//===-- lib/Semantics/check-omp-structure.cpp -----------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "check-omp-structure.h" #include "definable.h" #include "flang/Parser/parse-tree.h" #include "flang/Semantics/tools.h" namespace Fortran::semantics { // Use when clause falls under 'struct OmpClause' in 'parse-tree.h'. #define CHECK_SIMPLE_CLAUSE(X, Y) \ void OmpStructureChecker::Enter(const parser::OmpClause::X &) { \ CheckAllowed(llvm::omp::Clause::Y); \ } #define CHECK_REQ_CONSTANT_SCALAR_INT_CLAUSE(X, Y) \ void OmpStructureChecker::Enter(const parser::OmpClause::X &c) { \ CheckAllowed(llvm::omp::Clause::Y); \ RequiresConstantPositiveParameter(llvm::omp::Clause::Y, c.v); \ } #define CHECK_REQ_SCALAR_INT_CLAUSE(X, Y) \ void OmpStructureChecker::Enter(const parser::OmpClause::X &c) { \ CheckAllowed(llvm::omp::Clause::Y); \ RequiresPositiveParameter(llvm::omp::Clause::Y, c.v); \ } // Use when clause don't falls under 'struct OmpClause' in 'parse-tree.h'. #define CHECK_SIMPLE_PARSER_CLAUSE(X, Y) \ void OmpStructureChecker::Enter(const parser::X &) { \ CheckAllowed(llvm::omp::Y); \ } // 'OmpWorkshareBlockChecker' is used to check the validity of the assignment // statements and the expressions enclosed in an OpenMP Workshare construct class OmpWorkshareBlockChecker { public: OmpWorkshareBlockChecker(SemanticsContext &context, parser::CharBlock source) : context_{context}, source_{source} {} template bool Pre(const T &) { return true; } template void Post(const T &) {} bool Pre(const parser::AssignmentStmt &assignment) { const auto &var{std::get(assignment.t)}; const auto &expr{std::get(assignment.t)}; const auto *lhs{GetExpr(context_, var)}; const auto *rhs{GetExpr(context_, expr)}; if (lhs && rhs) { Tristate isDefined{semantics::IsDefinedAssignment( lhs->GetType(), lhs->Rank(), rhs->GetType(), rhs->Rank())}; if (isDefined == Tristate::Yes) { context_.Say(expr.source, "Defined assignment statement is not " "allowed in a WORKSHARE construct"_err_en_US); } } return true; } bool Pre(const parser::Expr &expr) { if (const auto *e{GetExpr(context_, expr)}) { for (const Symbol &symbol : evaluate::CollectSymbols(*e)) { const Symbol &root{GetAssociationRoot(symbol)}; if (IsFunction(root) && !IsElementalProcedure(root)) { context_.Say(expr.source, "User defined non-ELEMENTAL function " "'%s' is not allowed in a WORKSHARE construct"_err_en_US, root.name()); } } } return false; } private: SemanticsContext &context_; parser::CharBlock source_; }; class OmpCycleChecker { public: OmpCycleChecker(SemanticsContext &context, std::int64_t cycleLevel) : context_{context}, cycleLevel_{cycleLevel} {} template bool Pre(const T &) { return true; } template void Post(const T &) {} bool Pre(const parser::DoConstruct &dc) { cycleLevel_--; const auto &labelName{std::get<0>(std::get<0>(dc.t).statement.t)}; if (labelName) { labelNamesandLevels_.emplace(labelName.value().ToString(), cycleLevel_); } return true; } bool Pre(const parser::CycleStmt &cyclestmt) { std::map::iterator it; bool err{false}; if (cyclestmt.v) { it = labelNamesandLevels_.find(cyclestmt.v->source.ToString()); err = (it != labelNamesandLevels_.end() && it->second > 0); } if (cycleLevel_ > 0 || err) { context_.Say(*cycleSource_, "CYCLE statement to non-innermost associated loop of an OpenMP DO " "construct"_err_en_US); } return true; } bool Pre(const parser::Statement &actionstmt) { cycleSource_ = &actionstmt.source; return true; } private: SemanticsContext &context_; const parser::CharBlock *cycleSource_; std::int64_t cycleLevel_; std::map labelNamesandLevels_; }; bool OmpStructureChecker::IsCloselyNestedRegion(const OmpDirectiveSet &set) { // Definition of close nesting: // // `A region nested inside another region with no parallel region nested // between them` // // Examples: // non-parallel construct 1 // non-parallel construct 2 // parallel construct // construct 3 // In the above example, construct 3 is NOT closely nested inside construct 1 // or 2 // // non-parallel construct 1 // non-parallel construct 2 // construct 3 // In the above example, construct 3 is closely nested inside BOTH construct 1 // and 2 // // Algorithm: // Starting from the parent context, Check in a bottom-up fashion, each level // of the context stack. If we have a match for one of the (supplied) // violating directives, `close nesting` is satisfied. If no match is there in // the entire stack, `close nesting` is not satisfied. If at any level, a // `parallel` region is found, `close nesting` is not satisfied. if (CurrentDirectiveIsNested()) { int index = dirContext_.size() - 2; while (index != -1) { if (set.test(dirContext_[index].directive)) { return true; } else if (llvm::omp::allParallelSet.test(dirContext_[index].directive)) { return false; } index--; } } return false; } void OmpStructureChecker::CheckMultipleOccurrence( semantics::UnorderedSymbolSet &listVars, const std::list &nameList, const parser::CharBlock &item, const std::string &clauseName) { for (auto const &var : nameList) { if (llvm::is_contained(listVars, *(var.symbol))) { context_.Say(item, "List item '%s' present at multiple %s clauses"_err_en_US, var.ToString(), clauseName); } listVars.insert(*(var.symbol)); } } void OmpStructureChecker::CheckMultListItems() { semantics::UnorderedSymbolSet listVars; // Aligned clause auto alignedClauses{FindClauses(llvm::omp::Clause::OMPC_aligned)}; for (auto itr = alignedClauses.first; itr != alignedClauses.second; ++itr) { const auto &alignedClause{ std::get(itr->second->u)}; const auto &alignedList{std::get<0>(alignedClause.v.t)}; std::list alignedNameList; for (const auto &ompObject : alignedList.v) { if (const auto *name{parser::Unwrap(ompObject)}) { if (name->symbol) { if (FindCommonBlockContaining(*(name->symbol))) { context_.Say(itr->second->source, "'%s' is a common block name and can not appear in an " "ALIGNED clause"_err_en_US, name->ToString()); } else if (!(IsBuiltinCPtr(*(name->symbol)) || IsAllocatableOrObjectPointer( &name->symbol->GetUltimate()))) { context_.Say(itr->second->source, "'%s' in ALIGNED clause must be of type C_PTR, POINTER or " "ALLOCATABLE"_err_en_US, name->ToString()); } else { alignedNameList.push_back(*name); } } else { // The symbol is null, return early return; } } } CheckMultipleOccurrence( listVars, alignedNameList, itr->second->source, "ALIGNED"); } // Nontemporal clause auto nonTemporalClauses{FindClauses(llvm::omp::Clause::OMPC_nontemporal)}; for (auto itr = nonTemporalClauses.first; itr != nonTemporalClauses.second; ++itr) { const auto &nontempClause{ std::get(itr->second->u)}; const auto &nontempNameList{nontempClause.v}; CheckMultipleOccurrence( listVars, nontempNameList, itr->second->source, "NONTEMPORAL"); } } bool OmpStructureChecker::HasInvalidWorksharingNesting( const parser::CharBlock &source, const OmpDirectiveSet &set) { // set contains all the invalid closely nested directives // for the given directive (`source` here) if (IsCloselyNestedRegion(set)) { context_.Say(source, "A worksharing region may not be closely nested inside a " "worksharing, explicit task, taskloop, critical, ordered, atomic, or " "master region"_err_en_US); return true; } return false; } void OmpStructureChecker::HasInvalidDistributeNesting( const parser::OpenMPLoopConstruct &x) { bool violation{false}; const auto &beginLoopDir{std::get(x.t)}; const auto &beginDir{std::get(beginLoopDir.t)}; if (llvm::omp::topDistributeSet.test(beginDir.v)) { // `distribute` region has to be nested if (!CurrentDirectiveIsNested()) { violation = true; } else { // `distribute` region has to be strictly nested inside `teams` if (!llvm::omp::topTeamsSet.test(GetContextParent().directive)) { violation = true; } } } if (violation) { context_.Say(beginDir.source, "`DISTRIBUTE` region has to be strictly nested inside `TEAMS` " "region."_err_en_US); } } void OmpStructureChecker::HasInvalidTeamsNesting( const llvm::omp::Directive &dir, const parser::CharBlock &source) { if (!llvm::omp::nestedTeamsAllowedSet.test(dir)) { context_.Say(source, "Only `DISTRIBUTE` or `PARALLEL` regions are allowed to be strictly " "nested inside `TEAMS` region."_err_en_US); } } void OmpStructureChecker::CheckPredefinedAllocatorRestriction( const parser::CharBlock &source, const parser::Name &name) { if (const auto *symbol{name.symbol}) { const auto *commonBlock{FindCommonBlockContaining(*symbol)}; const auto &scope{context_.FindScope(symbol->name())}; const Scope &containingScope{GetProgramUnitContaining(scope)}; if (!isPredefinedAllocator && (IsSaved(*symbol) || commonBlock || containingScope.kind() == Scope::Kind::Module)) { context_.Say(source, "If list items within the %s directive have the " "SAVE attribute, are a common block name, or are " "declared in the scope of a module, then only " "predefined memory allocator parameters can be used " "in the allocator clause"_err_en_US, ContextDirectiveAsFortran()); } } } void OmpStructureChecker::CheckPredefinedAllocatorRestriction( const parser::CharBlock &source, const parser::OmpObjectList &ompObjectList) { for (const auto &ompObject : ompObjectList.v) { common::visit( common::visitors{ [&](const parser::Designator &designator) { if (const auto *dataRef{ std::get_if(&designator.u)}) { if (const auto *name{std::get_if(&dataRef->u)}) { CheckPredefinedAllocatorRestriction(source, *name); } } }, [&](const parser::Name &name) { CheckPredefinedAllocatorRestriction(source, name); }, }, ompObject.u); } } template void OmpStructureChecker::CheckHintClause( D *leftOmpClauseList, D *rightOmpClauseList) { auto checkForValidHintClause = [&](const D *clauseList) { for (const auto &clause : clauseList->v) { const Fortran::parser::OmpClause *ompClause = nullptr; if constexpr (std::is_same_v) { ompClause = std::get_if(&clause.u); if (!ompClause) continue; } else if constexpr (std::is_same_v) { ompClause = &clause; } if (const Fortran::parser::OmpClause::Hint * hintClause{ std::get_if(&ompClause->u)}) { std::optional hintValue = GetIntValue(hintClause->v); if (hintValue && *hintValue >= 0) { /*`omp_sync_hint_nonspeculative` and `omp_lock_hint_speculative`*/ if ((*hintValue & 0xC) == 0xC /*`omp_sync_hint_uncontended` and omp_sync_hint_contended*/ || (*hintValue & 0x3) == 0x3) context_.Say(clause.source, "Hint clause value " "is not a valid OpenMP synchronization value"_err_en_US); } else { context_.Say(clause.source, "Hint clause must have non-negative constant " "integer expression"_err_en_US); } } } }; if (leftOmpClauseList) { checkForValidHintClause(leftOmpClauseList); } if (rightOmpClauseList) { checkForValidHintClause(rightOmpClauseList); } } void OmpStructureChecker::Enter(const parser::OpenMPConstruct &x) { // Simd Construct with Ordered Construct Nesting check // We cannot use CurrentDirectiveIsNested() here because // PushContextAndClauseSets() has not been called yet, it is // called individually for each construct. Therefore a // dirContext_ size `1` means the current construct is nested if (dirContext_.size() >= 1) { if (GetDirectiveNest(SIMDNest) > 0) { CheckSIMDNest(x); } if (GetDirectiveNest(TargetNest) > 0) { CheckTargetNest(x); } } } void OmpStructureChecker::Enter(const parser::OpenMPLoopConstruct &x) { const auto &beginLoopDir{std::get(x.t)}; const auto &beginDir{std::get(beginLoopDir.t)}; // check matching, End directive is optional if (const auto &endLoopDir{ std::get>(x.t)}) { const auto &endDir{ std::get(endLoopDir.value().t)}; CheckMatching(beginDir, endDir); } PushContextAndClauseSets(beginDir.source, beginDir.v); if (llvm::omp::allSimdSet.test(GetContext().directive)) { EnterDirectiveNest(SIMDNest); } // Combined target loop constructs are target device constructs. Keep track of // whether any such construct has been visited to later check that REQUIRES // directives for target-related options don't appear after them. if (llvm::omp::allTargetSet.test(beginDir.v)) { deviceConstructFound_ = true; } if (beginDir.v == llvm::omp::Directive::OMPD_do) { // 2.7.1 do-clause -> private-clause | // firstprivate-clause | // lastprivate-clause | // linear-clause | // reduction-clause | // schedule-clause | // collapse-clause | // ordered-clause // nesting check HasInvalidWorksharingNesting( beginDir.source, llvm::omp::nestedWorkshareErrSet); } SetLoopInfo(x); if (const auto &doConstruct{ std::get>(x.t)}) { const auto &doBlock{std::get(doConstruct->t)}; CheckNoBranching(doBlock, beginDir.v, beginDir.source); } CheckDoWhile(x); CheckLoopItrVariableIsInt(x); CheckCycleConstraints(x); HasInvalidDistributeNesting(x); if (CurrentDirectiveIsNested() && llvm::omp::topTeamsSet.test(GetContextParent().directive)) { HasInvalidTeamsNesting(beginDir.v, beginDir.source); } if ((beginDir.v == llvm::omp::Directive::OMPD_distribute_parallel_do_simd) || (beginDir.v == llvm::omp::Directive::OMPD_distribute_simd)) { CheckDistLinear(x); } } const parser::Name OmpStructureChecker::GetLoopIndex( const parser::DoConstruct *x) { using Bounds = parser::LoopControl::Bounds; return std::get(x->GetLoopControl()->u).name.thing; } void OmpStructureChecker::SetLoopInfo(const parser::OpenMPLoopConstruct &x) { if (const auto &loopConstruct{ std::get>(x.t)}) { const parser::DoConstruct *loop{&*loopConstruct}; if (loop && loop->IsDoNormal()) { const parser::Name &itrVal{GetLoopIndex(loop)}; SetLoopIv(itrVal.symbol); } } } void OmpStructureChecker::CheckDoWhile(const parser::OpenMPLoopConstruct &x) { const auto &beginLoopDir{std::get(x.t)}; const auto &beginDir{std::get(beginLoopDir.t)}; if (beginDir.v == llvm::omp::Directive::OMPD_do) { if (const auto &doConstruct{ std::get>(x.t)}) { if (doConstruct.value().IsDoWhile()) { const auto &doStmt{std::get>( doConstruct.value().t)}; context_.Say(doStmt.source, "The DO loop cannot be a DO WHILE with DO directive."