//===-- TargetRewrite.cpp -------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // Target rewrite: rewriting of ops to make target-specific lowerings manifest. // LLVM expects different lowering idioms to be used for distinct target // triples. These distinctions are handled by this pass. // // Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/ // //===----------------------------------------------------------------------===// #include "flang/Optimizer/CodeGen/CodeGen.h" #include "flang/Optimizer/Builder/Character.h" #include "flang/Optimizer/Builder/FIRBuilder.h" #include "flang/Optimizer/Builder/Todo.h" #include "flang/Optimizer/CodeGen/Target.h" #include "flang/Optimizer/Dialect/FIRDialect.h" #include "flang/Optimizer/Dialect/FIROps.h" #include "flang/Optimizer/Dialect/FIROpsSupport.h" #include "flang/Optimizer/Dialect/FIRType.h" #include "flang/Optimizer/Dialect/Support/FIRContext.h" #include "flang/Optimizer/Support/DataLayout.h" #include "mlir/Dialect/DLTI/DLTI.h" #include "mlir/Transforms/DialectConversion.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/TypeSwitch.h" #include "llvm/Support/Debug.h" #include namespace fir { #define GEN_PASS_DEF_TARGETREWRITEPASS #include "flang/Optimizer/CodeGen/CGPasses.h.inc" } // namespace fir #define DEBUG_TYPE "flang-target-rewrite" namespace { /// Fixups for updating a FuncOp's arguments and return values. struct FixupTy { enum class Codes { ArgumentAsLoad, ArgumentType, CharPair, ReturnAsStore, ReturnType, Split, Trailing, TrailingCharProc }; FixupTy(Codes code, std::size_t index, std::size_t second = 0) : code{code}, index{index}, second{second} {} FixupTy(Codes code, std::size_t index, std::function &&finalizer) : code{code}, index{index}, finalizer{finalizer} {} FixupTy(Codes code, std::size_t index, std::size_t second, std::function &&finalizer) : code{code}, index{index}, second{second}, finalizer{finalizer} {} Codes code; std::size_t index; std::size_t second{}; std::optional> finalizer{}; }; // namespace /// Target-specific rewriting of the FIR. This is a prerequisite pass to code /// generation that traverses the FIR and modifies types and operations to a /// form that is appropriate for the specific target. LLVM IR has specific /// idioms that are used for distinct target processor and ABI combinations. class TargetRewrite : public fir::impl::TargetRewritePassBase { public: TargetRewrite(const fir::TargetRewriteOptions &options) { noCharacterConversion = options.noCharacterConversion; noComplexConversion = options.noComplexConversion; noStructConversion = options.noStructConversion; } void runOnOperation() override final { auto &context = getContext(); mlir::OpBuilder rewriter(&context); auto mod = getModule(); if (!forcedTargetTriple.empty()) fir::setTargetTriple(mod, forcedTargetTriple); // TargetRewrite will require querying the type storage sizes, if it was // not set already, create a DataLayoutSpec for the ModuleOp now. std::optional dl = fir::support::getOrSetDataLayout(mod, /*allowDefaultLayout=*/true); if (!dl) { mlir::emitError(mod.getLoc(), "module operation must carry a data layout attribute " "to perform target ABI rewrites on FIR"); signalPassFailure(); return; } auto specifics = fir::CodeGenSpecifics::get(mod.getContext(), fir::getTargetTriple(mod), fir::getKindMapping(mod), *dl); setMembers(specifics.get(), &rewriter, &*dl); // We may need to call stacksave/stackrestore later, so // create the FuncOps beforehand. fir::FirOpBuilder builder(rewriter, mod); builder.setInsertionPointToStart(mod.getBody()); stackSaveFn = fir::factory::getLlvmStackSave(builder); stackRestoreFn = fir::factory::getLlvmStackRestore(builder); // Perform type conversion on signatures and call sites. if (mlir::failed(convertTypes(mod))) { mlir::emitError(mlir::UnknownLoc::get(&context), "error in converting types to target abi"); signalPassFailure(); } // Convert ops in target-specific patterns. mod.walk([&](mlir::Operation *op) { if (auto call = mlir::dyn_cast(op)) { if (!hasPortableSignature(call.getFunctionType(), op)) convertCallOp(call); } else if (auto dispatch = mlir::dyn_cast(op)) { if (!hasPortableSignature(dispatch.getFunctionType(), op)) convertCallOp(dispatch); } else if (auto addr = mlir::dyn_cast(op)) { if (addr.getType().isa() && !hasPortableSignature(addr.getType(), op)) convertAddrOp(addr); } }); clearMembers(); } mlir::ModuleOp getModule() { return getOperation(); } template std::optional> rewriteCallComplexResultType( mlir::Location loc, A ty, B &newResTys, fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs, C &newOpers, mlir::Value &savedStackPtr) { if (noComplexConversion) { newResTys.push_back(ty); return std::nullopt; } auto m = specifics->complexReturnType(loc, ty.getElementType()); // Currently targets mandate COMPLEX is a single aggregate or packed // scalar, including the sret case. assert(m.size() == 1 && "target of complex return not supported"); auto resTy = std::get(m[0]); auto attr = std::get(m[0]); if (attr.isSRet()) { assert(fir::isa_ref_type(resTy) && "must be a memory reference