_compare_exchange_models); m1++) { // Skip the last two: __ATOMIC_RELEASE and __ATOMIC_ACQ_REL. // See for details. for (int m2 = 0; m2 < LEN(atomic_compare_exchange_models) - 2; m2++) { int m_succ = atomic_compare_exchange_models[m1]; int m_fail = atomic_compare_exchange_models[m2]; // Test with aligned data. for (int n = 1; n <= LEN(data); n++) { __attribute__((aligned(16))) char dst[LEN(data)] = {0}; __attribute__((aligned(16))) char exp[LEN(data)] = {0}; if (!__atomic_compare_exchange_c(n, dst, exp, data, m_succ, m_fail)) abort(); if (memcmp(dst, data, n) != 0) abort(); if (__atomic_compare_exchange_c(n, dst, exp, data, m_succ, m_fail)) abort(); if (memcmp(exp, data, n) != 0) abort(); } // Test with unaligned data. for (int n = 1; n < LEN(data); n++) { __attribute__((aligned(16))) char dst[LEN(data)] = {0}; __attribute__((aligned(16))) char exp[LEN(data)] = {0}; if (!__atomic_compare_exchange_c(n, dst + 1, exp + 1, data + 1, m_succ, m_fail)) abort(); if (memcmp(dst + 1, data + 1, n) != 0) abort(); if (__atomic_compare_exchange_c(n, dst + 1, exp + 1, data + 1, m_succ, m_fail)) abort(); if (memcmp(exp + 1, data + 1, n) != 0) abort(); } set_a_values(ONES); set_b_values(ONES * 2); if (__atomic_compare_exchange_1(&a8, &b8, U8(V + m1), m_succ, m_fail)) abort(); if (a8 != U8(ONES) || b8 != U8(ONES)) abort(); if (!__atomic_compare_exchange_1(&a8, &b8, U8(V + m1), m_succ, m_fail)) abort(); if (a8 != U8(V + m1) || b8 != U8(ONES)) abort(); if (__atomic_compare_exchange_2(&a16, &b16, U16(V + m1), m_succ, m_fail)) abort(); if (a16 != U16(ONES) || b16 != U16(ONES)) abort(); if (!__atomic_compare_exchange_2(&a16, &b16, U16(V + m1), m_succ, m_fail)) abort(); if (a16 != U16(V + m1) || b16 != U16(ONES)) abort(); if (__atomic_compare_exchange_4(&a32, &b32, U32(V + m1), m_succ, m_fail)) abort(); if (a32 != U32(ONES) || b32 != U32(ONES)) abort(); if (!__atomic_compare_exchange_4(&a32, &b32, U32(V + m1), m_succ, m_fail)) abort(); if (a32 != U32(V + m1) || b32 != U32(ONES)) abort(); if (__atomic_compare_exchange_8(&a64, &b64, U64(V + m1), m_succ, m_fail)) abort(); if (a64 != U64(ONES) || b64 != U64(ONES)) abort(); if (!__atomic_compare_exchange_8(&a64, &b64, U64(V + m1), m_succ, m_fail)) abort(); if (a64 != U64(V + m1) || b64 != U64(ONES)) abort(); #ifdef TEST_16 if (__atomic_compare_exchange_16(&a128, &b128, V + m1, m_succ, m_fail)) abort(); if (a128 != ONES || b128 != ONES) abort(); if (!__atomic_compare_exchange_16(&a128, &b128, V + m1, m_succ, m_fail)) abort(); if (a128 != V + m1 || b128 != ONES) abort(); #endif } } } void test_fetch_op(void) { static int atomic_fetch_models[] = { __ATOMIC_RELAXED, __ATOMIC_CONSUME, __ATOMIC_ACQUIRE, __ATOMIC_RELEASE, __ATOMIC_ACQ_REL, __ATOMIC_SEQ_CST, }; for (int m = 0; m < LEN(atomic_fetch_models); m++) { int model = atomic_fetch_models[m]; // Fetch add. set_a_values(V + m); set_b_values(0); b8 = __atomic_fetch_add_1(&a8, U8(ONES), model); if (b8 != U8(V + m) || a8 != U8(V + m + ONES)) abort(); b16 = __atomic_fetch_add_2(&a16, U16(ONES), model); if (b16 != U16(V + m) || a16 != U16(V + m + ONES)) abort(); b32 = __atomic_fetch_add_4(&a32, U32(ONES), model); if (b32 != U32(V + m) || a32 != U32(V + m + ONES)) abort(); b64 = __atomic_fetch_add_8(&a64, U64(ONES), model); if (b64 != U64(V + m) || a64 != U64(V + m + ONES)) abort(); #ifdef TEST_16 b128 = __atomic_fetch_add_16(&a128, ONES, model); if (b128 != V + m || a128 != V + m + ONES) abort(); #endif // Fetch sub. set_a_values(V + m); set_b_values(0); b8 = __atomic_fetch_sub_1(&a8, U8(ONES), model); if (b8 != U8(V + m) || a8 != U8(V + m - ONES)) abort(); b16 = __atomic_fetch_sub_2(&a16, U16(ONES), model); if (b16 != U16(V + m) || a16 != U16(V + m - ONES)) abort(); b32 = __atomic_fetch_sub_4(&a32, U32(ONES), model); if (b32 != U32(V + m) || a32 != U32(V + m - ONES)) abort(); b64 = __atomic_fetch_sub_8(&a64, U64(ONES), model); if (b64 != U64(V + m) || a64 != U64(V + m - ONES)) abort(); #ifdef TEST_16 b128 = __atomic_fetch_sub_16(&a128, ONES, model); if (b128 != V + m || a128 != V + m - ONES) abort(); #endif // Fetch and. set_a_values(V + m); set_b_values(0); b8 = __atomic_fetch_and_1(&a8, U8(V + m), model); if (b8 != U8(V + m) || a8 != U8(V + m)) abort(); b16 = __atomic_fetch_and_2(&a16, U16(V + m), model); if (b16 != U16(V + m) || a16 != U16(V + m)) abort(); b32 = __atomic_fetch_and_4(&a32, U32(V + m), model); if (b32 != U32(V + m) || a32 != U32(V + m)) abort(); b64 = __atomic_fetch_and_8(&a64, U64(V + m), model); if (b64 != U64(V + m) || a64 != U64(V + m)) abort(); #ifdef TEST_16 b128 = __atomic_fetch_and_16(&a128, V + m, model); if (b128 != V + m || a128 != V + m) abort(); #endif // Fetch or. set_a_values(V + m); set_b_values(0); b8 = __atomic_fetch_or_1(&a8, U8(ONES), model); if (b8 != U8(V + m) || a8 != U8((V + m) | ONES)) abort(); b16 = __atomic_fetch_or_2(&a16, U16(ONES), model); if (b16 != U16(V + m) || a16 != U16((V + m) | ONES)) abort(); b32 = __atomic_fetch_or_4(&a32, U32(ONES), model); if (b32 != U32(V + m) || a32 != U32((V + m) | ONES)) abort(); b64 = __atomic_fetch_or_8(&a64, U64(ONES), model); if (b64 != U64(V + m) || a64 != U64((V + m) | ONES)) abort(); #ifdef TEST_16 b128 = __atomic_fetch_or_16(&a128, ONES, model); if (b128 != V + m || a128 != ((V + m) | ONES)) abort(); #endif // Fetch xor. set_a_values(V + m); set_b_values(0); b8 = __atomic_fetch_xor_1(&a8, U8(ONES), model); if (b8 != U8(V + m) || a8 != U8((V + m) ^ ONES)) abort(); b16 = __atomic_fetch_xor_2(&a16, U16(ONES), model); if (b16 != U16(V + m) || a16 != U16((V + m) ^ ONES)) abort(); b32 = __atomic_fetch_xor_4(&a32, U32(ONES), model); if (b32 != U32(V + m) || a32 != U32((V + m) ^ ONES)) abort(); b64 = __atomic_fetch_xor_8(&a64, U64(ONES), model); if (b64 != U64(V + m) || a64 != U64((V + m) ^ ONES)) abort(); #ifdef TEST_16 b128 = __atomic_fetch_xor_16(&a128, ONES, model); if (b128 != (V + m) || a128 != ((V + m) ^ ONES)) abort(); #endif // Fetch nand. set_a_values(V + m); set_b_values(0); b8 = __atomic_fetch_nand_1(&a8, U8(ONES), model); if (b8 != U8(V + m) || a8 != U8(~((V + m) & ONES))) abort(); b16 = __atomic_fetch_nand_2(&a16, U16(ONES), model); if (b16 != U16(V + m) || a16 != U16(~((V + m) & ONES))) abort(); b32 = __atomic_fetch_nand_4(&a32, U32(ONES), model); if (b32 != U32(V + m) || a32 != U32(~((V + m) & ONES))) abort(); b64 = __atomic_fetch_nand_8(&a64, U64(ONES), model); if (b64 != U64(V + m) || a64 != U64(~((V + m) & ONES))) abort(); #ifdef TEST_16 b128 = __atomic_fetch_nand_16(&a128, ONES, model); if (b128 != (V + m) || a128 != ~((V + m) & ONES)) abort(); #endif // Check signed integer overflow behavior set_a_values(V + m); __atomic_fetch_add_1(&a8, U8(V), model); if (a8 != U8(V * 2 + m)) abort(); __atomic_fetch_sub_1(&a8, U8(V), model); if (a8 != U8(V + m)) abort(); __atomic_fetch_add_2(&a16, U16(V), model); if (a16 != U16(V * 2 + m)) abort(); __atomic_fetch_sub_2(&a16, U16(V), model); if (a16 != U16(V + m)) abort(); __atomic_fetch_add_4(&a32, U32(V), model); if (a32 != U32(V * 2 + m)) abort(); __atomic_fetch_sub_4(&a32, U32(V), model); if (a32 != U32(V + m)) abort(); __atomic_fetch_add_8(&a64, U64(V), model); if (a64 != U64(V * 2 + m)) abort(); __atomic_fetch_sub_8(&a64, U64(V), model); if (a64 != U64(V + m)) abort(); #ifdef TEST_16 __atomic_fetch_add_16(&a128, V, model); if (a128 != V * 2 + m) abort(); __atomic_fetch_sub_16(&a128, V, model); if (a128 != V + m) abort(); #endif } } void test_is_lock_free(void) { // The result of __atomic_is_lock_free is architecture dependent, so we only // check for a true return value for the sizes where we know that at compile // time that they are supported. If __atomic_always_lock_free() returns false // for a given size, we can only check that __atomic_is_lock_free() returns // false for unaligned values. // Note: This assumption will have to be revisited when we support an // architecture that allows for unaligned atomics. // XXX: Do any architectures report true for unaligned atomics? // All atomic.c implementations fall back to the non-specialized case for // size=0, so despite the operation being a no-op, they still take locks and // therefore __atomic_is_lock_free should return false. assert(!__atomic_is_lock_free_c(0, NULL) && "size zero should never be lock-free"); assert(!__atomic_is_lock_free_c(0, (void *)8) && "size zero should never be lock-free"); if (__atomic_always_lock_free(1, 0)) { assert(__atomic_is_lock_free_c(1, NULL) && "aligned size=1 should always be lock-free"); assert(__atomic_is_lock_free_c(1, (void *)1) && "aligned size=1 should always be lock-free"); } if (__atomic_always_lock_free(2, 0)) { assert(__atomic_is_lock_free_c(2, NULL) && "aligned size=2 should always be lock-free"); assert(__atomic_is_lock_free_c(2, (void *)2) && "aligned size=2 should always be lock-free"); } assert(!__atomic_is_lock_free_c(2, (void *)1) && "unaligned size=2 should not be lock-free"); if (__atomic_always_lock_free(4, 0)) { assert(__atomic_is_lock_free_c(4, NULL) && "aligned size=4 should always be lock-free"); assert(__atomic_is_lock_free_c(4, (void *)4) && "aligned size=4 should always be lock-free"); } assert(!__atomic_is_lock_free_c(4, (void *)3) && "unaligned size=4 should not be lock-free"); assert(!