_err_en_US); } } } } void OmpStructureChecker::CheckLoopItrVariableIsInt( const parser::OpenMPLoopConstruct &x) { if (const auto &loopConstruct{ std::get>(x.t)}) { for (const parser::DoConstruct *loop{&*loopConstruct}; loop;) { if (loop->IsDoNormal()) { const parser::Name &itrVal{GetLoopIndex(loop)}; if (itrVal.symbol) { const auto *type{itrVal.symbol->GetType()}; if (!type->IsNumeric(TypeCategory::Integer)) { context_.Say(itrVal.source, "The DO loop iteration" " variable must be of the type integer."_err_en_US, itrVal.ToString()); } } } // Get the next DoConstruct if block is not empty. const auto &block{std::get(loop->t)}; const auto it{block.begin()}; loop = it != block.end() ? parser::Unwrap(*it) : nullptr; } } } void OmpStructureChecker::CheckSIMDNest(const parser::OpenMPConstruct &c) { // Check the following: // The only OpenMP constructs that can be encountered during execution of // a simd region are the `atomic` construct, the `loop` construct, the `simd` // construct and the `ordered` construct with the `simd` clause. // TODO: Expand the check to include `LOOP` construct as well when it is // supported. // Check if the parent context has the SIMD clause // Please note that we use GetContext() instead of GetContextParent() // because PushContextAndClauseSets() has not been called on the // current context yet. // TODO: Check for declare simd regions. bool eligibleSIMD{false}; common::visit(Fortran::common::visitors{ // Allow `!$OMP ORDERED SIMD` [&](const parser::OpenMPBlockConstruct &c) { const auto &beginBlockDir{ std::get(c.t)}; const auto &beginDir{ std::get(beginBlockDir.t)}; if (beginDir.v == llvm::omp::Directive::OMPD_ordered) { const auto &clauses{ std::get(beginBlockDir.t)}; for (const auto &clause : clauses.v) { if (std::get_if(&clause.u)) { eligibleSIMD = true; break; } } } }, [&](const parser::OpenMPSimpleStandaloneConstruct &c) { const auto &dir{ std::get(c.t)}; if (dir.v == llvm::omp::Directive::OMPD_ordered) { const auto &clauses{ std::get(c.t)}; for (const auto &clause : clauses.v) { if (std::get_if(&clause.u)) { eligibleSIMD = true; break; } } } }, // Allowing SIMD construct [&](const parser::OpenMPLoopConstruct &c) { const auto &beginLoopDir{ std::get(c.t)}; const auto &beginDir{ std::get(beginLoopDir.t)}; if ((beginDir.v == llvm::omp::Directive::OMPD_simd) || (beginDir.v == llvm::omp::Directive::OMPD_do_simd)) { eligibleSIMD = true; } }, [&](const parser::OpenMPAtomicConstruct &c) { // Allow `!$OMP ATOMIC` eligibleSIMD = true; }, [&](const auto &c) {}, }, c.u); if (!eligibleSIMD) { context_.Say(parser::FindSourceLocation(c), "The only OpenMP constructs that can be encountered during execution " "of a 'SIMD' region are the `ATOMIC` construct, the `LOOP` construct, " "the `SIMD` construct and the `ORDERED` construct with the `SIMD` " "clause."_err_en_US); } } void OmpStructureChecker::CheckTargetNest(const parser::OpenMPConstruct &c) { // 2.12.5 Target Construct Restriction bool eligibleTarget{true}; llvm::omp::Directive ineligibleTargetDir; common::visit( common::visitors{ [&](const parser::OpenMPBlockConstruct &c) { const auto &beginBlockDir{ std::get(c.t)}; const auto &beginDir{ std::get(beginBlockDir.t)}; if (beginDir.v == llvm::omp::Directive::OMPD_target_data) { eligibleTarget = false; ineligibleTargetDir = beginDir.v; } }, [&](const parser::OpenMPStandaloneConstruct &c) { common::visit( common::visitors{ [&](const parser::OpenMPSimpleStandaloneConstruct &c) { const auto &dir{ std::get(c.t)}; if (dir.v == llvm::omp::Directive::OMPD_target_update || dir.v == llvm::omp::Directive::OMPD_target_enter_data || dir.v == llvm::omp::Directive::OMPD_target_exit_data) { eligibleTarget = false; ineligibleTargetDir = dir.v; } }, [&](const auto &c) {}, }, c.u); }, [&](const auto &c) {}, }, c.u); if (!eligibleTarget && context_.ShouldWarn(common::UsageWarning::Portability)) { context_.Say(parser::FindSourceLocation(c), "If %s directive is nested inside TARGET region, the behaviour " "is unspecified"_port_en_US, parser::ToUpperCaseLetters( getDirectiveName(ineligibleTargetDir).str())); } } std::int64_t OmpStructureChecker::GetOrdCollapseLevel( const parser::OpenMPLoopConstruct &x) { const auto &beginLoopDir{std::get(x.t)}; const auto &clauseList{std::get(beginLoopDir.t)}; std::int64_t orderedCollapseLevel{1}; std::int64_t orderedLevel{0}; std::int64_t collapseLevel{0}; for (const auto &clause : clauseList.v) { if (const auto *collapseClause{ std::get_if(&clause.u)}) { if (const auto v{GetIntValue(collapseClause->v)}) { collapseLevel = *v; } } if (const auto *orderedClause{ std::get_if(&clause.u)}) { if (const auto v{GetIntValue(orderedClause->v)}) { orderedLevel = *v; } } } if (orderedLevel >= collapseLevel) { orderedCollapseLevel = orderedLevel; } else { orderedCollapseLevel = collapseLevel; } return orderedCollapseLevel; } void OmpStructureChecker::CheckCycleConstraints( const parser::OpenMPLoopConstruct &x) { std::int64_t ordCollapseLevel{GetOrdCollapseLevel(x)}; OmpCycleChecker ompCycleChecker{context_, ordCollapseLevel}; parser::Walk(x, ompCycleChecker); } void OmpStructureChecker::CheckDistLinear( const parser::OpenMPLoopConstruct &x) { const auto &beginLoopDir{std::get(x.t)}; const auto &clauses{std::get(beginLoopDir.t)}; semantics::UnorderedSymbolSet indexVars; // Collect symbols of all the variables from linear clauses for (const auto &clause : clauses.v) { if (const auto *linearClause{ std::get_if(&clause.u)}) { std::list values; // Get the variant type if (std::holds_alternative( linearClause->v.u)) { const auto &withM{ std::get(linearClause->v.u)}; values = withM.names; } else { const auto &withOutM{std::get( linearClause->v.u)}; values = withOutM.names; } for (auto const &v : values) { indexVars.insert(*(v.symbol)); } } } if (!indexVars.empty()) { // Get collapse level, if given, to find which loops are "associated." std::int64_t collapseVal{GetOrdCollapseLevel(x)}; // Include the top loop if no collapse is specified if (collapseVal == 0) { collapseVal = 1; } // Match the loop index variables with the collected symbols from linear // clauses. if (const auto &loopConstruct{ std::get>(x.t)}) { for (const parser::DoConstruct *loop{&*loopConstruct}; loop;) { if (loop->IsDoNormal()) { const parser::Name &itrVal{GetLoopIndex(loop)}; if (itrVal.symbol) { // Remove the symbol from the collcted set indexVars.erase(*(itrVal.symbol)); } collapseVal--; if (collapseVal == 0) { break; } } // Get the next DoConstruct if block is not empty. const auto &block{std::get(loop->t)}; const auto it{block.begin()}; loop = it != block.end() ? parser::Unwrap(*it) : nullptr; } } // Show error for the remaining variables for (auto var : indexVars) { const Symbol &root{GetAssociationRoot(var)}; context_.Say(parser::FindSourceLocation(x), "Variable '%s' not allowed in `LINEAR` clause, only loop iterator " "can be specified in `LINEAR` clause of a construct combined with " "`DISTRIBUTE`"_err_en_US, root.name()); } } } void OmpStructureChecker::Leave(const parser::OpenMPLoopConstruct &) { if (llvm::omp::allSimdSet.test(GetContext().directive)) { ExitDirectiveNest(SIMDNest); } dirContext_.pop_back(); } void OmpStructureChecker::Enter(const parser::OmpEndLoopDirective &x) { const auto &dir{std::get(x.t)}; ResetPartialContext(dir.source); switch (dir.v) { // 2.7.1 end-do -> END DO [nowait-clause] // 2.8.3 end-do-simd -> END DO SIMD [nowait-clause] case llvm::omp::Directive::OMPD_do: PushContextAndClauseSets(dir.source, llvm::omp::Directive::OMPD_end_do); break; case llvm::omp::Directive::OMPD_do_simd: PushContextAndClauseSets( dir.source, llvm::omp::Directive::OMPD_end_do_simd); break; default: // no clauses are allowed break; } } void OmpStructureChecker::Leave(const parser::OmpEndLoopDirective &x) { if ((GetContext().directive == llvm::omp::Directive::OMPD_end_do) || (GetContext().directive == llvm::omp::Directive::OMPD_end_do_simd)) { dirContext_.pop_back(); } } void OmpStructureChecker::Enter(const parser::OpenMPBlockConstruct &x) { const auto &beginBlockDir{std::get(x.t)}; const auto &endBlockDir{std::get(x.t)}; const auto &beginDir{std::get(beginBlockDir.t)}; const auto &endDir{std::get(endBlockDir.t)}; const parser::Block &block{std::get(x.t)}; CheckMatching(beginDir, endDir); PushContextAndClauseSets(beginDir.source, beginDir.v); if (GetContext().directive == llvm::omp::Directive::OMPD_target) { EnterDirectiveNest(TargetNest); } if (CurrentDirectiveIsNested()) { if (llvm::omp::topTeamsSet.test(GetContextParent().directive)) { HasInvalidTeamsNesting(beginDir.v, beginDir.source); } if (GetContext().directive == llvm::omp::Directive::OMPD_master) { CheckMasterNesting(x); } // A teams region can only be strictly nested within the implicit parallel // region or a target region. if (GetContext().directive == llvm::omp::Directive::OMPD_teams && GetContextParent().directive != llvm::omp::Directive::OMPD_target) { context_.Say(parser::FindSourceLocation(x), "%s region can only be strictly nested within the implicit parallel " "region or TARGET region"_err_en_US, ContextDirectiveAsFortran()); } // If a teams construct is nested within a target construct, that target // construct must contain no statements, declarations or directives outside // of the teams construct. if (GetContext().directive == llvm::omp::Directive::OMPD_teams && GetContextParent().directive == llvm::omp::Directive::OMPD_target && !GetDirectiveNest(TargetBlockOnlyTeams)) { context_.Say(GetContextParent().directiveSource, "TARGET construct with nested TEAMS region contains statements or " "directives outside of the TEAMS construct"_err_en_US); } } CheckNoBranching(block, beginDir.v, beginDir.source); // Target block constructs are target device constructs. Keep track of // whether any such construct has been visited to later check that REQUIRES // directives for target-related options don't appear after them. if (llvm::omp::allTargetSet.test(beginDir.v)) { deviceConstructFound_ = true; } switch (beginDir.v) { case llvm::omp::Directive::OMPD_target: if (CheckTargetBlockOnlyTeams(block)) { EnterDirectiveNest(TargetBlockOnlyTeams); } break; case llvm::omp::OMPD_workshare: case llvm::omp::OMPD_parallel_workshare: CheckWorkshareBlockStmts(block, beginDir.source); HasInvalidWorksharingNesting( beginDir.source, llvm::omp::nestedWorkshareErrSet); break; case llvm::omp::Directive::OMPD_single: // TODO: This check needs to be extended while implementing nesting of // regions checks. HasInvalidWorksharingNesting( beginDir.source, llvm::omp::nestedWorkshareErrSet); break; default: break; } } void OmpStructureChecker::CheckMasterNesting( const parser::OpenMPBlockConstruct &x) { // A MASTER region may not be `closely nested` inside a worksharing, loop, // task, taskloop, or atomic region. // TODO: Expand the check to include `LOOP` construct as well when it is // supported. if (IsCloselyNestedRegion(llvm::omp::nestedMasterErrSet)) { context_.Say(parser::FindSourceLocation(x), "`MASTER` region may not be closely nested inside of `WORKSHARING`, " "`LOOP`, `TASK`, `TASKLOOP`," " or `ATOMIC` region."