type"); // Save the stack pointer, if it has not been saved for this call yet. // We will need to restore it after the call, because the alloca // needs to be deallocated. if (!savedStackPtr) savedStackPtr = genStackSave(loc); mlir::Value stack = rewriter->create(loc, fir::dyn_cast_ptrEleTy(resTy)); newInTyAndAttrs.push_back(m[0]); newOpers.push_back(stack); return [=](mlir::Operation *) -> mlir::Value { auto memTy = fir::ReferenceType::get(ty); auto cast = rewriter->create(loc, memTy, stack); return rewriter->create(loc, cast); }; } newResTys.push_back(resTy); return [=, &savedStackPtr](mlir::Operation *call) -> mlir::Value { // We are going to generate an alloca, so save the stack pointer. if (!savedStackPtr) savedStackPtr = genStackSave(loc); return this->convertValueInMemory(loc, call->getResult(0), ty, /*inputMayBeBigger=*/true); }; } void passArgumentOnStackOrWithNewType( mlir::Location loc, fir::CodeGenSpecifics::TypeAndAttr newTypeAndAttr, mlir::Type oldType, mlir::Value oper, llvm::SmallVectorImpl &newOpers, mlir::Value &savedStackPtr) { auto resTy = std::get(newTypeAndAttr); auto attr = std::get(newTypeAndAttr); // We are going to generate an alloca, so save the stack pointer. if (!savedStackPtr) savedStackPtr = genStackSave(loc); if (attr.isByVal()) { mlir::Value mem = rewriter->create(loc, oldType); rewriter->create(loc, oper, mem); if (mem.getType() != resTy) mem = rewriter->create(loc, resTy, mem); newOpers.push_back(mem); } else { mlir::Value bitcast = convertValueInMemory(loc, oper, resTy, /*inputMayBeBigger=*/false); newOpers.push_back(bitcast); } } // Do a bitcast (convert a value via its memory representation). // The input and output types may have different storage sizes, // "inputMayBeBigger" should be set to indicate which of the input or // output type may be bigger in order for the load/store to be safe. // The mismatch comes from the fact that the LLVM register used for passing // may be bigger than the value being passed (e.g., passing // a `!fir.type}>` into an i32 LLVM register). mlir::Value convertValueInMemory(mlir::Location loc, mlir::Value value, mlir::Type newType, bool inputMayBeBigger) { if (inputMayBeBigger) { auto newRefTy = fir::ReferenceType::get(newType); auto mem = rewriter->create(loc, value.getType()); rewriter->create(loc, value, mem); auto cast = rewriter->create(loc, newRefTy, mem); return rewriter->create(loc, cast); } else { auto oldRefTy = fir::ReferenceType::get(value.getType()); auto mem = rewriter->create(loc, newType); auto cast = rewriter->create(loc, oldRefTy, mem); rewriter->create(loc, value, cast); return rewriter->create(loc, mem); } } void passSplitArgument(mlir::Location loc, fir::CodeGenSpecifics::Marshalling splitArgs, mlir::Type oldType, mlir::Value oper, llvm::SmallVectorImpl &newOpers, mlir::Value &savedStackPtr) { // COMPLEX or struct argument split into separate arguments if (!fir::isa_complex(oldType)) { // Cast original operand to a tuple of the new arguments // via memory. llvm::SmallVector partTypes; for (auto argPart : splitArgs) partTypes.push_back(std::get(argPart)); mlir::Type tupleType = mlir::TupleType::get(oldType.getContext(), partTypes); if (!savedStackPtr) savedStackPtr = genStackSave(loc); oper = convertValueInMemory(loc, oper, tupleType, /*inputMayBeBigger=*/false); } auto iTy = rewriter->getIntegerType(32); for (auto e : llvm::enumerate(splitArgs)) { auto &tup = e.value(); auto ty = std::get(tup); auto index = e.index(); auto idx = rewriter->getIntegerAttr(iTy, index); auto val = rewriter->create( loc, ty, oper, rewriter->getArrayAttr(idx)); newOpers.push_back(val); } } void rewriteCallOperands( mlir::Location loc, fir::CodeGenSpecifics::Marshalling passArgAs, mlir::Type originalArgTy, mlir::Value oper, llvm::SmallVectorImpl &newOpers, mlir::Value &savedStackPtr, fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs) { if (passArgAs.size() == 1) { // COMPLEX or derived type is passed as a single argument. passArgumentOnStackOrWithNewType(loc, passArgAs[0], originalArgTy, oper, newOpers, savedStackPtr); } else { // COMPLEX or derived type is split into separate arguments passSplitArgument(loc, passArgAs, originalArgTy, oper, newOpers, savedStackPtr); } newInTyAndAttrs.insert(newInTyAndAttrs.end(), passArgAs.begin(), passArgAs.end()); } template void rewriteCallComplexInputType( mlir::Location loc, CPLX ty, mlir::Value oper, fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs, llvm::SmallVectorImpl &newOpers, mlir::Value &savedStackPtr) { if (noComplexConversion) { newInTyAndAttrs.push_back(fir::CodeGenSpecifics::getTypeAndAttr(ty)); newOpers.push_back(oper); return; } auto m = specifics->complexArgumentType(loc, ty.getElementType()); rewriteCallOperands(loc, m, ty, oper, newOpers, savedStackPtr, newInTyAndAttrs); } void rewriteCallStructInputType( mlir::Location loc, fir::RecordType recTy, mlir::Value oper, fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs, llvm::SmallVectorImpl &newOpers, mlir::Value &savedStackPtr) { if (noStructConversion) { newInTyAndAttrs.push_back(fir::CodeGenSpecifics::getTypeAndAttr(recTy)); newOpers.push_back(oper); return; } auto