__atomic_is_lock_free_c(4, (void *)2) && "unaligned size=4 should not be lock-free"); assert(!__atomic_is_lock_free_c(4, (void *)1) && "unaligned size=4 should not be lock-free"); if (__atomic_always_lock_free(8, 0)) { assert(__atomic_is_lock_free_c(8, NULL) && "aligned size=8 should always be lock-free"); assert(__atomic_is_lock_free_c(8, (void *)8) && "aligned size=8 should always be lock-free"); } assert(!__atomic_is_lock_free_c(8, (void *)7) && "unaligned size=8 should not be lock-free"); assert(!__atomic_is_lock_free_c(8, (void *)4) && "unaligned size=8 should not be lock-free"); assert(!__atomic_is_lock_free_c(8, (void *)2) && "unaligned size=8 should not be lock-free"); assert(!__atomic_is_lock_free_c(8, (void *)1) && "unaligned size=8 should not be lock-free"); if (__atomic_always_lock_free(16, 0)) { assert(__atomic_is_lock_free_c(16, NULL) && "aligned size=16 should always be lock-free"); assert(__atomic_is_lock_free_c(16, (void *)16) && "aligned size=16 should always be lock-free"); } assert(!__atomic_is_lock_free_c(16, (void *)15) && "unaligned size=16 should not be lock-free"); assert(!__atomic_is_lock_free_c(16, (void *)8) && "unaligned size=16 should not be lock-free"); assert(!__atomic_is_lock_free_c(16, (void *)4) && "unaligned size=16 should not be lock-free"); assert(!__atomic_is_lock_free_c(16, (void *)2) && "unaligned size=16 should not be lock-free"); assert(!__atomic_is_lock_free_c(16, (void *)1) && "unaligned size=16 should not be lock-free"); // In the current implementation > 16 bytes are never lock-free: assert(!__atomic_is_lock_free_c(32, NULL) && "aligned size=32 should not be lock-free"); assert(!__atomic_is_lock_free_c(32, (void*)32) && "aligned size=32 should not be lock-free"); assert(!__atomic_is_lock_free_c(32, (void*)31) && "unaligned size=32 should not be lock-free"); // We also don't support non-power-of-two sizes: assert(!__atomic_is_lock_free_c(3, NULL) && "aligned size=3 should not be lock-free"); assert(!__atomic_is_lock_free_c(5, NULL) && "aligned size=5 should not be lock-free"); assert(!__atomic_is_lock_free_c(6, NULL) && "aligned size=6 should not be lock-free"); assert(!__atomic_is_lock_free_c(7, NULL) && "aligned size=7 should not be lock-free"); assert(!__atomic_is_lock_free_c(9, NULL) && "aligned size=9 should not be lock-free"); assert(!__atomic_is_lock_free_c(10, NULL) && "aligned size=10 should not be lock-free"); assert(!__atomic_is_lock_free_c(11, NULL) && "aligned size=11 should not be lock-free"); assert(!__atomic_is_lock_free_c(12, NULL) && "aligned size=12 should not be lock-free"); assert(!__atomic_is_lock_free_c(13, NULL) && "aligned size=13 should not be lock-free"); assert(!__atomic_is_lock_free_c(14, NULL) && "aligned size=14 should not be lock-free"); assert(!__atomic_is_lock_free_c(15, NULL) && "aligned size=15 should not be lock-free"); assert(!__atomic_is_lock_free_c(17, NULL) && "aligned size=17 should not be lock-free"); } int main() { test_loads(); test_stores(); test_exchanges(); test_compare_exchanges(); test_fetch_op(); test_is_lock_free(); return 0; }