_err_en_US); } } void OmpStructureChecker::Leave(const parser::OpenMPBlockConstruct &) { if (GetDirectiveNest(TargetBlockOnlyTeams)) { ExitDirectiveNest(TargetBlockOnlyTeams); } if (GetContext().directive == llvm::omp::Directive::OMPD_target) { ExitDirectiveNest(TargetNest); } dirContext_.pop_back(); } void OmpStructureChecker::ChecksOnOrderedAsBlock() { if (FindClause(llvm::omp::Clause::OMPC_depend)) { context_.Say(GetContext().clauseSource, "DEPEND(*) clauses are not allowed when ORDERED construct is a block" " construct with an ORDERED region"_err_en_US); return; } bool isNestedInDo{false}; bool isNestedInDoSIMD{false}; bool isNestedInSIMD{false}; bool noOrderedClause{false}; bool isOrderedClauseWithPara{false}; bool isCloselyNestedRegion{true}; if (CurrentDirectiveIsNested()) { for (int i = (int)dirContext_.size() - 2; i >= 0; i--) { if (llvm::omp::nestedOrderedErrSet.test(dirContext_[i].directive)) { context_.Say(GetContext().directiveSource, "`ORDERED` region may not be closely nested inside of `CRITICAL`, " "`ORDERED`, explicit `TASK` or `TASKLOOP` region."_err_en_US); break; } else if (llvm::omp::allDoSet.test(dirContext_[i].directive)) { isNestedInDo = true; isNestedInDoSIMD = llvm::omp::allDoSimdSet.test(dirContext_[i].directive); if (const auto *clause{ FindClause(dirContext_[i], llvm::omp::Clause::OMPC_ordered)}) { const auto &orderedClause{ std::get(clause->u)}; const auto orderedValue{GetIntValue(orderedClause.v)}; isOrderedClauseWithPara = orderedValue > 0; } else { noOrderedClause = true; } break; } else if (llvm::omp::allSimdSet.test(dirContext_[i].directive)) { isNestedInSIMD = true; break; } else if (llvm::omp::nestedOrderedParallelErrSet.test( dirContext_[i].directive)) { isCloselyNestedRegion = false; break; } } } if (!isCloselyNestedRegion) { context_.Say(GetContext().directiveSource, "An ORDERED directive without the DEPEND clause must be closely nested " "in a SIMD, worksharing-loop, or worksharing-loop SIMD " "region"_err_en_US); } else { if (CurrentDirectiveIsNested() && FindClause(llvm::omp::Clause::OMPC_simd) && (!isNestedInDoSIMD && !isNestedInSIMD)) { context_.Say(GetContext().directiveSource, "An ORDERED directive with SIMD clause must be closely nested in a " "SIMD or worksharing-loop SIMD region"_err_en_US); } if (isNestedInDo && (noOrderedClause || isOrderedClauseWithPara)) { context_.Say(GetContext().directiveSource, "An ORDERED directive without the DEPEND clause must be closely " "nested in a worksharing-loop (or worksharing-loop SIMD) region with " "ORDERED clause without the parameter"_err_en_US); } } } void OmpStructureChecker::Leave(const parser::OmpBeginBlockDirective &) { switch (GetContext().directive) { case llvm::omp::Directive::OMPD_ordered: // [5.1] 2.19.9 Ordered Construct Restriction ChecksOnOrderedAsBlock(); break; default: break; } } void OmpStructureChecker::Enter(const parser::OpenMPSectionsConstruct &x) { const auto &beginSectionsDir{ std::get(x.t)}; const auto &endSectionsDir{std::get(x.t)}; const auto &beginDir{ std::get(beginSectionsDir.t)}; const auto &endDir{std::get(endSectionsDir.t)}; CheckMatching(beginDir, endDir); PushContextAndClauseSets(beginDir.source, beginDir.v); const auto §ionBlocks{std::get(x.t)}; for (const parser::OpenMPConstruct &block : sectionBlocks.v) { CheckNoBranching(std::get(block.u).v, beginDir.v, beginDir.source); } HasInvalidWorksharingNesting( beginDir.source, llvm::omp::nestedWorkshareErrSet); } void OmpStructureChecker::Leave(const parser::OpenMPSectionsConstruct &) { dirContext_.pop_back(); } void OmpStructureChecker::Enter(const parser::OmpEndSectionsDirective &x) { const auto &dir{std::get(x.t)}; ResetPartialContext(dir.source); switch (dir.v) { // 2.7.2 end-sections -> END SECTIONS [nowait-clause] case llvm::omp::Directive::OMPD_sections: PushContextAndClauseSets( dir.source, llvm::omp::Directive::OMPD_end_sections); break; default: // no clauses are allowed break; } } // TODO: Verify the popping of dirContext requirement after nowait // implementation, as there is an implicit barrier at the end of the worksharing // constructs unless a nowait clause is specified. Only OMPD_end_sections is // popped becuase it is pushed while entering the EndSectionsDirective. void OmpStructureChecker::Leave(const parser::OmpEndSectionsDirective &x) { if (GetContext().directive == llvm::omp::Directive::OMPD_end_sections) { dirContext_.pop_back(); } } void OmpStructureChecker::CheckThreadprivateOrDeclareTargetVar( const parser::OmpObjectList &objList) { for (const auto &ompObject : objList.v) { common::visit( common::visitors{ [&](const parser::Designator &) { if (const auto *name{parser::Unwrap(ompObject)}) { // The symbol is null, return early, CheckSymbolNames // should have already reported the missing symbol as a // diagnostic error if (!name->symbol) { return; } if (name->symbol->GetUltimate().IsSubprogram()) { if (GetContext().directive == llvm::omp::Directive::OMPD_threadprivate) context_.Say(name->source, "The procedure name cannot be in a %s " "directive"_err_en_US, ContextDirectiveAsFortran()); // TODO: Check for procedure name in declare target directive. } else if (name->symbol->attrs().test(Attr::PARAMETER)) { if (GetContext().directive == llvm::omp::Directive::OMPD_threadprivate) context_.Say(name->source, "The entity with PARAMETER attribute cannot be in a %s " "directive"_err_en_US, ContextDirectiveAsFortran()); else if (GetContext().directive == llvm::omp::Directive::OMPD_declare_target) context_.Say(name->source, "The entity with PARAMETER attribute is used in a %s " "directive"_warn_en_US, ContextDirectiveAsFortran()); } else if (FindCommonBlockContaining(*name->symbol)) { context_.Say(name->source, "A variable in a %s directive cannot be an element of a " "common block"_err_en_US, ContextDirectiveAsFortran()); } else if (FindEquivalenceSet(*name->symbol)) { context_.Say(name->source, "A variable in a %s directive cannot appear in an " "EQUIVALENCE statement"_err_en_US, ContextDirectiveAsFortran()); } else if (name->symbol->test(Symbol::Flag::OmpThreadprivate) && GetContext().directive == llvm::omp::Directive::OMPD_declare_target) { context_.Say(name->source, "A THREADPRIVATE variable cannot appear in a %s " "directive"_err_en_US, ContextDirectiveAsFortran()); } else { const semantics::Scope &useScope{ context_.FindScope(GetContext().directiveSource)}; const semantics::Scope &curScope = name->symbol->GetUltimate().owner(); if (!curScope.IsTopLevel()) { const semantics::Scope &declScope = GetProgramUnitContaining(curScope); const semantics::Symbol *sym{ declScope.parent().FindSymbol(name->symbol->name())}; if (sym && (sym->has() || sym->has())) { context_.Say(name->source, "The module name or main program name cannot be in a " "%s " "directive"_err_en_US, ContextDirectiveAsFortran()); } else if (!IsSaved(*name->symbol) && declScope.kind() != Scope::Kind::MainProgram && declScope.kind() != Scope::Kind::Module) { context_.Say(name->source, "A variable that appears in a %s directive must be " "declared in the scope of a module or have the SAVE " "attribute, either explicitly or " "implicitly"_err_en_US, ContextDirectiveAsFortran()); } else if (useScope != declScope) { context_.Say(name->source, "The %s directive and the common block or variable " "in it must appear in the same declaration section " "of a scoping unit"_err_en_US, ContextDirectiveAsFortran()); } } } } }, [&](const parser::Name &) {}, // common block }, ompObject.u); } } void OmpStructureChecker::Enter(const parser::OpenMPThreadprivate &c) { const auto &dir{std::get(c.t)}; PushContextAndClauseSets( dir.source, llvm::omp::Directive::OMPD_threadprivate); } void OmpStructureChecker::Leave(const parser::OpenMPThreadprivate &c) { const auto &dir{std::get(c.t)}; const auto &objectList{std::get(c.t)}; CheckSymbolNames(dir.source, objectList); CheckIsVarPartOfAnotherVar(dir.source, objectList); CheckThreadprivateOrDeclareTargetVar(objectList); dirContext_.pop_back(); } void OmpStructureChecker::Enter(const parser::OpenMPDeclareSimdConstruct &x) { const auto &dir{std::get(x.t)}; PushContextAndClauseSets(dir.source, llvm::omp::Directive::OMPD_declare_simd); } void OmpStructureChecker::Leave(const parser::OpenMPDeclareSimdConstruct &) { dirContext_.pop_back(); } void OmpStructureChecker::Enter(const parser::OpenMPRequiresConstruct &x) { const auto &dir{std::get(x.t)}; PushContextAndClauseSets(dir.source, llvm::omp::Directive::OMPD_requires); } void OmpStructureChecker::Leave(const parser::OpenMPRequiresConstruct &) { dirContext_.pop_back(); } void OmpStructureChecker::Enter(const parser::OpenMPDeclarativeAllocate &x) { isPredefinedAllocator = true; const auto &dir{std::get(x.t)}; const auto &objectList{std::get(x.t)}; PushContextAndClauseSets(dir.source, llvm::omp::Directive::OMPD_allocate); CheckIsVarPartOfAnotherVar(dir.source, objectList); } void OmpStructureChecker::Leave(const parser::OpenMPDeclarativeAllocate &x) { const auto &dir{std::get(x.t)}; const auto &objectList{std::get(x.t)}; CheckPredefinedAllocatorRestriction(dir.source, objectList); dirContext_.pop_back(); } void OmpStructureChecker::Enter(const parser::OmpClause::Allocator &x) { CheckAllowed(llvm::omp::Clause::OMPC_allocator); // Note: Predefined allocators are stored in ScalarExpr as numbers // whereas custom allocators are stored as strings, so if the ScalarExpr // actually has an int value, then it must be a predefined allocator isPredefinedAllocator = GetIntValue(x.v).has_value(); RequiresPositiveParameter(llvm::omp::Clause::OMPC_allocator, x.v); } void OmpStructureChecker::Enter(const parser::OmpClause::Allocate &x) { CheckAllowed(llvm::omp::Clause::OMPC_allocate); if (const auto &modifier{ std::get>( x.v.t)}) { common::visit( common::visitors{ [&](const parser::OmpAllocateClause::AllocateModifier::Allocator &y) { RequiresPositiveParameter(llvm::omp::Clause::OMPC_allocate, y.v); isPredefinedAllocator = GetIntValue(y.v).has_value(); }, [&](const parser::OmpAllocateClause::AllocateModifier:: ComplexModifier &y) { const auto &alloc = std::get< parser::OmpAllocateClause::AllocateModifier::Allocator>(y.t); const auto &align = std::get( y.t); RequiresPositiveParameter( llvm::omp::Clause::OMPC_allocate, alloc.v); RequiresPositiveParameter( llvm::omp::Clause::OMPC_allocate, align.v); isPredefinedAllocator = GetIntValue(alloc.v).has_value(); }, [&](const parser::OmpAllocateClause::AllocateModifier::Align &y) { RequiresPositiveParameter(llvm::omp::Clause::OMPC_allocate, y.v); }, }, modifier->u); } } void OmpStructureChecker::Enter(const parser::OmpDeclareTargetWithClause &x) { SetClauseSets(llvm::omp::Directive::OMPD_declare_target); } void OmpStructureChecker::Leave(const parser::OmpDeclareTargetWithClause &x) { if (x.v.v.size() > 0) { const parser::OmpClause *enterClause = FindClause(llvm::omp::Clause::OMPC_enter); const parser::OmpClause *toClause = FindClause(llvm::omp::Clause::OMPC_to); const parser::OmpClause *linkClause = FindClause(llvm::omp::Clause::OMPC_link); if (!enterClause && !toClause && !linkClause) { context_.Say(x.source, "If the DECLARE TARGET directive has a clause, it must contain at lease one ENTER clause or LINK clause"_err_en_US); } if (toClause) { context_.Say(toClause->source, "The usage of TO clause on DECLARE TARGET directive has been deprecated. Use ENTER clause instead."_warn_en_US); } } } void OmpStructureChecker::Enter(const parser::OpenMPDeclareTargetConstruct &x) { const auto &dir{std::get(x.t)}; PushContext(dir.source, llvm::omp::Directive::OMPD_declare_target); } void OmpStructureChecker::Enter(const parser::OmpDeclareTargetWithList &x) { SymbolSourceMap symbols; GetSymbolsInObjectList(x.v, symbols); for (auto &[symbol, source] : symbols) { const GenericDetails *genericDetails = symbol->detailsIf(); if (genericDetails) { context_.Say(source, "The procedure '%s' in DECLARE TARGET construct cannot be a generic name."_err_en_US, symbol->name()); genericDetails->specific(); } if (IsProcedurePointer(*symbol)) { context_.Say(source, "The procedure '%s' in DECLARE TARGET construct cannot be a procedure pointer."_err_en_US, symbol->name()); } const SubprogramDetails *entryDetails = symbol->detailsIf(); if (entryDetails && entryDetails->entryScope()) { context_.Say(source, "The procedure '%s' in DECLARE TARGET construct cannot be an entry name."_err_en_US, symbol->name()); } if (IsStmtFunction(*symbol)) { context_.Say(source, "The procedure '%s' in DECLARE TARGET construct cannot be a statement function."