structArgs = specifics->structArgumentType(loc, recTy, newInTyAndAttrs); rewriteCallOperands(loc, structArgs, recTy, oper, newOpers, savedStackPtr, newInTyAndAttrs); } static bool hasByValOrSRetArgs( const fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs) { return llvm::any_of(newInTyAndAttrs, [](auto arg) { const auto &attr = std::get(arg); return attr.isByVal() || attr.isSRet(); }); } // Convert fir.call and fir.dispatch Ops. template void convertCallOp(A callOp) { auto fnTy = callOp.getFunctionType(); auto loc = callOp.getLoc(); rewriter->setInsertionPoint(callOp); llvm::SmallVector newResTys; fir::CodeGenSpecifics::Marshalling newInTyAndAttrs; llvm::SmallVector newOpers; mlir::Value savedStackPtr = nullptr; // If the call is indirect, the first argument must still be the function // to call. int dropFront = 0; if constexpr (std::is_same_v, fir::CallOp>) { if (!callOp.getCallee()) { newInTyAndAttrs.push_back( fir::CodeGenSpecifics::getTypeAndAttr(fnTy.getInput(0))); newOpers.push_back(callOp.getOperand(0)); dropFront = 1; } } else { dropFront = 1; // First operand is the polymorphic object. } // Determine the rewrite function, `wrap`, for the result value. std::optional> wrap; if (fnTy.getResults().size() == 1) { mlir::Type ty = fnTy.getResult(0); llvm::TypeSwitch(ty) .template Case([&](fir::ComplexType cmplx) { wrap = rewriteCallComplexResultType(loc, cmplx, newResTys, newInTyAndAttrs, newOpers, savedStackPtr); }) .template Case([&](mlir::ComplexType cmplx) { wrap = rewriteCallComplexResultType(loc, cmplx, newResTys, newInTyAndAttrs, newOpers, savedStackPtr); }) .Default([&](mlir::Type ty) { newResTys.push_back(ty); }); } else if (fnTy.getResults().size() > 1) { TODO(loc, "multiple results not supported yet"); } llvm::SmallVector trailingInTys; llvm::SmallVector trailingOpers; unsigned passArgShift = 0; for (auto e : llvm::enumerate( llvm::zip(fnTy.getInputs().drop_front(dropFront), callOp.getOperands().drop_front(dropFront)))) { mlir::Type ty = std::get<0>(e.value()); mlir::Value oper = std::get<1>(e.value()); unsigned index = e.index(); llvm::TypeSwitch(ty) .template Case([&](fir::BoxCharType boxTy) { bool sret; if constexpr (std::is_same_v, fir::CallOp>) { if (noCharacterConversion) { newInTyAndAttrs.push_back( fir::CodeGenSpecifics::getTypeAndAttr(boxTy)); newOpers.push_back(oper); return; } sret = callOp.getCallee() && functionArgIsSRet( index, getModule().lookupSymbol( *callOp.getCallee())); } else { // TODO: dispatch case; how do we put arguments on a call? // We cannot put both an sret and the dispatch object first. sret = false; TODO(loc, "dispatch + sret not supported yet"); } auto m = specifics->boxcharArgumentType(boxTy.getEleTy(), sret); auto unbox = rewriter->create( loc, std::get(m[0]), std::get(m[1]), oper); // unboxed CHARACTER arguments for (auto e : llvm::enumerate(m)) { unsigned idx = e.index(); auto attr = std::get(e.value()); auto argTy = std::get(e.value()); if (attr.isAppend()) { trailingInTys.push_back(argTy); trailingOpers.push_back(unbox.getResult(idx)); } else { newInTyAndAttrs.push_back(e.value()); newOpers.push_back(unbox.getResult(idx)); } } }) .template Case([&](fir::ComplexType cmplx) { rewriteCallComplexInputType(loc, cmplx, oper, newInTyAndAttrs, newOpers, savedStackPtr); }) .template Case([&](mlir::ComplexType cmplx) { rewriteCallComplexInputType(loc, cmplx, oper, newInTyAndAttrs, newOpers, savedStackPtr); }) .template Case([&](fir::RecordType recTy) { rewriteCallStructInputType(loc, recTy, oper, newInTyAndAttrs, newOpers, savedStackPtr); }) .template Case([&](mlir::TupleType tuple) { if (fir::isCharacterProcedureTuple(tuple)) { mlir::ModuleOp module = getModule(); if constexpr (std::is_same_v, fir::CallOp>) { if (callOp.getCallee()) { llvm::StringRef charProcAttr = fir::getCharacterProcedureDummyAttrName(); // The charProcAttr attribute is only used as a safety to // confirm that this is a dummy procedure and should be split. // It cannot be used to match because attributes are not // available in case of indirect calls. auto funcOp = module.lookupSymbol( *callOp.getCallee()); if (funcOp && !funcOp.template getArgAttrOfType( index, charProcAttr)) mlir::emitError(loc, "tuple argument will be split even " "though it does not have the `" + charProcAttr + "` attribute"); } } mlir::Type funcPointerType = tuple.getType(0); mlir::Type lenType = tuple.getType(1); fir::FirOpBuilder builder(*rewriter, module); auto [funcPointer, len] = fir::factory::extractCharacterProcedureTuple(builder, loc, oper); newInTyAndAttrs.push_back( fir::CodeGenSpecifics::getTypeAndAttr(funcPointerType)); newOpers.push_back(funcPointer); trailingInTys.push_back(lenType); trailingOpers.push_back(len); } else { newInTyAndAttrs.push_back( fir::CodeGenSpecifics::getTypeAndAttr(tuple)); newOpers.push_back(oper); } }) .Default([&](mlir::Type ty) { if constexpr (std::is_same_v, fir::DispatchOp>) { if (callOp.getPassArgPos() && *callOp.getPassArgPos() == index) passArgShift = newOpers.size() - *callOp.getPassArgPos(); } newInTyAndAttrs.push_back( fir::CodeGenSpecifics::getTypeAndAttr(ty)); newOpers.push_back(oper); }); } llvm::SmallVector newInTypes = toTypeList(newInTyAndAttrs); newInTypes.insert(newInTypes.end(), trailingInTys.begin(), trailingInTys.end()); newOpers.insert(newOpers.end(), trailingOpers.begin(), trailingOpers.end()); llvm::SmallVector newCallResults; if constexpr (std::is_same_v, fir::CallOp>) { fir::CallOp newCall; if (callOp.getCallee()) { newCall = rewriter->create(loc, *callOp.getCallee(), newResTys, newOpers); } else { // TODO: llvm dialect must be updated to propagate argument on // attributes for indirect calls. See: // https://discourse.llvm.org/t/should-llvm-callop-be-able-to-carry-argument-attributes-for-indirect-calls/75431 if (hasByValOrSRetArgs(newInTyAndAttrs)) TODO(loc, "passing argument or result on the stack in indirect calls"); newOpers[0].setType(mlir::FunctionType::get( callOp.getContext(), mlir::TypeRange{newInTypes}.drop_front(dropFront), newResTys)); newCall = rewriter->create(loc, newResTys, newOpers); } LLVM_DEBUG(llvm::dbgs() << "replacing call with " << newCall << '\n'); if (wrap) newCallResults.push_back((*wrap)(newCall.getOperation())); else newCallResults.append(newCall.result_begin(), newCall.result_end()); } else { fir::DispatchOp dispatchOp = rewriter->create( loc, newResTys, rewriter->getStringAttr(callOp.getMethod()), callOp.getOperands()[0], newOpers, rewriter->getI32IntegerAttr(*callOp.getPassArgPos() + passArgShift)); if (wrap) newCallResults.push_back((*wrap)(dispatchOp.getOperation())); else newCallResults.append(dispatchOp.result_begin(), dispatchOp.result_end()); } if (newCallResults.size() <= 1) { if (savedStackPtr) { if (newCallResults.size() == 1) { // We assume that all the allocas are inserted before // the operation that defines the new call result. rewriter->setInsertionPointAfterValue(newCallResults[0]); } else { // If the call does not have results, then insert // stack restore after the original call operation. rewriter->setInsertionPointAfter(callOp); } genStackRestore(loc, savedStackPtr); } replaceOp(callOp, newCallResults); } else { // The TODO is duplicated here to make sure this part // handles the stackrestore insertion properly, if // we add support for multiple call results. TODO(loc, "multiple results not supported yet"); } } // Result type fixup for fir::ComplexType and mlir::ComplexType template void lowerComplexSignatureRes( mlir::Location loc, A cmplx, B &newResTys, fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs) { if (noComplexConversion) { newResTys.push_back(cmplx); return; } for (auto &tup : specifics->complexReturnType(loc, cmplx.getElementType())) { auto argTy = std::get(tup); if (std::get(tup).isSRet()) newInTyAndAttrs.push_back(tup); else newResTys.push_back(argTy); } } // Argument type fixup for fir::ComplexType and mlir::ComplexType template void lowerComplexSignatureArg( mlir::Location loc, A cmplx, fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs) { if (noComplexConversion) { newInTyAndAttrs.push_back(fir::CodeGenSpecifics::getTypeAndAttr(cmplx)); } else { auto cplxArgs = specifics->complexArgumentType(loc, cmplx.getElementType()); newInTyAndAttrs.insert(newInTyAndAttrs.end(), cplxArgs.begin(), cplxArgs.end()); } } void lowerStructSignatureArg(mlir::Location loc, fir::RecordType recTy, fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs) { if (noStructConversion) { newInTyAndAttrs.push_back(fir::CodeGenSpecifics::getTypeAndAttr(recTy)); return; } auto structArgs = specifics->structArgumentType(loc, recTy, newInTyAndAttrs); newInTyAndAttrs.insert(newInTyAndAttrs.end(), structArgs.begin(), structArgs.end()); } llvm::SmallVector toTypeList(const fir::CodeGenSpecifics::Marshalling &marshalled) { llvm::SmallVector typeList; for (auto &typeAndAttr : marshalled) typeList.emplace_back(std::get(typeAndAttr)); return typeList; } /// Taking the address of a function. Modify the signature as needed. void convertAddrOp(fir::AddrOfOp addrOp) { rewriter->setInsertionPoint(addrOp); auto addrTy = addrOp.getType().cast(); fir::CodeGenSpecifics::Marshalling newInTyAndAttrs; llvm::SmallVector newResTys; auto loc = addrOp.getLoc(); for (mlir::Type ty : addrTy.getResults()) { llvm::TypeSwitch(ty) .Case([&](fir::ComplexType ty) { lowerComplexSignatureRes(loc, ty, newResTys, newInTyAndAttrs); }) .Case([&](mlir::ComplexType ty) { lowerComplexSignatureRes(loc, ty, newResTys, newInTyAndAttrs); }) .Default([&](mlir::Type ty) { newResTys.push_back(ty); }); } llvm::SmallVector trailingInTys; for (mlir::Type ty : addrTy.getInputs()) { llvm::TypeSwitch(ty) .Case([&](auto box) { if (noCharacterConversion) { newInTyAndAttrs.push_back( fir::CodeGenSpecifics::getTypeAndAttr(box)); } else { for (auto &tup : specifics->boxcharArgumentType(box.getEleTy())) { auto attr = std::get(tup); auto argTy = std::get(tup); if (attr.isAppend()) trailingInTys.push_back(argTy); else newInTyAndAttrs.push_back(tup); } } }) .Case([&](fir::ComplexType ty) { lowerComplexSignatureArg(loc, ty, newInTyAndAttrs); }) .Case([&](mlir::ComplexType