_err_en_US, symbol->name()); } } } void OmpStructureChecker::CheckSymbolNames( const parser::CharBlock &source, const parser::OmpObjectList &objList) { for (const auto &ompObject : objList.v) { common::visit( common::visitors{ [&](const parser::Designator &designator) { if (const auto *name{parser::Unwrap(ompObject)}) { if (!name->symbol) { context_.Say(source, "The given %s directive clause has an invalid argument"_err_en_US, ContextDirectiveAsFortran()); } } }, [&](const parser::Name &name) { if (!name.symbol) { context_.Say(source, "The given %s directive clause has an invalid argument"_err_en_US, ContextDirectiveAsFortran()); } }, }, ompObject.u); } } void OmpStructureChecker::Leave(const parser::OpenMPDeclareTargetConstruct &x) { const auto &dir{std::get(x.t)}; const auto &spec{std::get(x.t)}; // Handle both forms of DECLARE TARGET. // - Extended list: It behaves as if there was an ENTER/TO clause with the // list of objects as argument. It accepts no explicit clauses. // - With clauses. if (const auto *objectList{parser::Unwrap(spec.u)}) { deviceConstructFound_ = true; CheckSymbolNames(dir.source, *objectList); CheckIsVarPartOfAnotherVar(dir.source, *objectList); CheckThreadprivateOrDeclareTargetVar(*objectList); } else if (const auto *clauseList{ parser::Unwrap(spec.u)}) { bool toClauseFound{false}, deviceTypeClauseFound{false}, enterClauseFound{false}; for (const auto &clause : clauseList->v) { common::visit( common::visitors{ [&](const parser::OmpClause::To &toClause) { toClauseFound = true; CheckSymbolNames(dir.source, toClause.v); CheckIsVarPartOfAnotherVar(dir.source, toClause.v); CheckThreadprivateOrDeclareTargetVar(toClause.v); }, [&](const parser::OmpClause::Link &linkClause) { CheckSymbolNames(dir.source, linkClause.v); CheckIsVarPartOfAnotherVar(dir.source, linkClause.v); CheckThreadprivateOrDeclareTargetVar(linkClause.v); }, [&](const parser::OmpClause::Enter &enterClause) { enterClauseFound = true; CheckSymbolNames(dir.source, enterClause.v); CheckIsVarPartOfAnotherVar(dir.source, enterClause.v); CheckThreadprivateOrDeclareTargetVar(enterClause.v); }, [&](const parser::OmpClause::DeviceType &deviceTypeClause) { deviceTypeClauseFound = true; if (deviceTypeClause.v.v != parser::OmpDeviceTypeClause::Type::Host) { // Function / subroutine explicitly marked as runnable by the // target device. deviceConstructFound_ = true; } }, [&](const auto &) {}, }, clause.u); if ((toClauseFound || enterClauseFound) && !deviceTypeClauseFound) { deviceConstructFound_ = true; } } } dirContext_.pop_back(); } void OmpStructureChecker::Enter(const parser::OpenMPExecutableAllocate &x) { isPredefinedAllocator = true; const auto &dir{std::get(x.t)}; const auto &objectList{std::get>(x.t)}; PushContextAndClauseSets(dir.source, llvm::omp::Directive::OMPD_allocate); if (objectList) { CheckIsVarPartOfAnotherVar(dir.source, *objectList); } } void OmpStructureChecker::Leave(const parser::OpenMPExecutableAllocate &x) { const auto &dir{std::get(x.t)}; const auto &objectList{std::get>(x.t)}; if (objectList) CheckPredefinedAllocatorRestriction(dir.source, *objectList); dirContext_.pop_back(); } void OmpStructureChecker::Enter(const parser::OpenMPAllocatorsConstruct &x) { isPredefinedAllocator = true; const auto &dir{std::get(x.t)}; PushContextAndClauseSets(dir.source, llvm::omp::Directive::OMPD_allocators); const auto &clauseList{std::get(x.t)}; for (const auto &clause : clauseList.v) { if (const auto *allocClause{ parser::Unwrap(clause)}) { CheckIsVarPartOfAnotherVar( dir.source, std::get(allocClause->v.t)); } } } void OmpStructureChecker::Leave(const parser::OpenMPAllocatorsConstruct &x) { const auto &dir{std::get(x.t)}; const auto &clauseList{std::get(x.t)}; for (const auto &clause : clauseList.v) { if (const auto *allocClause{ std::get_if(&clause.u)}) { CheckPredefinedAllocatorRestriction( dir.source, std::get(allocClause->v.t)); } } dirContext_.pop_back(); } void OmpStructureChecker::CheckBarrierNesting( const parser::OpenMPSimpleStandaloneConstruct &x) { // A barrier region may not be `closely nested` inside a worksharing, loop, // task, taskloop, critical, ordered, atomic, or master region. // TODO: Expand the check to include `LOOP` construct as well when it is // supported. if (GetContext().directive == llvm::omp::Directive::OMPD_barrier) { if (IsCloselyNestedRegion(llvm::omp::nestedBarrierErrSet)) { context_.Say(parser::FindSourceLocation(x), "`BARRIER` region may not be closely nested inside of `WORKSHARING`, " "`LOOP`, `TASK`, `TASKLOOP`," "`CRITICAL`, `ORDERED`, `ATOMIC` or `MASTER` region."_err_en_US); } } } void OmpStructureChecker::ChecksOnOrderedAsStandalone() { if (FindClause(llvm::omp::Clause::OMPC_threads) || FindClause(llvm::omp::Clause::OMPC_simd)) { context_.Say(GetContext().clauseSource, "THREADS, SIMD clauses are not allowed when ORDERED construct is a " "standalone construct with no ORDERED region"_err_en_US); } bool isSinkPresent{false}; int dependSourceCount{0}; auto clauseAll = FindClauses(llvm::omp::Clause::OMPC_depend); for (auto itr = clauseAll.first; itr != clauseAll.second; ++itr) { const auto &dependClause{ std::get(itr->second->u)}; if (std::get_if(&dependClause.v.u)) { dependSourceCount++; if (isSinkPresent) { context_.Say(itr->second->source, "DEPEND(SOURCE) is not allowed when DEPEND(SINK: vec) is present " "on ORDERED directive"_err_en_US); } if (dependSourceCount > 1) { context_.Say(itr->second->source, "At most one DEPEND(SOURCE) clause can appear on the ORDERED " "directive"_err_en_US); } } else if (std::get_if(&dependClause.v.u)) { isSinkPresent = true; if (dependSourceCount > 0) { context_.Say(itr->second->source, "DEPEND(SINK: vec) is not allowed when DEPEND(SOURCE) is present " "on ORDERED directive"_err_en_US); } } else { context_.Say(itr->second->source, "Only DEPEND(SOURCE) or DEPEND(SINK: vec) are allowed when ORDERED " "construct is a standalone construct with no ORDERED " "region"_err_en_US); } } bool isNestedInDoOrderedWithPara{false}; if (CurrentDirectiveIsNested() && llvm::omp::nestedOrderedDoAllowedSet.test(GetContextParent().directive)) { if (const auto *clause{ FindClause(GetContextParent(), llvm::omp::Clause::OMPC_ordered)}) { const auto &orderedClause{ std::get(clause->u)}; const auto orderedValue{GetIntValue(orderedClause.v)}; if (orderedValue > 0) { isNestedInDoOrderedWithPara = true; CheckOrderedDependClause(orderedValue); } } } if (FindClause(llvm::omp::Clause::OMPC_depend) && !isNestedInDoOrderedWithPara) { context_.Say(GetContext().clauseSource, "An ORDERED construct with the DEPEND clause must be closely nested " "in a worksharing-loop (or parallel worksharing-loop) construct with " "ORDERED clause with a parameter"_err_en_US); } } void OmpStructureChecker::CheckOrderedDependClause( std::optional orderedValue) { auto clauseAll{FindClauses(llvm::omp::Clause::OMPC_depend)}; for (auto itr = clauseAll.first; itr != clauseAll.second; ++itr) { const auto &dependClause{ std::get(itr->second->u)}; if (const auto *sinkVectors{ std::get_if(&dependClause.v.u)}) { std::int64_t numVar = sinkVectors->v.size(); if (orderedValue != numVar) { context_.Say(itr->second->source, "The number of variables in DEPEND(SINK: vec) clause does not " "match the parameter specified in ORDERED clause"_err_en_US); } } } } void OmpStructureChecker::CheckTargetUpdate() { const parser::OmpClause *toClause = FindClause(llvm::omp::Clause::OMPC_to); const parser::OmpClause *fromClause = FindClause(llvm::omp::Clause::OMPC_from); if (!toClause && !fromClause) { context_.Say(GetContext().directiveSource, "At least one motion-clause (TO/FROM) must be specified on TARGET UPDATE construct."_err_en_US); } if (toClause && fromClause) { SymbolSourceMap toSymbols, fromSymbols; GetSymbolsInObjectList( std::get(toClause->u).v, toSymbols); GetSymbolsInObjectList( std::get(fromClause->u).v, fromSymbols); for (auto &[symbol, source] : toSymbols) { auto fromSymbol = fromSymbols.find(symbol); if (fromSymbol != fromSymbols.end()) { context_.Say(source, "A list item ('%s') can only appear in a TO or FROM clause, but not in both."_err_en_US, symbol->name()); context_.Say(source, "'%s' appears in the TO clause."_because_en_US, symbol->name()); context_.Say(fromSymbol->second, "'%s' appears in the FROM clause."_because_en_US, fromSymbol->first->name()); } } } } void OmpStructureChecker::Enter( const parser::OpenMPSimpleStandaloneConstruct &x) { const auto &dir{std::get(x.t)}; PushContextAndClauseSets(dir.source, dir.v); CheckBarrierNesting(x); } void OmpStructureChecker::Leave( const parser::OpenMPSimpleStandaloneConstruct &x) { switch (GetContext().directive) { case llvm::omp::Directive::OMPD_ordered: // [5.1] 2.19.9 Ordered Construct Restriction ChecksOnOrderedAsStandalone(); break; case llvm::omp::Directive::OMPD_target_update: CheckTargetUpdate(); break; default: break; } dirContext_.pop_back(); } void OmpStructureChecker::Enter(const parser::OpenMPFlushConstruct &x) { const auto &dir{std::get(x.t)}; PushContextAndClauseSets(dir.source, llvm::omp::Directive::OMPD_flush); } void OmpStructureChecker::Leave(const parser::OpenMPFlushConstruct &x) { if (FindClause(llvm::omp::Clause::OMPC_acquire) || FindClause(llvm::omp::Clause::OMPC_release) || FindClause(llvm::omp::Clause::OMPC_acq_rel)) { if (const auto &flushList{ std::get>(x.t)}) { context_.Say(parser::FindSourceLocation(flushList), "If memory-order-clause is RELEASE, ACQUIRE, or ACQ_REL, list items " "must not be specified on the FLUSH directive"_err_en_US); } } dirContext_.pop_back(); } void OmpStructureChecker::Enter(const parser::OpenMPCancelConstruct &x) { const auto &dir{std::get(x.t)}; const auto &type{std::get(x.t)}; PushContextAndClauseSets(dir.source, llvm::omp::Directive::OMPD_cancel); CheckCancellationNest(dir.source, type.v); } void OmpStructureChecker::Leave(const parser::OpenMPCancelConstruct &) { dirContext_.pop_back(); } void OmpStructureChecker::Enter(const parser::OpenMPCriticalConstruct &x) { const auto &dir{std::get(x.t)}; const auto &endDir{std::get(x.t)}; PushContextAndClauseSets(dir.source, llvm::omp::Directive::OMPD_critical); const auto &block{std::get(x.t)}; CheckNoBranching(block, llvm::omp::Directive::OMPD_critical, dir.source); const auto &dirName{std::get>(dir.t)}; const auto &endDirName{std::get>(endDir.t)}; const auto &ompClause{std::get(dir.t)}; if (dirName && endDirName && dirName->ToString().compare(endDirName->ToString())) { context_ .Say(endDirName->source, parser::MessageFormattedText{ "CRITICAL directive names do not match"_err_en_US}) .Attach(dirName->source, "should be "_en_US); } else if (dirName && !endDirName) { context_ .Say(dirName->source, parser::MessageFormattedText{ "CRITICAL directive names do not match"_err_en_US}) .Attach(dirName->source, "should be NULL"_en_US); } else if (!dirName && endDirName) { context_ .Say(endDirName->source, parser::MessageFormattedText{ "CRITICAL directive names do not match"_err_en_US}) .Attach(endDirName->source, "should be NULL"_en_US); } if (!dirName && !ompClause.source.empty() && ompClause.source.NULTerminatedToString() != "hint(omp_sync_hint_none)") { context_.Say(dir.source, parser::MessageFormattedText{ "Hint clause other than omp_sync_hint_none cannot be specified for " "an unnamed CRITICAL directive"_err_en_US}); } CheckHintClause(&ompClause, nullptr); } void OmpStructureChecker::Leave(const parser::OpenMPCriticalConstruct &) { dirContext_.pop_back(); } void OmpStructureChecker::Enter( const parser::OpenMPCancellationPointConstruct &x) { const auto &dir{std::get(x.t)}; const auto &type{std::get(x.t)}; PushContextAndClauseSets( dir.source, llvm::omp::Directive::OMPD_cancellation_point); CheckCancellationNest(dir.source, type.v); } void OmpStructureChecker::Leave( const parser::OpenMPCancellationPointConstruct &) { dirContext_.pop_back(); } void OmpStructureChecker::CheckCancellationNest( const parser::CharBlock &source, const parser::OmpCancelType::Type &type) { if (CurrentDirectiveIsNested()) { // If construct-type-clause is taskgroup, the cancellation construct must be // closely nested inside a task or a taskloop construct and the cancellation // region must be closely nested inside a taskgroup region. If // construct-type-clause is sections, the cancellation construct must be // closely nested inside a sections or section construct. Otherwise, the // cancellation construct must be closely nested inside an OpenMP construct // that matches the type specified in construct-type-clause of the // cancellation construct. bool eligibleCancellation{false}; switch (type) { case parser::OmpCancelType::Type::Taskgroup: if (llvm::omp::nestedCancelTaskgroupAllowedSet.test( GetContextParent().directive)) { eligibleCancellation = true; if (dirContext_.size() >= 3) { // Check if the cancellation region is closely nested inside a // taskgroup region when there are more than two levels of directives // in the directive context stack. if (GetContextParent().directive == llvm::omp::Directive::OMPD_task || FindClauseParent(llvm::omp::Clause::OMPC_nogroup)) { for (int i = dirContext_.size() - 3; i >= 0; i--) { if (dirContext_[i].directive == llvm::omp::Directive::OMPD_taskgroup) { break; } if (llvm::omp::nestedCancelParallelAllowedSet.test( dirContext_[i].directive)) { eligibleCancellation = false; break; } } } } } if (!eligibleCancellation) { context_.Say(source, "With %s clause, %s construct must be closely nested inside TASK " "or TASKLOOP construct and %s region must be closely nested inside " "TASKGROUP region"_err_en_US, parser::ToUpperCaseLetters( parser::OmpCancelType::EnumToString(type)), ContextDirectiveAsFortran(), ContextDirectiveAsFortran()); } return; case parser::OmpCancelType::Type::Sections: if (llvm::omp::nestedCancelSectionsAllowedSet.test( GetContextParent().directive)) { eligibleCancellation = true; } break; case Fortran::parser::OmpCancelType::Type::Do: if (llvm::omp::nestedCancelDoAllowedSet.test( GetContextParent().directive)) { eligibleCancellation = true; } break; case parser::OmpCancelType::Type::Parallel: if (llvm::omp::nestedCancelParallelAllowedSet.test( GetContextParent().directive)) { eligibleCancellation = true; } break; } if (!eligibleCancellation) { context_.Say(source, "With %s clause, %s construct cannot be closely nested inside %s " "construct"_err_en_US, parser::ToUpperCaseLetters(parser::OmpCancelType::EnumToString(type)), ContextDirectiveAsFortran(), parser::ToUpperCaseLetters( getDirectiveName(GetContextParent().directive).str())); } } else { // The cancellation directive cannot be orphaned. switch (type) { case parser::OmpCancelType::Type::Taskgroup: context_.Say(source, "%s %s directive is not closely nested inside " "TASK or TASKLOOP"_err_en_US, ContextDirectiveAsFortran(), parser::ToUpperCaseLetters( parser::OmpCancelType::EnumToString(type))); break; case parser::OmpCancelType::Type::Sections: context_.Say(source, "%s %s directive is not closely nested inside " "SECTION or SECTIONS"_err_en_US, ContextDirectiveAsFortran(), parser::ToUpperCaseLetters( parser::OmpCancelType::EnumToString(type))); break; case Fortran::parser::OmpCancelType::Type::Do: context_.Say(source, "%s %s directive is not closely nested inside " "the construct that matches the DO clause type"_err_en_US, ContextDirectiveAsFortran(), parser::ToUpperCaseLetters( parser::OmpCancelType::EnumToString(type))); break; case parser::OmpCancelType::Type::Parallel: context_.Say(source, "%s %s directive is not closely nested inside " "the construct that matches the PARALLEL clause type"_err_en_US, ContextDirectiveAsFortran(), parser::ToUpperCaseLetters( parser::OmpCancelType::EnumToString(type))); break; } } } void OmpStructureChecker::Enter(const parser::OmpEndBlockDirective &x) { const auto &dir{std::get(x.t)}; ResetPartialContext(dir.source); switch (dir.v) { // 2.7.3 end-single-clause -> copyprivate-clause | // nowait-clause case llvm::omp::Directive::OMPD_single: PushContextAndClauseSets(dir.source, llvm::omp::Directive::OMPD_end_single); break; // 2.7.4 end-workshare -> END WORKSHARE [nowait-clause] case llvm::omp::Directive::OMPD_workshare: PushContextAndClauseSets( dir.source, llvm::omp::Directive::OMPD_end_workshare); break; default: // no clauses are allowed break; } } // TODO: Verify the popping of dirContext requirement after nowait // implementation, as there is an implicit barrier at the end of the worksharing // constructs unless a nowait clause is specified. Only OMPD_end_single and // end_workshareare popped as they are pushed while entering the // EndBlockDirective. void OmpStructureChecker::Leave(const parser::OmpEndBlockDirective &x) { if ((GetContext().directive == llvm::omp::Directive::OMPD_end_single) || (GetContext().directive == llvm::omp::Directive::OMPD_end_workshare)) { dirContext_.pop_back(); } } inline void OmpStructureChecker::ErrIfAllocatableVariable( const parser::Variable &var) { // Err out if the given symbol has // ALLOCATABLE attribute if (const auto *e{GetExpr(context_, var)}) for (const Symbol &symbol : evaluate::CollectSymbols(*e)) if (IsAllocatable(symbol)) { const auto &designator = std::get>(var.u); const auto *dataRef = std::get_if(&designator.value().u); const Fortran::parser::Name *name = dataRef ? std::get_if(&dataRef->u) : nullptr; if (name) context_.Say(name->source, "%s must not have ALLOCATABLE " "attribute"_err_en_US, name->ToString()); } } inline void OmpStructureChecker::ErrIfLHSAndRHSSymbolsMatch( const parser::Variable &var, const parser::Expr &expr) { // Err out if the symbol on the LHS is also used on the RHS of the assignment // statement const auto *e{GetExpr(context_, expr)}; const auto *v{GetExpr(context_, var)}; if (e && v) { const Symbol &varSymbol = evaluate::GetSymbolVector(*v).front(); for (const Symbol &symbol : evaluate::GetSymbolVector(*e)) { if (varSymbol == symbol) { context_.Say(expr.source, "RHS expression " "on atomic assignment statement" " cannot access '%s'"_err_en_US, var.GetSource().ToString()); } } } } inline void OmpStructureChecker::ErrIfNonScalarAssignmentStmt( const parser::Variable &var, const parser::Expr &expr) { // Err out if either the variable on the LHS or the expression on the RHS of // the assignment statement are non-scalar (i.e. have rank > 0) const auto *e{GetExpr(context_, expr)}; const auto *v{GetExpr(context_, var)}; if (e && v) { if (e->Rank() != 0) context_.Say(expr.source, "Expected scalar expression " "on the RHS of atomic assignment " "statement"_err_en_US); if (v->Rank() != 0) context_.Say(var.GetSource(), "Expected scalar variable " "on the LHS of atomic assignment " "statement"_err_en_US); } } template bool OmpStructureChecker::IsOperatorValid(const T &node, const D &variable) { using AllowedBinaryOperators = std::variant; using BinaryOperators = std::variant; if constexpr (common::HasMember) { const auto &variableName{variable.GetSource().ToString()}; const auto &exprLeft{std::get<0>(node.t)}; const auto &exprRight{std::get<1>(node.t)}; if ((exprLeft.value().source.ToString() != variableName) && (exprRight.value().source.ToString() != variableName)) { context_.Say(variable.GetSource(), "Atomic update statement should be of form " "`%s = %s operator expr` OR `%s = expr operator %s`"_err_en_US, variableName, variableName, variableName, variableName); } return common::HasMember; } return false; } void OmpStructureChecker::CheckAtomicCaptureStmt( const parser::AssignmentStmt &assignmentStmt) { const auto &var{std::get(assignmentStmt.t)}; const auto &expr{std::get(assignmentStmt.t)}; common::visit( common::visitors{ [&](const common::Indirection &designator) { const auto *dataRef = std::get_if(&designator.value().u); const auto *name = dataRef ? std::get_if(&dataRef->u) : nullptr; if (name && IsAllocatable(*name->symbol)) context_.Say(name->source, "%s must not have ALLOCATABLE " "attribute"_err_en_US, name->ToString()); }, [&](const auto &) { // Anything other than a `parser::Designator` is not allowed context_.Say(expr.source, "Expected scalar variable " "of intrinsic type on RHS of atomic " "assignment statement"_err_en_US); }}, expr.u); ErrIfLHSAndRHSSymbolsMatch(var, expr); ErrIfNonScalarAssignmentStmt(var, expr); } void OmpStructureChecker::CheckAtomicWriteStmt( const parser::AssignmentStmt &assignmentStmt) { const auto &var{std::get(assignmentStmt.t)}; const auto &expr{std::get(assignmentStmt.t)}; ErrIfAllocatableVariable(var); ErrIfLHSAndRHSSymbolsMatch(var, expr); ErrIfNonScalarAssignmentStmt(var, expr); } void OmpStructureChecker::CheckAtomicUpdateStmt( const parser::AssignmentStmt &assignment) { const auto &expr{std::get(assignment.t)}; const auto &var{std::get(assignment.t)}; bool isIntrinsicProcedure{false}; bool isValidOperator{false}; common::visit( common::visitors{ [&](const common::Indirection &x) { isIntrinsicProcedure = true; const auto &procedureDesignator{ std::get(x.value().v.t)}; const parser::Name *name{ std::get_if(&procedureDesignator.u)}; if (name && !(name->source == "max" || name->source == "min" || name->source == "iand" || name->source == "ior" || name->source == "ieor")) { context_.Say(expr.source, "Invalid intrinsic procedure name in " "OpenMP ATOMIC (UPDATE) statement"_err_en_US); } }, [&](const auto &x) { if (!IsOperatorValid(x, var)) { context_.Say(expr.source, "Invalid or missing operator in atomic update " "statement"_err_en_US); } else isValidOperator = true; }, }, expr.u); if (const auto *e{GetExpr(context_, expr)}) { const auto *v{GetExpr(context_, var)}; if (e->Rank() != 0) context_.Say(expr.source, "Expected scalar expression " "on the RHS of atomic update assignment " "statement"_err_en_US); if (v->Rank() != 0) context_.Say(var.GetSource(), "Expected scalar variable " "on the LHS of atomic update assignment " "statement"_err_en_US); const Symbol &varSymbol = evaluate::GetSymbolVector(*v).front(); int numOfSymbolMatches{0}; SymbolVector exprSymbols = evaluate::GetSymbolVector(*e); for (const Symbol &symbol : exprSymbols) { if (varSymbol == symbol) numOfSymbolMatches++; } if (isIntrinsicProcedure) { std::string varName = var.GetSource().ToString(); if (numOfSymbolMatches != 1) context_.Say(expr.source, "Intrinsic procedure" " arguments in atomic update statement" " must have exactly one occurence of '%s'"_err_en_US, varName); else if (varSymbol != exprSymbols.front() && varSymbol != exprSymbols.back()) context_.Say(expr.source, "Atomic update statement " "should be of the form `%s = intrinsic_procedure(%s, expr_list)` " "OR `%s = intrinsic_procedure(expr_list, %s)`"_err_en_US, varName, varName, varName, varName); } else if (isValidOperator) { if (numOfSymbolMatches != 1) context_.Say(expr.source, "Exactly one occurence of '%s' " "expected on the RHS of atomic update assignment statement"_err_en_US, var.GetSource().ToString()); } } ErrIfAllocatableVariable(var); } void OmpStructureChecker::CheckAtomicMemoryOrderClause( const parser::OmpAtomicClauseList *leftHandClauseList, const parser::OmpAtomicClauseList *rightHandClauseList) { int numMemoryOrderClause = 0; auto checkForValidMemoryOrderClause = [&](const parser::OmpAtomicClauseList *clauseList) { for (const auto &clause : clauseList->v) { if (std::get_if(&clause.u)) { numMemoryOrderClause++; if (numMemoryOrderClause > 1) { context_.Say(clause.source, "More than one memory order clause not allowed on " "OpenMP Atomic construct"_err_en_US); return; } } } }; if (leftHandClauseList) { checkForValidMemoryOrderClause(leftHandClauseList); } if (rightHandClauseList) { checkForValidMemoryOrderClause(rightHandClauseList); } } void OmpStructureChecker::Enter(const parser::OpenMPAtomicConstruct &x) { common::visit( common::visitors{ [&](const parser::OmpAtomic &atomicConstruct) { const auto &dir{std::get(atomicConstruct.t)}; PushContextAndClauseSets( dir.source, llvm::omp::Directive::OMPD_atomic); CheckAtomicUpdateStmt( std::get>( atomicConstruct.t) .statement); CheckAtomicMemoryOrderClause( &std::get(atomicConstruct.t), nullptr); CheckHintClause( &std::get(atomicConstruct.t), nullptr); }, [&](const parser::OmpAtomicUpdate &atomicUpdate) { const auto &dir{std::get(atomicUpdate.t)}; PushContextAndClauseSets( dir.source, llvm::omp::Directive::OMPD_atomic); CheckAtomicUpdateStmt( std::get>( atomicUpdate.t) .statement); CheckAtomicMemoryOrderClause( &std::get<0>(atomicUpdate.t), &std::get<2>(atomicUpdate.t)); CheckHintClause( &std::get<0>(atomicUpdate.t), &std::get<2>(atomicUpdate.t)); }, [&](const parser::OmpAtomicRead &atomicRead) { const auto &dir{std::get(atomicRead.t)}; PushContextAndClauseSets( dir.source, llvm::omp::Directive::OMPD_atomic); CheckAtomicMemoryOrderClause( &std::get<0>(atomicRead.t), &std::get<2>(atomicRead.t)); CheckHintClause( &std::get<0>(atomicRead.t), &std::get<2>(atomicRead.t)); CheckAtomicCaptureStmt( std::get>( atomicRead.t) .statement); }, [&](const parser::OmpAtomicWrite &atomicWrite) { const auto &dir{std::get(atomicWrite.t)}; PushContextAndClauseSets( dir.source, llvm::omp::Directive::OMPD_atomic); CheckAtomicMemoryOrderClause( &std::get<0>(atomicWrite.t), &std::get<2>(atomicWrite.t)); CheckHintClause( &std::get<0>(atomicWrite.t), &std::get<2>(atomicWrite.t)); CheckAtomicWriteStmt( std::get>( atomicWrite.t) .statement); }, [&](const auto &atomicConstruct) { const auto &dir{std::get(atomicConstruct.t)}; PushContextAndClauseSets( dir.source, llvm::omp::Directive::OMPD_atomic); CheckAtomicMemoryOrderClause(&std::get<0>(atomicConstruct.t), &std::get<2>(atomicConstruct.t)); CheckHintClause( &std::get<0>(atomicConstruct.t), &std::get<2>(atomicConstruct.t)); }, }, x.u); } void OmpStructureChecker::Leave(const parser::OpenMPAtomicConstruct &) { dirContext_.pop_back(); } // Clauses // Mainly categorized as // 1. Checks on 'OmpClauseList' from 'parse-tree.h'. // 2. Checks on clauses which fall under 'struct OmpClause' from parse-tree.h. // 3. Checks on clauses which are not in 'struct OmpClause' from parse-tree.h. void OmpStructureChecker::Leave(const parser::OmpClauseList &) { // 2.7.1 Loop Construct Restriction if (llvm::omp::allDoSet.test(GetContext().directive)) { if (auto *clause{FindClause(llvm::omp::Clause::OMPC_schedule)}) { // only one schedule clause is allowed const auto &schedClause{std::get(clause->u)}; if (ScheduleModifierHasType(schedClause.v, parser::OmpScheduleModifierType::ModType::Nonmonotonic)) { if (FindClause(llvm::omp::Clause::OMPC_ordered)) { context_.Say(clause->source, "The NONMONOTONIC modifier cannot be specified " "if an ORDERED clause is specified"_err_en_US); } if (ScheduleModifierHasType(schedClause.v, parser::OmpScheduleModifierType::ModType::Monotonic)) { context_.Say(clause->source, "The MONOTONIC and NONMONOTONIC modifiers " "cannot be both specified"_err_en_US); } } } if (auto *clause{FindClause(llvm::omp::Clause::OMPC_ordered)}) { // only one ordered clause is allowed const auto &orderedClause{ std::get(clause->u)}; if (orderedClause.v) { CheckNotAllowedIfClause( llvm::omp::Clause::OMPC_ordered, {llvm::omp::Clause::OMPC_linear}); if (auto *clause2{FindClause(llvm::omp::Clause::OMPC_collapse)}) { const auto &collapseClause{ std::get(clause2->u)}; // ordered and collapse both have parameters if (const auto orderedValue{GetIntValue(orderedClause.v)}) { if (const auto collapseValue{GetIntValue(collapseClause.v)}) { if (*orderedValue > 0 && *orderedValue < *collapseValue) { context_.Say(clause->source, "The parameter of the ORDERED clause must be " "greater than or equal to " "the parameter of the COLLAPSE clause"_err_en_US); } } } } } // TODO: ordered region binding check (requires nesting implementation) } } // doSet // 2.8.1 Simd Construct Restriction if (llvm::omp::allSimdSet.test(GetContext().directive)) { if (auto *clause{FindClause(llvm::omp::Clause::OMPC_simdlen)}) { if (auto *clause2{FindClause(llvm::omp::Clause::OMPC_safelen)}) { const auto &simdlenClause{ std::get(clause->u)}; const auto &safelenClause{ std::get(clause2->u)}; // simdlen and safelen both have parameters if (const auto simdlenValue{GetIntValue(simdlenClause.v)}) { if (const auto safelenValue{GetIntValue(safelenClause.v)}) { if (*safelenValue > 0 && *simdlenValue > *safelenValue) { context_.Say(clause->source, "The parameter of the SIMDLEN clause must be less than or " "equal to the parameter of the SAFELEN clause"_err_en_US); } } } } } // Sema checks related to presence of multiple list items within the same // clause CheckMultListItems(); } // SIMD // 2.7.3 Single Construct Restriction if (GetContext().directive == llvm::omp::Directive::OMPD_end_single) { CheckNotAllowedIfClause( llvm::omp::Clause::OMPC_copyprivate, {llvm::omp::Clause::OMPC_nowait}); } auto testThreadprivateVarErr = [&](Symbol sym, parser::Name name, llvmOmpClause clauseTy) { if (sym.test(Symbol::Flag::OmpThreadprivate)) context_.Say(name.source, "A THREADPRIVATE variable cannot be in %s clause"_err_en_US, parser::ToUpperCaseLetters(getClauseName(clauseTy).str())); }; // [5.1] 2.21.2 Threadprivate Directive Restriction OmpClauseSet threadprivateAllowedSet{llvm::omp::Clause::OMPC_copyin, llvm::omp::Clause::OMPC_copyprivate, llvm::omp::Clause::OMPC_schedule, llvm::omp::Clause::OMPC_num_threads, llvm::omp::Clause::OMPC_thread_limit, llvm::omp::Clause::OMPC_if}; for (auto it : GetContext().clauseInfo) { llvmOmpClause type = it.first; const auto *clause = it.second; if (!threadprivateAllowedSet.test(type)) { if (const auto *objList{GetOmpObjectList(*clause)}) { for (const auto &ompObject : objList->v) { common::visit( common::visitors{ [&](const parser::Designator &) { if (const auto *name{ parser::Unwrap(ompObject)}) { if (name->symbol) { testThreadprivateVarErr( name->symbol->GetUltimate(), *name, type); } } }, [&](const parser::Name &name) { if (name.symbol) { for (const auto &mem : name.symbol->get().objects()) { testThreadprivateVarErr(mem->GetUltimate(), name, type); break; } } }, }, ompObject.u); } } } } CheckRequireAtLeastOneOf(); } void OmpStructureChecker::Enter(const parser::OmpClause &x) { SetContextClause(x); } // Following clauses do not have a separate node in parse-tree.h. CHECK_SIMPLE_CLAUSE(AcqRel, OMPC_acq_rel) CHECK_SIMPLE_CLAUSE(Acquire, OMPC_acquire) CHECK_SIMPLE_CLAUSE(Affinity, OMPC_affinity) CHECK_SIMPLE_CLAUSE(Capture, OMPC_capture) CHECK_SIMPLE_CLAUSE(Default, OMPC_default) CHECK_SIMPLE_CLAUSE(Depobj, OMPC_depobj) CHECK_SIMPLE_CLAUSE(Destroy, OMPC_destroy) CHECK_SIMPLE_CLAUSE(Detach, OMPC_detach) CHECK_SIMPLE_CLAUSE(DeviceType, OMPC_device_type) CHECK_SIMPLE_CLAUSE(DistSchedule, OMPC_dist_schedule) CHECK_SIMPLE_CLAUSE(Exclusive, OMPC_exclusive) CHECK_SIMPLE_CLAUSE(Final, OMPC_final) CHECK_SIMPLE_CLAUSE(Flush, OMPC_flush) CHECK_SIMPLE_CLAUSE(From, OMPC_from) CHECK_SIMPLE_CLAUSE(Full, OMPC_full) CHECK_SIMPLE_CLAUSE(Hint, OMPC_hint) CHECK_SIMPLE_CLAUSE(InReduction, OMPC_in_reduction) CHECK_SIMPLE_CLAUSE(Inclusive, OMPC_inclusive) CHECK_SIMPLE_CLAUSE(Match, OMPC_match) CHECK_SIMPLE_CLAUSE(Nontemporal, OMPC_nontemporal) CHECK_SIMPLE_CLAUSE(Order, OMPC_order) CHECK_SIMPLE_CLAUSE(Read, OMPC_read) CHECK_SIMPLE_CLAUSE(Threadprivate, OMPC_threadprivate) CHECK_SIMPLE_CLAUSE(Threads, OMPC_threads) CHECK_SIMPLE_CLAUSE(Inbranch, OMPC_inbranch) CHECK_SIMPLE_CLAUSE(Link, OMPC_link) CHECK_SIMPLE_CLAUSE(Indirect, OMPC_indirect) CHECK_SIMPLE_CLAUSE(Mergeable, OMPC_mergeable) CHECK_SIMPLE_CLAUSE(Nogroup, OMPC_nogroup) CHECK_SIMPLE_CLAUSE(Notinbranch, OMPC_notinbranch) CHECK_SIMPLE_CLAUSE(Partial, OMPC_partial) CHECK_SIMPLE_CLAUSE(ProcBind, OMPC_proc_bind) CHECK_SIMPLE_CLAUSE(Release, OMPC_release) CHECK_SIMPLE_CLAUSE(Relaxed, OMPC_relaxed) CHECK_SIMPLE_CLAUSE(SeqCst, OMPC_seq_cst) CHECK_SIMPLE_CLAUSE(Simd, OMPC_simd) CHECK_SIMPLE_CLAUSE(Sizes, OMPC_sizes) CHECK_SIMPLE_CLAUSE(TaskReduction, OMPC_task_reduction) CHECK_SIMPLE_CLAUSE(To, OMPC_to) CHECK_SIMPLE_CLAUSE(Uniform, OMPC_uniform) CHECK_SIMPLE_CLAUSE(Unknown, OMPC_unknown) CHECK_SIMPLE_CLAUSE(Untied, OMPC_untied) CHECK_SIMPLE_CLAUSE(UsesAllocators, OMPC_uses_allocators) CHECK_SIMPLE_CLAUSE(Update, OMPC_update) CHECK_SIMPLE_CLAUSE(Write, OMPC_write) CHECK_SIMPLE_CLAUSE(Init, OMPC_init) CHECK_SIMPLE_CLAUSE(Use, OMPC_use) CHECK_SIMPLE_CLAUSE(Novariants, OMPC_novariants) CHECK_SIMPLE_CLAUSE(Nocontext, OMPC_nocontext) CHECK_SIMPLE_CLAUSE(At, OMPC_at) CHECK_SIMPLE_CLAUSE(Severity, OMPC_severity) CHECK_SIMPLE_CLAUSE(Message, OMPC_message) CHECK_SIMPLE_CLAUSE(Filter, OMPC_filter) CHECK_SIMPLE_CLAUSE(When, OMPC_when) CHECK_SIMPLE_CLAUSE(AdjustArgs, OMPC_adjust_args) CHECK_SIMPLE_CLAUSE(AppendArgs, OMPC_append_args) CHECK_SIMPLE_CLAUSE(MemoryOrder, OMPC_memory_order) CHECK_SIMPLE_CLAUSE(Bind, OMPC_bind) CHECK_SIMPLE_CLAUSE(Align, OMPC_align) CHECK_SIMPLE_CLAUSE(Compare, OMPC_compare) CHECK_SIMPLE_CLAUSE(CancellationConstructType, OMPC_cancellation_construct_type) CHECK_SIMPLE_CLAUSE(Doacross, OMPC_doacross) CHECK_SIMPLE_CLAUSE(OmpxAttribute, OMPC_ompx_attribute) CHECK_SIMPLE_CLAUSE(OmpxBare, OMPC_ompx_bare) CHECK_SIMPLE_CLAUSE(Enter, OMPC_enter) CHECK_SIMPLE_CLAUSE(Fail, OMPC_fail) CHECK_REQ_SCALAR_INT_CLAUSE(Grainsize, OMPC_grainsize) CHECK_REQ_SCALAR_INT_CLAUSE(NumTasks, OMPC_num_tasks) CHECK_REQ_SCALAR_INT_CLAUSE(NumTeams, OMPC_num_teams) CHECK_REQ_SCALAR_INT_CLAUSE(NumThreads, OMPC_num_threads) CHECK_REQ_SCALAR_INT_CLAUSE(OmpxDynCgroupMem, OMPC_ompx_dyn_cgroup_mem) CHECK_REQ_SCALAR_INT_CLAUSE(Priority, OMPC_priority) CHECK_REQ_SCALAR_INT_CLAUSE(ThreadLimit, OMPC_thread_limit) CHECK_REQ_CONSTANT_SCALAR_INT_CLAUSE(Collapse, OMPC_collapse) CHECK_REQ_CONSTANT_SCALAR_INT_CLAUSE(Safelen, OMPC_safelen) CHECK_REQ_CONSTANT_SCALAR_INT_CLAUSE(Simdlen, OMPC_simdlen) // Restrictions specific to each clause are implemented apart from the // generalized restrictions. void OmpStructureChecker::Enter(const parser::OmpClause::Reduction &x) { CheckAllowed(llvm::omp::Clause::OMPC_reduction); if (CheckReductionOperators(x)) { CheckReductionTypeList(x); } } bool OmpStructureChecker::CheckReductionOperators( const parser::OmpClause::Reduction &x) { const auto &definedOp{std::get<0>(x.v.t)}; bool ok = false; common::visit( common::visitors{ [&](const parser::DefinedOperator &dOpr) { const auto &intrinsicOp{ std::get(dOpr.u)}; ok = CheckIntrinsicOperator(intrinsicOp); }, [&](const parser::ProcedureDesignator &procD) { const parser::Name *name{std::get_if(&procD.u)}; if (name && name->symbol) { const SourceName &realName{name->symbol->GetUltimate().name()}; if (realName == "max" || realName == "min" || realName == "iand" || realName == "ior" || realName == "ieor") { ok = true; } } if (!ok) { context_.Say(GetContext().clauseSource, "Invalid reduction identifier in REDUCTION " "clause."_err_en_US, ContextDirectiveAsFortran()); } }, }, definedOp.u); return ok; } bool OmpStructureChecker::CheckIntrinsicOperator( const parser::DefinedOperator::IntrinsicOperator &op) { switch (op) { case parser::DefinedOperator::IntrinsicOperator::Add: case parser::DefinedOperator::IntrinsicOperator::Multiply: case parser::DefinedOperator::IntrinsicOperator::AND: case parser::DefinedOperator::IntrinsicOperator::OR: case parser::DefinedOperator::IntrinsicOperator::EQV: case parser::DefinedOperator::IntrinsicOperator::NEQV: return true; case parser::DefinedOperator::IntrinsicOperator::Subtract: context_.Say(GetContext().clauseSource, "The minus reduction operator is deprecated since OpenMP 5.2 and is " "not supported in the REDUCTION clause."_err_en_US, ContextDirectiveAsFortran()); break; default: context_.Say(GetContext().clauseSource, "Invalid reduction operator in REDUCTION clause."_err_en_US, ContextDirectiveAsFortran()); } return false; } void OmpStructureChecker::CheckReductionTypeList( const parser::OmpClause::Reduction &x) { const auto &ompObjectList{std::get(x.v.t)}; CheckIntentInPointerAndDefinable( ompObjectList, llvm::omp::Clause::OMPC_reduction); CheckReductionArraySection(ompObjectList); // If this is a worksharing construct then ensure the reduction variable // is not private in the parallel region that it binds to. if (llvm::omp::nestedReduceWorkshareAllowedSet.test(GetContext().directive)) { CheckSharedBindingInOuterContext(ompObjectList); } } void OmpStructureChecker::CheckIntentInPointerAndDefinable( const parser::OmpObjectList &objectList, const llvm::omp::Clause clause) { for (const auto &ompObject : objectList.v) { if (const auto *name{parser::Unwrap(ompObject)}) { if (const auto *symbol{name->symbol}) { if (IsPointer(symbol->GetUltimate()) && IsIntentIn(symbol->GetUltimate())) { context_.Say(GetContext().clauseSource, "Pointer '%s' with the INTENT(IN) attribute may not appear " "in a %s clause"_err_en_US, symbol->name(), parser::ToUpperCaseLetters(getClauseName(clause).str())); } else if (auto msg{WhyNotDefinable(name->source, context_.FindScope(name->source), DefinabilityFlags{}, *symbol)}) { context_ .Say(GetContext().clauseSource, "Variable '%s' on the %s clause is not definable"_err_en_US, symbol->name(), parser::ToUpperCaseLetters(getClauseName(clause).str())) .Attach(std::move(*msg)); } } } } } void OmpStructureChecker::CheckReductionArraySection( const parser::OmpObjectList &ompObjectList) { for (const auto &ompObject : ompObjectList.v) { if (const auto *dataRef{parser::Unwrap(ompObject)}) { if (const auto *arrayElement{ parser::Unwrap(ompObject)}) { if (arrayElement) { CheckArraySection(*arrayElement, GetLastName(*dataRef), llvm::omp::Clause::OMPC_reduction); } } } } } void OmpStructureChecker::CheckSharedBindingInOuterContext( const parser::OmpObjectList &redObjectList) { // TODO: Verify the assumption here that the immediately enclosing region is // the parallel region to which the worksharing construct having reduction // binds to. if (auto *enclosingContext{GetEnclosingDirContext()}) { for (auto it : enclosingContext->clauseInfo) { llvmOmpClause type = it.first; const auto *clause = it.second; if (llvm::omp::privateReductionSet.test(type)) { if (const auto *objList{GetOmpObjectList(*clause)}) { for (const auto &ompObject : objList->v) { if (const auto *name{parser::Unwrap(ompObject)}) { if (const auto *symbol{name->symbol}) { for (const auto &redOmpObject : redObjectList.v) { if (const auto *rname{ parser::Unwrap(redOmpObject)}) { if (const auto *rsymbol{rname->symbol}) { if (rsymbol->name() == symbol->name()) { context_.Say(GetContext().clauseSource, "%s variable '%s' is %s in outer context must" " be shared in the parallel regions to which any" " of the worksharing regions arising from the " "worksharing construct bind."