ty) { lowerComplexSignatureArg(loc, ty, newInTyAndAttrs); }) .Case([&](mlir::TupleType tuple) { if (fir::isCharacterProcedureTuple(tuple)) { newInTyAndAttrs.push_back( fir::CodeGenSpecifics::getTypeAndAttr(tuple.getType(0))); trailingInTys.push_back(tuple.getType(1)); } else { newInTyAndAttrs.push_back( fir::CodeGenSpecifics::getTypeAndAttr(ty)); } }) .template Case([&](fir::RecordType recTy) { lowerStructSignatureArg(loc, recTy, newInTyAndAttrs); }) .Default([&](mlir::Type ty) { newInTyAndAttrs.push_back( fir::CodeGenSpecifics::getTypeAndAttr(ty)); }); } llvm::SmallVector newInTypes = toTypeList(newInTyAndAttrs); // append trailing input types newInTypes.insert(newInTypes.end(), trailingInTys.begin(), trailingInTys.end()); // replace this op with a new one with the updated signature auto newTy = rewriter->getFunctionType(newInTypes, newResTys); auto newOp = rewriter->create(addrOp.getLoc(), newTy, addrOp.getSymbol()); replaceOp(addrOp, newOp.getResult()); } /// Convert the type signatures on all the functions present in the module. /// As the type signature is being changed, this must also update the /// function itself to use any new arguments, etc. mlir::LogicalResult convertTypes(mlir::ModuleOp mod) { for (auto fn : mod.getOps()) convertSignature(fn); return mlir::success(); } // Returns true if the function should be interoperable with C. static bool isFuncWithCCallingConvention(mlir::Operation *op) { auto funcOp = mlir::dyn_cast(op); if (!funcOp) return false; return op->hasAttrOfType( fir::FIROpsDialect::getFirRuntimeAttrName()) || op->hasAttrOfType(fir::getSymbolAttrName()); } /// If the signature does not need any special target-specific conversions, /// then it is considered portable for any target, and this function will /// return `true`. Otherwise, the signature is not portable and `false` is /// returned. bool hasPortableSignature(mlir::Type signature, mlir::Operation *op) { assert(signature.isa()); auto func = signature.dyn_cast(); bool hasCCallingConv = isFuncWithCCallingConvention(op); for (auto ty : func.getResults()) if ((ty.isa() && !noCharacterConversion) || (fir::isa_complex(ty) && !noComplexConversion) || (ty.isa() && hasCCallingConv)) { LLVM_DEBUG(llvm::dbgs() << "rewrite " << signature << " for target\n"); return false; } for (auto ty : func.getInputs()) if (((ty.isa() || fir::isCharacterProcedureTuple(ty)) && !noCharacterConversion) || (fir::isa_complex(ty) && !noComplexConversion) || (ty.isa() && hasCCallingConv) || (ty.isa() && !noStructConversion)) { LLVM_DEBUG(llvm::dbgs() << "rewrite " << signature << " for target\n"); return false; } return true; } /// Determine if the signature has host associations. The host association /// argument may need special target specific rewriting. static bool hasHostAssociations(mlir::func::FuncOp func) { std::size_t end = func.getFunctionType().getInputs().size(); for (std::size_t i = 0; i < end; ++i) if (func.getArgAttrOfType(i, fir::getHostAssocAttrName())) return true; return false; } /// Rewrite the signatures and body of the `FuncOp`s in the module for /// the immediately subsequent target code gen. void convertSignature(mlir::func::FuncOp func) { auto funcTy = func.getFunctionType().cast(); if (hasPortableSignature(funcTy, func) && !hasHostAssociations(func)) return; llvm::SmallVector newResTys; fir::CodeGenSpecifics::Marshalling newInTyAndAttrs; llvm::SmallVector> savedAttrs; llvm::SmallVector> extraAttrs; llvm::SmallVector fixups; llvm::SmallVector, 1> resultAttrs; // Save argument attributes in case there is a shift so we can replace them // correctly. for (auto e : llvm::enumerate(funcTy.getInputs())) { unsigned index = e.index(); llvm::ArrayRef attrs = mlir::function_interface_impl::getArgAttrs(func, index); for (mlir::NamedAttribute attr : attrs) { savedAttrs.push_back({index, attr}); } } // Convert return value(s) for (auto ty : funcTy.getResults()) llvm::TypeSwitch(ty) .Case([&](fir::ComplexType cmplx) { if (noComplexConversion) newResTys.push_back(cmplx); else doComplexReturn(func, cmplx, newResTys, newInTyAndAttrs, fixups); }) .Case([&](mlir::ComplexType cmplx) { if (noComplexConversion) newResTys.push_back(cmplx); else doComplexReturn(func, cmplx, newResTys, newInTyAndAttrs, fixups); }) .Case([&](mlir::IntegerType intTy) { auto m = specifics->integerArgumentType(func.getLoc(), intTy); assert(m.size() == 1); auto attr = std::get(m[0]); auto retTy = std::get(m[0]); std::size_t resId = newResTys.size(); llvm::StringRef extensionAttrName = attr.getIntExtensionAttrName(); if (!extensionAttrName.empty() && isFuncWithCCallingConvention(func)) resultAttrs.emplace_back( resId, rewriter->getNamedAttr(extensionAttrName, rewriter->getUnitAttr())); newResTys.push_back(retTy); }) .Default([&](mlir::Type ty) { newResTys.push_back(ty); }); // Saved potential shift in argument. Handling of result can add arguments // at the beginning of the function signature. unsigned argumentShift = newInTyAndAttrs.size(); // Convert arguments llvm::SmallVector trailingTys; for (auto e : llvm::enumerate(funcTy.getInputs())) { auto ty = e.value(); unsigned index = e.index(); llvm::TypeSwitch(ty) .Case([&](fir::BoxCharType boxTy) { if (noCharacterConversion) { newInTyAndAttrs.push_back( fir::CodeGenSpecifics::getTypeAndAttr(boxTy)); } else { // Convert a CHARACTER argument type. This can involve separating // the pointer and the LEN into two arguments and moving the LEN // argument to the end of the arg list. bool sret = functionArgIsSRet(index, func); for (auto e : llvm::enumerate(specifics->boxcharArgumentType( boxTy.getEleTy(), sret))) { auto &tup = e.value(); auto index = e.index(); auto attr = std::get(tup); auto argTy = std::get(tup); if (attr.isAppend()) { trailingTys.push_back(argTy); } else { if (sret) { fixups.emplace_back(FixupTy::Codes::CharPair, newInTyAndAttrs.size(), index); } else { fixups.emplace_back(FixupTy::Codes::Trailing, newInTyAndAttrs.size(), trailingTys.size()); } newInTyAndAttrs.push_back(tup); } } } }) .Case([&](fir::ComplexType cmplx) { doComplexArg(func, cmplx, newInTyAndAttrs, fixups); }) .Case([&](mlir::ComplexType cmplx) { doComplexArg(func, cmplx, newInTyAndAttrs, fixups); }) .Case([&](mlir::TupleType tuple) { if (fir::isCharacterProcedureTuple(tuple)) { fixups.emplace_back(FixupTy::Codes::TrailingCharProc, newInTyAndAttrs.size(), trailingTys.size()); newInTyAndAttrs.push_back( fir::CodeGenSpecifics::getTypeAndAttr(tuple.getType(0))); trailingTys.push_back(tuple.getType(1)); } else { newInTyAndAttrs.push_back( fir::CodeGenSpecifics::getTypeAndAttr(ty)); } }) .Case([&](mlir::IntegerType intTy) { auto m = specifics->integerArgumentType(func.getLoc(), intTy); assert(m.size() == 1); auto attr = std::get(m[0]); auto argNo = newInTyAndAttrs.size(); llvm::StringRef extensionAttrName = attr.getIntExtensionAttrName(); if (!extensionAttrName.empty() && isFuncWithCCallingConvention(func)) fixups.emplace_back(FixupTy::Codes::ArgumentType, argNo, [=](mlir::func::FuncOp func) { func.setArgAttr( argNo, extensionAttrName, mlir::UnitAttr::get(func.getContext())); }); newInTyAndAttrs.push_back(m[0]); }) .template Case([&](fir::RecordType recTy) { doStructArg(func, recTy, newInTyAndAttrs, fixups); }) .Default([&](mlir::Type ty) { newInTyAndAttrs.push_back( fir::CodeGenSpecifics::getTypeAndAttr(ty)); }); if (func.getArgAttrOfType(index, fir::getHostAssocAttrName())) { extraAttrs.push_back( {newInTyAndAttrs.size() - 1, rewriter->getNamedAttr("llvm.nest", rewriter->getUnitAttr())}); } } if (!func.empty()) { // If the function has a body, then apply the fixups to the arguments and // return ops as required. These fixups are done in place. auto loc = func.getLoc(); const auto fixupSize = fixups.size(); const auto oldArgTys = func.getFunctionType().getInputs(); int offset = 0; for (std::remove_const_t i = 0; i < fixupSize; ++i) { const auto &fixup = fixups[i]; mlir::Type fixupType = fixup.index < newInTyAndAttrs.size() ? std::get(newInTyAndAttrs[fixup.index]) : mlir::Type{}; switch (fixup.code) { case FixupTy::Codes::ArgumentAsLoad: { // Argument was pass-by-value, but is now pass-by-reference and // possibly with a different element type. auto newArg = func.front().insertArgument(fixup.index, fixupType, loc); rewriter->setInsertionPointToStart(&func.front()); auto oldArgTy = fir::ReferenceType::get(oldArgTys[fixup.index - offset]); auto cast = rewriter->create(loc, oldArgTy, newArg); auto load = rewriter->create(loc, cast); func.getArgument(fixup.index + 1).replaceAllUsesWith(load); func.front().eraseArgument(fixup.index + 1); } break; case FixupTy::Codes::ArgumentType: { // Argument is pass-by-value, but its type has likely been modified to // suit the target ABI convention. auto oldArgTy = oldArgTys[fixup.index - offset]; // If type did not change, keep the original argument. if (fixupType == oldArgTy) break; auto newArg = func.front().insertArgument(fixup.index, fixupType, loc); rewriter->setInsertionPointToStart(&func.front()); mlir::Value bitcast = convertValueInMemory(loc, newArg, oldArgTy, /*inputMayBeBigger=*/true); func.getArgument(fixup.index + 1).replaceAllUsesWith(bitcast); func.front().eraseArgument(fixup.index + 1); LLVM_DEBUG(llvm::dbgs() << "old argument: " << oldArgTy << ", repl: " << bitcast << ", new argument: " << func.getArgument(fixup.index).getType() << '\n'); } break; case FixupTy::Codes::CharPair: { // The FIR boxchar argument has been split into a pair of distinct // arguments that are in juxtaposition to each other. auto newArg = func.front().insertArgument(fixup.index, fixupType, loc); if (fixup.second == 1) { rewriter->setInsertionPointToStart(&func.front()); auto boxTy = oldArgTys[fixup.index - offset - fixup.second]; auto box = rewriter->create( loc, boxTy, func.front().getArgument(fixup.index - 1), newArg); func.getArgument(fixup.index + 1).replaceAllUsesWith(box); func.front().eraseArgument(fixup.index + 1); offset++; } } break; case FixupTy::Codes::ReturnAsStore: { // The value being returned is now being returned in memory (callee // stack space) through a hidden reference argument. auto newArg = func.front().insertArgument(fixup.index, fixupType, loc); offset++; func.walk([&](mlir::func::ReturnOp