_err_en_US, parser::ToUpperCaseLetters( getClauseName(llvm::omp::Clause::OMPC_reduction) .str()), symbol->name(), parser::ToUpperCaseLetters( getClauseName(type).str())); } } } } } } } } } } } } void OmpStructureChecker::Enter(const parser::OmpClause::Ordered &x) { CheckAllowed(llvm::omp::Clause::OMPC_ordered); // the parameter of ordered clause is optional if (const auto &expr{x.v}) { RequiresConstantPositiveParameter(llvm::omp::Clause::OMPC_ordered, *expr); // 2.8.3 Loop SIMD Construct Restriction if (llvm::omp::allDoSimdSet.test(GetContext().directive)) { context_.Say(GetContext().clauseSource, "No ORDERED clause with a parameter can be specified " "on the %s directive"_err_en_US, ContextDirectiveAsFortran()); } } } void OmpStructureChecker::Enter(const parser::OmpClause::Shared &x) { CheckAllowed(llvm::omp::Clause::OMPC_shared); CheckIsVarPartOfAnotherVar(GetContext().clauseSource, x.v); } void OmpStructureChecker::Enter(const parser::OmpClause::Private &x) { CheckAllowed(llvm::omp::Clause::OMPC_private); CheckIsVarPartOfAnotherVar(GetContext().clauseSource, x.v); CheckIntentInPointer(x.v, llvm::omp::Clause::OMPC_private); } void OmpStructureChecker::Enter(const parser::OmpClause::Nowait &x) { CheckAllowed(llvm::omp::Clause::OMPC_nowait); if (llvm::omp::noWaitClauseNotAllowedSet.test(GetContext().directive)) { context_.Say(GetContext().clauseSource, "%s clause is not allowed on the OMP %s directive," " use it on OMP END %s directive "_err_en_US, parser::ToUpperCaseLetters( getClauseName(llvm::omp::Clause::OMPC_nowait).str()), parser::ToUpperCaseLetters(GetContext().directiveSource.ToString()), parser::ToUpperCaseLetters(GetContext().directiveSource.ToString())); } } bool OmpStructureChecker::IsDataRefTypeParamInquiry( const parser::DataRef *dataRef) { bool dataRefIsTypeParamInquiry{false}; if (const auto *structComp{ parser::Unwrap(dataRef)}) { if (const auto *compSymbol{structComp->component.symbol}) { if (const auto *compSymbolMiscDetails{ std::get_if(&compSymbol->details())}) { const auto detailsKind = compSymbolMiscDetails->kind(); dataRefIsTypeParamInquiry = (detailsKind == MiscDetails::Kind::KindParamInquiry || detailsKind == MiscDetails::Kind::LenParamInquiry); } else if (compSymbol->has()) { dataRefIsTypeParamInquiry = true; } } } return dataRefIsTypeParamInquiry; } void OmpStructureChecker::CheckIsVarPartOfAnotherVar( const parser::CharBlock &source, const parser::OmpObjectList &objList) { for (const auto &ompObject : objList.v) { common::visit( common::visitors{ [&](const parser::Designator &designator) { if (const auto *dataRef{ std::get_if(&designator.u)}) { if (IsDataRefTypeParamInquiry(dataRef)) { context_.Say(source, "A type parameter inquiry cannot appear on the %s " "directive"_err_en_US, ContextDirectiveAsFortran()); } else if (parser::Unwrap( ompObject) || parser::Unwrap(ompObject)) { if (llvm::omp::nonPartialVarSet.test( GetContext().directive)) { context_.Say(source, "A variable that is part of another variable (as an " "array or structure element) cannot appear on the %s " "directive"_err_en_US, ContextDirectiveAsFortran()); } else { context_.Say(source, "A variable that is part of another variable (as an " "array or structure element) cannot appear in a " "PRIVATE or SHARED clause"_err_en_US); } } } }, [&](const parser::Name &name) {}, }, ompObject.u); } } void OmpStructureChecker::Enter(const parser::OmpClause::Firstprivate &x) { CheckAllowed(llvm::omp::Clause::OMPC_firstprivate); CheckIsLoopIvPartOfClause(llvmOmpClause::OMPC_firstprivate, x.v); SymbolSourceMap currSymbols; GetSymbolsInObjectList(x.v, currSymbols); CheckCopyingPolymorphicAllocatable( currSymbols, llvm::omp::Clause::OMPC_firstprivate); DirectivesClauseTriple dirClauseTriple; // Check firstprivate variables in worksharing constructs dirClauseTriple.emplace(llvm::omp::Directive::OMPD_do, std::make_pair( llvm::omp::Directive::OMPD_parallel, llvm::omp::privateReductionSet)); dirClauseTriple.emplace(llvm::omp::Directive::OMPD_sections, std::make_pair( llvm::omp::Directive::OMPD_parallel, llvm::omp::privateReductionSet)); dirClauseTriple.emplace(llvm::omp::Directive::OMPD_single, std::make_pair( llvm::omp::Directive::OMPD_parallel, llvm::omp::privateReductionSet)); // Check firstprivate variables in distribute construct dirClauseTriple.emplace(llvm::omp::Directive::OMPD_distribute, std::make_pair( llvm::omp::Directive::OMPD_teams, llvm::omp::privateReductionSet)); dirClauseTriple.emplace(llvm::omp::Directive::OMPD_distribute, std::make_pair(llvm::omp::Directive::OMPD_target_teams, llvm::omp::privateReductionSet)); // Check firstprivate variables in task and taskloop constructs dirClauseTriple.emplace(llvm::omp::Directive::OMPD_task, std::make_pair(llvm::omp::Directive::OMPD_parallel, OmpClauseSet{llvm::omp::Clause::OMPC_reduction})); dirClauseTriple.emplace(llvm::omp::Directive::OMPD_taskloop, std::make_pair(llvm::omp::Directive::OMPD_parallel, OmpClauseSet{llvm::omp::Clause::OMPC_reduction})); CheckPrivateSymbolsInOuterCxt( currSymbols, dirClauseTriple, llvm::omp::Clause::OMPC_firstprivate); } void OmpStructureChecker::CheckIsLoopIvPartOfClause( llvmOmpClause clause, const parser::OmpObjectList &ompObjectList) { for (const auto &ompObject : ompObjectList.v) { if (const parser::Name * name{parser::Unwrap(ompObject)}) { if (name->symbol == GetContext().loopIV) { context_.Say(name->source, "DO iteration variable %s is not allowed in %s clause."_err_en_US, name->ToString(), parser::ToUpperCaseLetters(getClauseName(clause).str())); } } } } // Following clauses have a seperate node in parse-tree.h. // Atomic-clause CHECK_SIMPLE_PARSER_CLAUSE(OmpAtomicRead, OMPC_read) CHECK_SIMPLE_PARSER_CLAUSE(OmpAtomicWrite, OMPC_write) CHECK_SIMPLE_PARSER_CLAUSE(OmpAtomicUpdate, OMPC_update) CHECK_SIMPLE_PARSER_CLAUSE(OmpAtomicCapture, OMPC_capture) void OmpStructureChecker::Leave(const parser::OmpAtomicRead &) { CheckNotAllowedIfClause(llvm::omp::Clause::OMPC_read, {llvm::omp::Clause::OMPC_release, llvm::omp::Clause::OMPC_acq_rel}); } void OmpStructureChecker::Leave(const parser::OmpAtomicWrite &) { CheckNotAllowedIfClause(llvm::omp::Clause::OMPC_write, {llvm::omp::Clause::OMPC_acquire, llvm::omp::Clause::OMPC_acq_rel}); } void OmpStructureChecker::Leave(const parser::OmpAtomicUpdate &) { CheckNotAllowedIfClause(llvm::omp::Clause::OMPC_update, {llvm::omp::Clause::OMPC_acquire, llvm::omp::Clause::OMPC_acq_rel}); } // OmpAtomic node represents atomic directive without atomic-clause. // atomic-clause - READ,WRITE,UPDATE,CAPTURE. void OmpStructureChecker::Leave(const parser::OmpAtomic &) { if (const auto *clause{FindClause(llvm::omp::Clause::OMPC_acquire)}) { context_.Say(clause->source, "Clause ACQUIRE is not allowed on the ATOMIC directive"_err_en_US); } if (const auto *clause{FindClause(llvm::omp::Clause::OMPC_acq_rel)}) { context_.Say(clause->source, "Clause ACQ_REL is not allowed on the ATOMIC directive"_err_en_US); } } // Restrictions specific to each clause are implemented apart from the // generalized restrictions. void OmpStructureChecker::Enter(const parser::OmpClause::Aligned &x) { CheckAllowed(llvm::omp::Clause::OMPC_aligned); if (const auto &expr{ std::get>(x.v.t)}) { RequiresConstantPositiveParameter(llvm::omp::Clause::OMPC_aligned, *expr); } // 2.8.1 TODO: list-item attribute check } void OmpStructureChecker::Enter(const parser::OmpClause::Defaultmap &x) { CheckAllowed(llvm::omp::Clause::OMPC_defaultmap); using VariableCategory = parser::OmpDefaultmapClause::VariableCategory; if (!std::get>(x.v.t)) { context_.Say(GetContext().clauseSource, "The argument TOFROM:SCALAR must be specified on the DEFAULTMAP " "clause"_err_en_US); } } void OmpStructureChecker::Enter(const parser::OmpClause::If &x) { CheckAllowed(llvm::omp::Clause::OMPC_if); using dirNameModifier = parser::OmpIfClause::DirectiveNameModifier; // TODO Check that, when multiple 'if' clauses are applied to a combined // construct, at most one of them applies to each directive. static std::unordered_map dirNameModifierMap{{dirNameModifier::Parallel, llvm::omp::allParallelSet}, {dirNameModifier::Simd, llvm::omp::allSimdSet}, {dirNameModifier::Target, llvm::omp::allTargetSet}, {dirNameModifier::TargetData, {llvm::omp::Directive::OMPD_target_data}}, {dirNameModifier::TargetEnterData, {llvm::omp::Directive::OMPD_target_enter_data}}, {dirNameModifier::TargetExitData, {llvm::omp::Directive::OMPD_target_exit_data}}, {dirNameModifier::TargetUpdate, {llvm::omp::Directive::OMPD_target_update}}, {dirNameModifier::Task, {llvm::omp::Directive::OMPD_task}}, {dirNameModifier::Taskloop, llvm::omp::allTaskloopSet}, {dirNameModifier::Teams, llvm::omp::allTeamsSet}}; if (const auto &directiveName{ std::get>(x.v.t)}) { auto search{dirNameModifierMap.find(*directiveName)}; if (search == dirNameModifierMap.end() || !search->second.test(GetContext().directive)) { context_ .Say(GetContext().clauseSource, "Unmatched directive name modifier %s on the IF clause"_err_en_US, parser::ToUpperCaseLetters( parser::OmpIfClause::EnumToString(*directiveName))) .Attach( GetContext().directiveSource, "Cannot apply to directive"_en_US); } } } void OmpStructureChecker::Enter(const parser::OmpClause::Linear &x) { CheckAllowed(llvm::omp::Clause::OMPC_linear); // 2.7 Loop Construct Restriction if ((llvm::omp::allDoSet | llvm::omp::allSimdSet) .test(GetContext().directive)) { if (std::holds_alternative(x.v.u)) { context_.Say(GetContext().clauseSource, "A modifier may not be specified in a LINEAR clause " "on the %s directive"_err_en_US, ContextDirectiveAsFortran()); } } } void OmpStructureChecker::CheckAllowedMapTypes( const parser::OmpMapType::Type &type, const std::list &allowedMapTypeList) { if (!llvm::is_contained(allowedMapTypeList, type)) { std::string commaSeperatedMapTypes; llvm::interleave( allowedMapTypeList.begin(), allowedMapTypeList.end(), [&](const parser::OmpMapType::Type &mapType) { commaSeperatedMapTypes.append(parser::ToUpperCaseLetters( parser::OmpMapType::EnumToString(mapType))); }, [&] { commaSeperatedMapTypes.append(", "); }); context_.Say(GetContext().clauseSource, "Only the %s map types are permitted " "for MAP clauses on the %s directive"_err_en_US, commaSeperatedMapTypes, ContextDirectiveAsFortran()); } } void OmpStructureChecker::Enter(const parser::OmpClause::Map &x) { CheckAllowed(llvm::omp::Clause::OMPC_map); if (const auto &maptype{std::get>(x.v.t)}) { using Type = parser::OmpMapType::Type; const Type &type{std::get(maptype->t)}; switch (GetContext().directive) { case llvm::omp::Directive::OMPD_target: case llvm::omp::Directive::OMPD_target_teams: case llvm::omp::Directive::OMPD_target_teams_distribute: case llvm::omp::Directive::OMPD_target_teams_distribute_simd: case llvm::omp::Directive::OMPD_target_teams_distribute_parallel_do: case llvm::omp::Directive::OMPD_target_teams_distribute_parallel_do_simd: case llvm::omp::Directive::OMPD_target_data: CheckAllowedMapTypes( type, {Type::To, Type::From, Type::Tofrom, Type::Alloc}); break; case llvm::omp::Directive::OMPD_target_enter_data: CheckAllowedMapTypes(type, {Type::To, Type::Alloc}); break; case llvm::omp::Directive::OMPD_target_exit_data: CheckAllowedMapTypes(type, {Type::From, Type::Release, Type::Delete}); break; default: break; } } } bool OmpStructureChecker::ScheduleModifierHasType( const parser::OmpScheduleClause &x, const parser::OmpScheduleModifierType::ModType &type) { const auto &modifier{ std::get>(x.t)}; if (modifier) { const auto &modType1{ std::get(modifier->t)}; const auto &modType2{ std::get>( modifier->t)}; if (modType1.v.v == type || (modType2 && modType2->v.v == type)) { return true; } } return false; } void OmpStructureChecker::Enter(const parser::OmpClause::Schedule &x) { CheckAllowed(llvm::omp::Clause::OMPC_schedule); const parser::OmpScheduleClause &scheduleClause = x.v; // 2.7 Loop Construct Restriction if (llvm::omp::allDoSet.test(GetContext().directive)) { const auto &kind{std::get<1>(scheduleClause.t)}; const auto &chunk{std::get<2>(scheduleClause.t)}; if (chunk) { if (kind == parser::OmpScheduleClause::ScheduleType::Runtime || kind == parser::OmpScheduleClause::ScheduleType::Auto) { context_.Say(GetContext().clauseSource, "When SCHEDULE clause has %s specified, " "it must not have chunk size specified"_err_en_US, parser::ToUpperCaseLetters( parser::OmpScheduleClause::EnumToString(kind))); } if (const auto &chunkExpr{std::get>( scheduleClause.t)}) { RequiresPositiveParameter( llvm::omp::Clause::OMPC_schedule, *chunkExpr, "chunk size"); } } if (ScheduleModifierHasType(scheduleClause, parser::OmpScheduleModifierType::ModType::Nonmonotonic)) { if (kind != parser::OmpScheduleClause::ScheduleType::Dynamic && kind != parser::OmpScheduleClause::ScheduleType::Guided) { context_.Say(GetContext().clauseSource, "The NONMONOTONIC modifier can only be specified with " "SCHEDULE(DYNAMIC) or SCHEDULE(GUIDED)"_err_en_US); } } } } void OmpStructureChecker::Enter(const parser::OmpClause::Device &x) { CheckAllowed(llvm::omp::Clause::OMPC_device); const parser::OmpDeviceClause &deviceClause = x.v; const auto &device{std::get<1>(deviceClause.t)}; RequiresPositiveParameter( llvm::omp::Clause::OMPC_device, device, "device expression"); std::optional modifier = std::get<0>(deviceClause.t); if (modifier && *modifier == parser::OmpDeviceClause::DeviceModifier::Ancestor) { if (GetContext().directive != llvm::omp::OMPD_target) { context_.Say(GetContext().clauseSource, "The ANCESTOR device-modifier must not appear on the DEVICE clause on" " any directive other than the TARGET construct. Found on %s construct."