ret) { rewriter->setInsertionPoint(ret); auto oldOper = ret.getOperand(0); auto oldOperTy = fir::ReferenceType::get(oldOper.getType()); auto cast = rewriter->create(loc, oldOperTy, newArg); rewriter->create(loc, oldOper, cast); rewriter->create(loc); ret.erase(); }); } break; case FixupTy::Codes::ReturnType: { // The function is still returning a value, but its type has likely // changed to suit the target ABI convention. func.walk([&](mlir::func::ReturnOp ret) { rewriter->setInsertionPoint(ret); auto oldOper = ret.getOperand(0); mlir::Value bitcast = convertValueInMemory(loc, oldOper, newResTys[fixup.index], /*inputMayBeBigger=*/false); rewriter->create(loc, bitcast); ret.erase(); }); } break; case FixupTy::Codes::Split: { // The FIR argument has been split into a pair of distinct arguments // that are in juxtaposition to each other. (For COMPLEX value or // derived type passed with VALUE in BIND(C) context). auto newArg = func.front().insertArgument(fixup.index, fixupType, loc); if (fixup.second == 1) { rewriter->setInsertionPointToStart(&func.front()); mlir::Value firstArg = func.front().getArgument(fixup.index - 1); mlir::Type originalTy = oldArgTys[fixup.index - offset - fixup.second]; mlir::Type pairTy = originalTy; if (!fir::isa_complex(originalTy)) { pairTy = mlir::TupleType::get( originalTy.getContext(), mlir::TypeRange{firstArg.getType(), newArg.getType()}); } auto undef = rewriter->create(loc, pairTy); auto iTy = rewriter->getIntegerType(32); auto zero = rewriter->getIntegerAttr(iTy, 0); auto one = rewriter->getIntegerAttr(iTy, 1); mlir::Value pair1 = rewriter->create( loc, pairTy, undef, firstArg, rewriter->getArrayAttr(zero)); mlir::Value pair = rewriter->create( loc, pairTy, pair1, newArg, rewriter->getArrayAttr(one)); // Cast local argument tuple to original type via memory if needed. if (pairTy != originalTy) pair = convertValueInMemory(loc, pair, originalTy, /*inputMayBeBigger=*/true); func.getArgument(fixup.index + 1).replaceAllUsesWith(pair); func.front().eraseArgument(fixup.index + 1); offset++; } } break; case FixupTy::Codes::Trailing: { // The FIR argument has been split into a pair of distinct arguments. // The first part of the pair appears in the original argument // position. The second part of the pair is appended after all the // original arguments. (Boxchar arguments.) auto newBufArg = func.front().insertArgument(fixup.index, fixupType, loc); auto newLenArg = func.front().addArgument(trailingTys[fixup.second], loc); auto boxTy = oldArgTys[fixup.index - offset]; rewriter->setInsertionPointToStart(&func.front()); auto box = rewriter->create(loc, boxTy, newBufArg, newLenArg); func.getArgument(fixup.index + 1).replaceAllUsesWith(box); func.front().eraseArgument(fixup.index + 1); } break; case FixupTy::Codes::TrailingCharProc: { // The FIR character procedure argument tuple must be split into a // pair of distinct arguments. The first part of the pair appears in // the original argument position. The second part of the pair is // appended after all the original arguments. auto newProcPointerArg = func.front().insertArgument(fixup.index, fixupType, loc); auto newLenArg = func.front().addArgument(trailingTys[fixup.second], loc); auto tupleType = oldArgTys[fixup.index - offset]; rewriter->setInsertionPointToStart(&func.front()); fir::FirOpBuilder builder(*rewriter, getModule()); auto tuple = fir::factory::createCharacterProcedureTuple( builder, loc, tupleType, newProcPointerArg, newLenArg); func.getArgument(fixup.index + 1).replaceAllUsesWith(tuple); func.front().eraseArgument(fixup.index + 1); } break; } } } llvm::SmallVector newInTypes = toTypeList(newInTyAndAttrs); // Set the new type and finalize the arguments, etc. newInTypes.insert(newInTypes.end(), trailingTys.begin(), trailingTys.end()); auto newFuncTy = mlir::FunctionType::get(func.getContext(), newInTypes, newResTys); LLVM_DEBUG(llvm::dbgs() << "new func: " << newFuncTy << '\n'); func.setType(newFuncTy); for (std::pair extraAttr : extraAttrs) func.setArgAttr(extraAttr.first, extraAttr.second.getName(), extraAttr.second.getValue()); for (auto [resId, resAttrList] : resultAttrs) for (mlir::NamedAttribute resAttr : resAttrList) func.setResultAttr(resId, resAttr.getName(), resAttr.getValue()); // Replace attributes to the correct argument if there was an argument shift // to the right. if (argumentShift > 0) { for (std::pair savedAttr : savedAttrs) { func.removeArgAttr(savedAttr.first, savedAttr.second.getName()); func.setArgAttr(savedAttr.first + argumentShift, savedAttr.second.getName(), savedAttr.second.getValue()); } } for (auto &fixup : fixups) if (fixup.finalizer) (*fixup.finalizer)(func); } inline bool functionArgIsSRet(unsigned index, mlir::func::FuncOp func) { if (auto attr = func.getArgAttrOfType(index, "llvm.sret")) return true; return false; } /// Convert a complex return value. This can involve converting the return /// value to a "hidden" first argument or packing the complex into a wide /// GPR. template void doComplexReturn(mlir::func::FuncOp func, A cmplx, B &newResTys, fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs, C &fixups) { if (noComplexConversion) { newResTys.push_back(cmplx); return; } auto m = specifics->complexReturnType(func.getLoc(), cmplx.getElementType()); assert(m.size() == 1); auto &tup = m[0]; auto attr = std::get(tup); auto argTy = std::get(tup); if (attr.isSRet()) { unsigned argNo = newInTyAndAttrs.size(); if (auto align = attr.getAlignment()) fixups.emplace_back( FixupTy::Codes::ReturnAsStore, argNo, [=](mlir::func::FuncOp func) { auto elemType = fir::dyn_cast_ptrOrBoxEleTy( func.getFunctionType().getInput(argNo)); func.setArgAttr(argNo, "llvm.sret", mlir::TypeAttr::get(elemType)); func.setArgAttr(argNo, "llvm.align", rewriter->getIntegerAttr( rewriter->getIntegerType(32), align)); }); else fixups.emplace_back(FixupTy::Codes::ReturnAsStore, argNo, [=](mlir::func::FuncOp func) { auto elemType = fir::dyn_cast_ptrOrBoxEleTy( func.getFunctionType().getInput(argNo)); func.setArgAttr(argNo, "llvm.sret", mlir::TypeAttr::get(elemType)); }); newInTyAndAttrs.push_back(tup); return; } if (auto align = attr.getAlignment()) fixups.emplace_back( FixupTy::Codes::ReturnType, newResTys.size(), [=](mlir::func::FuncOp func) { func.setArgAttr( newResTys.size(), "llvm.align", rewriter->getIntegerAttr(rewriter->getIntegerType(32), align)); }); else fixups.emplace_back(FixupTy::Codes::ReturnType, newResTys.size()); newResTys.push_back(argTy); } template void createFuncOpArgFixups(mlir::func::FuncOp func, fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs, fir::CodeGenSpecifics::Marshalling &argsInTys, FIXUPS &fixups) { const auto fixupCode = argsInTys.size() > 1 ? FixupTy::Codes::Split : FixupTy::Codes::ArgumentType; for (auto e : llvm::enumerate(argsInTys)) { auto &tup = e.value(); auto index = e.index(); auto attr = std::get(tup); auto argNo = newInTyAndAttrs.size(); if (attr.isByVal()) { if (auto align = attr.getAlignment()) fixups.emplace_back(FixupTy::Codes::ArgumentAsLoad, argNo, [=](mlir::func::FuncOp func) { auto elemType = fir::dyn_cast_ptrOrBoxEleTy( func.getFunctionType().getInput(argNo)); func.setArgAttr(argNo, "llvm.byval", mlir::TypeAttr::get(elemType)); func.setArgAttr( argNo, "llvm.align", rewriter->getIntegerAttr( rewriter->getIntegerType(32), align)); }); else fixups.emplace_back(FixupTy::Codes::ArgumentAsLoad, newInTyAndAttrs.size(), [=](mlir::func::FuncOp func) { auto elemType = fir::dyn_cast_ptrOrBoxEleTy( func.getFunctionType().getInput(argNo)); func.setArgAttr(argNo, "llvm.byval", mlir::TypeAttr::get(elemType)); }); } else { if (auto align = attr.getAlignment()) fixups.emplace_back( fixupCode, argNo, index, [=](mlir::func::FuncOp func) { func.setArgAttr(argNo, "llvm.align", rewriter->getIntegerAttr( rewriter->getIntegerType(32), align)); }); else fixups.emplace_back(fixupCode, argNo, index); } newInTyAndAttrs.push_back(tup); } } /// Convert a complex argument value. This can involve storing the value to /// a temporary memory location or factoring the value into two distinct /// arguments. template void doComplexArg(mlir::func::FuncOp func, A cmplx, fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs, B &fixups) { if (noComplexConversion) { newInTyAndAttrs.push_back(fir::CodeGenSpecifics::getTypeAndAttr(cmplx)); return; } auto cplxArgs = specifics->complexArgumentType(func.getLoc(), cmplx.getElementType()); createFuncOpArgFixups(func, newInTyAndAttrs, cplxArgs, fixups); } template void doStructArg(mlir::func::FuncOp func, fir::RecordType recTy, fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs, FIXUPS &fixups) { if (noStructConversion) { newInTyAndAttrs.push_back(fir::CodeGenSpecifics::getTypeAndAttr(recTy)); return; } auto structArgs = specifics->structArgumentType(func.getLoc(), recTy, newInTyAndAttrs); createFuncOpArgFixups(func, newInTyAndAttrs, structArgs, fixups); } private: // Replace `op` and remove it. void replaceOp(mlir::Operation *op, mlir::ValueRange newValues) { op->replaceAllUsesWith(newValues); op->dropAllReferences(); op->erase(); } inline void setMembers(fir::CodeGenSpecifics *s, mlir::OpBuilder *r, mlir::DataLayout *dl) { specifics = s; rewriter = r; dataLayout = dl; } inline void clearMembers() { setMembers(nullptr, nullptr, nullptr); } // Inserts a call to llvm.stacksave at the current insertion // point and the given location. Returns the call's result Value. inline mlir::Value genStackSave(mlir::Location loc) { return rewriter->create(loc, stackSaveFn).getResult(0); } // Inserts a call to llvm.stackrestore at the current insertion // point and the given location and argument. inline void genStackRestore(mlir::Location loc, mlir::Value sp) { rewriter->create(loc, stackRestoreFn, mlir::ValueRange{sp}); } fir::CodeGenSpecifics *specifics = nullptr; mlir::OpBuilder *rewriter = nullptr; mlir::DataLayout *dataLayout = nullptr; mlir::func::FuncOp stackSaveFn = nullptr; mlir::func::FuncOp stackRestoreFn = nullptr; }; } // namespace std::unique_ptr> fir::createFirTargetRewritePass(const fir::TargetRewriteOptions &options) { return std::make_unique(options); }