_err_en_US, parser::ToUpperCaseLetters(getDirectiveName(GetContext().directive))); } } } void OmpStructureChecker::Enter(const parser::OmpClause::Depend &x) { CheckAllowed(llvm::omp::Clause::OMPC_depend); if (const auto *inOut{std::get_if(&x.v.u)}) { const auto &designators{std::get>(inOut->t)}; for (const auto &ele : designators) { if (const auto *dataRef{std::get_if(&ele.u)}) { CheckDependList(*dataRef); if (const auto *arr{ std::get_if>( &dataRef->u)}) { CheckArraySection(arr->value(), GetLastName(*dataRef), llvm::omp::Clause::OMPC_depend); } } } } } void OmpStructureChecker::CheckCopyingPolymorphicAllocatable( SymbolSourceMap &symbols, const llvm::omp::Clause clause) { if (context_.ShouldWarn(common::UsageWarning::Portability)) { for (auto it{symbols.begin()}; it != symbols.end(); ++it) { const auto *symbol{it->first}; const auto source{it->second}; if (IsPolymorphicAllocatable(*symbol)) { context_.Say(source, "If a polymorphic variable with allocatable attribute '%s' is in " "%s clause, the behavior is unspecified"_port_en_US, symbol->name(), parser::ToUpperCaseLetters(getClauseName(clause).str())); } } } } void OmpStructureChecker::Enter(const parser::OmpClause::Copyprivate &x) { CheckAllowed(llvm::omp::Clause::OMPC_copyprivate); CheckIntentInPointer(x.v, llvm::omp::Clause::OMPC_copyprivate); SymbolSourceMap currSymbols; GetSymbolsInObjectList(x.v, currSymbols); CheckCopyingPolymorphicAllocatable( currSymbols, llvm::omp::Clause::OMPC_copyprivate); if (GetContext().directive == llvm::omp::Directive::OMPD_single) { context_.Say(GetContext().clauseSource, "%s clause is not allowed on the OMP %s directive," " use it on OMP END %s directive "_err_en_US, parser::ToUpperCaseLetters( getClauseName(llvm::omp::Clause::OMPC_copyprivate).str()), parser::ToUpperCaseLetters(GetContext().directiveSource.ToString()), parser::ToUpperCaseLetters(GetContext().directiveSource.ToString())); } } void OmpStructureChecker::Enter(const parser::OmpClause::Lastprivate &x) { CheckAllowed(llvm::omp::Clause::OMPC_lastprivate); DirectivesClauseTriple dirClauseTriple; SymbolSourceMap currSymbols; GetSymbolsInObjectList(x.v, currSymbols); CheckDefinableObjects(currSymbols, GetClauseKindForParserClass(x)); CheckCopyingPolymorphicAllocatable( currSymbols, llvm::omp::Clause::OMPC_lastprivate); // Check lastprivate variables in worksharing constructs dirClauseTriple.emplace(llvm::omp::Directive::OMPD_do, std::make_pair( llvm::omp::Directive::OMPD_parallel, llvm::omp::privateReductionSet)); dirClauseTriple.emplace(llvm::omp::Directive::OMPD_sections, std::make_pair( llvm::omp::Directive::OMPD_parallel, llvm::omp::privateReductionSet)); CheckPrivateSymbolsInOuterCxt( currSymbols, dirClauseTriple, GetClauseKindForParserClass(x)); } void OmpStructureChecker::Enter(const parser::OmpClause::Copyin &x) { CheckAllowed(llvm::omp::Clause::OMPC_copyin); SymbolSourceMap currSymbols; GetSymbolsInObjectList(x.v, currSymbols); CheckCopyingPolymorphicAllocatable( currSymbols, llvm::omp::Clause::OMPC_copyin); } void OmpStructureChecker::CheckStructureElement( const parser::OmpObjectList &ompObjectList, const llvm::omp::Clause clause) { for (const auto &ompObject : ompObjectList.v) { common::visit( common::visitors{ [&](const parser::Designator &designator) { if (std::get_if(&designator.u)) { if (parser::Unwrap(ompObject)) { context_.Say(GetContext().clauseSource, "A variable that is part of another variable " "(structure element) cannot appear on the %s " "%s clause"_err_en_US, ContextDirectiveAsFortran(), parser::ToUpperCaseLetters(getClauseName(clause).str())); } } }, [&](const parser::Name &name) {}, }, ompObject.u); } return; } void OmpStructureChecker::Enter(const parser::OmpClause::UseDevicePtr &x) { CheckStructureElement(x.v, llvm::omp::Clause::OMPC_use_device_ptr); CheckAllowed(llvm::omp::Clause::OMPC_use_device_ptr); SymbolSourceMap currSymbols; GetSymbolsInObjectList(x.v, currSymbols); semantics::UnorderedSymbolSet listVars; auto useDevicePtrClauses{FindClauses(llvm::omp::Clause::OMPC_use_device_ptr)}; for (auto itr = useDevicePtrClauses.first; itr != useDevicePtrClauses.second; ++itr) { const auto &useDevicePtrClause{ std::get(itr->second->u)}; const auto &useDevicePtrList{useDevicePtrClause.v}; std::list useDevicePtrNameList; for (const auto &ompObject : useDevicePtrList.v) { if (const auto *name{parser::Unwrap(ompObject)}) { if (name->symbol) { if (!(IsBuiltinCPtr(*(name->symbol)))) { context_.Say(itr->second->source, "'%s' in USE_DEVICE_PTR clause must be of type C_PTR"_err_en_US, name->ToString()); } else { useDevicePtrNameList.push_back(*name); } } } } CheckMultipleOccurrence( listVars, useDevicePtrNameList, itr->second->source, "USE_DEVICE_PTR"); } } void OmpStructureChecker::Enter(const parser::OmpClause::UseDeviceAddr &x) { CheckStructureElement(x.v, llvm::omp::Clause::OMPC_use_device_addr); CheckAllowed(llvm::omp::Clause::OMPC_use_device_addr); SymbolSourceMap currSymbols; GetSymbolsInObjectList(x.v, currSymbols); semantics::UnorderedSymbolSet listVars; auto useDeviceAddrClauses{ FindClauses(llvm::omp::Clause::OMPC_use_device_addr)}; for (auto itr = useDeviceAddrClauses.first; itr != useDeviceAddrClauses.second; ++itr) { const auto &useDeviceAddrClause{ std::get(itr->second->u)}; const auto &useDeviceAddrList{useDeviceAddrClause.v}; std::list useDeviceAddrNameList; for (const auto &ompObject : useDeviceAddrList.v) { if (const auto *name{parser::Unwrap(ompObject)}) { if (name->symbol) { useDeviceAddrNameList.push_back(*name); } } } CheckMultipleOccurrence(listVars, useDeviceAddrNameList, itr->second->source, "USE_DEVICE_ADDR"); } } void OmpStructureChecker::Enter(const parser::OmpClause::IsDevicePtr &x) { CheckAllowed(llvm::omp::Clause::OMPC_is_device_ptr); SymbolSourceMap currSymbols; GetSymbolsInObjectList(x.v, currSymbols); semantics::UnorderedSymbolSet listVars; auto isDevicePtrClauses{FindClauses(llvm::omp::Clause::OMPC_is_device_ptr)}; for (auto itr = isDevicePtrClauses.first; itr != isDevicePtrClauses.second; ++itr) { const auto &isDevicePtrClause{ std::get(itr->second->u)}; const auto &isDevicePtrList{isDevicePtrClause.v}; SymbolSourceMap currSymbols; GetSymbolsInObjectList(isDevicePtrList, currSymbols); for (auto &[symbol, source] : currSymbols) { if (!(IsBuiltinCPtr(*symbol))) { context_.Say(itr->second->source, "Variable '%s' in IS_DEVICE_PTR clause must be of type C_PTR"_err_en_US, source.ToString()); } else if (!(IsDummy(*symbol))) { context_.Say(itr->second->source, "Variable '%s' in IS_DEVICE_PTR clause must be a dummy argument. " "This semantic check is deprecated from OpenMP 5.2 and later."_warn_en_US, source.ToString()); } else if (IsAllocatableOrPointer(*symbol) || IsValue(*symbol)) { context_.Say(itr->second->source, "Variable '%s' in IS_DEVICE_PTR clause must be a dummy argument " "that does not have the ALLOCATABLE, POINTER or VALUE attribute. " "This semantic check is deprecated from OpenMP 5.2 and later."_warn_en_US, source.ToString()); } } } } void OmpStructureChecker::Enter(const parser::OmpClause::HasDeviceAddr &x) { CheckAllowed(llvm::omp::Clause::OMPC_has_device_addr); SymbolSourceMap currSymbols; GetSymbolsInObjectList(x.v, currSymbols); semantics::UnorderedSymbolSet listVars; auto hasDeviceAddrClauses{ FindClauses(llvm::omp::Clause::OMPC_has_device_addr)}; for (auto itr = hasDeviceAddrClauses.first; itr != hasDeviceAddrClauses.second; ++itr) { const auto &hasDeviceAddrClause{ std::get(itr->second->u)}; const auto &hasDeviceAddrList{hasDeviceAddrClause.v}; std::list hasDeviceAddrNameList; for (const auto &ompObject : hasDeviceAddrList.v) { if (const auto *name{parser::Unwrap(ompObject)}) { if (name->symbol) { hasDeviceAddrNameList.push_back(*name); } } } } } llvm::StringRef OmpStructureChecker::getClauseName(llvm::omp::Clause clause) { return llvm::omp::getOpenMPClauseName(clause); } llvm::StringRef OmpStructureChecker::getDirectiveName( llvm::omp::Directive directive) { return llvm::omp::getOpenMPDirectiveName(directive); } void OmpStructureChecker::CheckDependList(const parser::DataRef &d) { common::visit( common::visitors{ [&](const common::Indirection &elem) { // Check if the base element is valid on Depend Clause CheckDependList(elem.value().base); }, [&](const common::Indirection &) { context_.Say(GetContext().clauseSource, "A variable that is part of another variable " "(such as an element of a structure) but is not an array " "element or an array section cannot appear in a DEPEND " "clause"_err_en_US); }, [&](const common::Indirection &) { context_.Say(GetContext().clauseSource, "Coarrays are not supported in DEPEND clause"_err_en_US); }, [&](const parser::Name &) { return; }, }, d.u); } // Called from both Reduction and Depend clause. void OmpStructureChecker::CheckArraySection( const parser::ArrayElement &arrayElement, const parser::Name &name, const llvm::omp::Clause clause) { if (!arrayElement.subscripts.empty()) { for (const auto &subscript : arrayElement.subscripts) { if (const auto *triplet{ std::get_if(&subscript.u)}) { if (std::get<0>(triplet->t) && std::get<1>(triplet->t)) { const auto &lower{std::get<0>(triplet->t)}; const auto &upper{std::get<1>(triplet->t)}; if (lower && upper) { const auto lval{GetIntValue(lower)}; const auto uval{GetIntValue(upper)}; if (lval && uval && *uval < *lval) { context_.Say(GetContext().clauseSource, "'%s' in %s clause" " is a zero size array section"_err_en_US, name.ToString(), parser::ToUpperCaseLetters(getClauseName(clause).str())); break; } else if (std::get<2>(triplet->t)) { const auto &strideExpr{std::get<2>(triplet->t)}; if (strideExpr) { if (clause == llvm::omp::Clause::OMPC_depend) { context_.Say(GetContext().clauseSource, "Stride should not be specified for array section in " "DEPEND " "clause"_err_en_US); } const auto stride{GetIntValue(strideExpr)}; if ((stride && stride != 1)) { context_.Say(GetContext().clauseSource, "A list item that appears in a REDUCTION clause" " should have a contiguous storage array " "section."_err_en_US, ContextDirectiveAsFortran()); break; } } } } } } } } } void OmpStructureChecker::CheckIntentInPointer( const parser::OmpObjectList &objectList, const llvm::omp::Clause clause) { SymbolSourceMap symbols; GetSymbolsInObjectList(objectList, symbols); for (auto it{symbols.begin()}; it != symbols.end(); ++it) { const auto *symbol{it->first}; const auto source{it->second}; if (IsPointer(*symbol) && IsIntentIn(*symbol)) { context_.Say(source, "Pointer '%s' with the INTENT(IN) attribute may not appear " "in a %s clause"_err_en_US, symbol->name(), parser::ToUpperCaseLetters(getClauseName(clause).str())); } } } void OmpStructureChecker::GetSymbolsInObjectList( const parser::OmpObjectList &objectList, SymbolSourceMap &symbols) { for (const auto &ompObject : objectList.v) { if (const auto *name{parser::Unwrap(ompObject)}) { if (const auto *symbol{name->symbol}) { if (const auto *commonBlockDetails{ symbol->detailsIf()}) { for (const auto &object : commonBlockDetails->objects()) { symbols.emplace(&object->GetUltimate(), name->source); } } else { symbols.emplace(&symbol->GetUltimate(), name->source); } } } } } void OmpStructureChecker::CheckDefinableObjects( SymbolSourceMap &symbols, const llvm::omp::Clause clause) { for (auto it{symbols.begin()}; it != symbols.end(); ++it) { const auto *symbol{it->first}; const auto source{it->second}; if (auto msg{WhyNotDefinable(source, context_.FindScope(source), DefinabilityFlags{}, *symbol)}) { context_ .Say(source, "Variable '%s' on the %s clause is not definable"_err_en_US, symbol->name(), parser::ToUpperCaseLetters(getClauseName(clause).str())) .Attach(std::move(*msg)); } } } void OmpStructureChecker::CheckPrivateSymbolsInOuterCxt( SymbolSourceMap &currSymbols, DirectivesClauseTriple &dirClauseTriple, const llvm::omp::Clause currClause) { SymbolSourceMap enclosingSymbols; auto range{dirClauseTriple.equal_range(GetContext().directive)}; for (auto dirIter{range.first}; dirIter != range.second; ++dirIter) { auto enclosingDir{dirIter->second.first}; auto enclosingClauseSet{dirIter->second.second}; if (auto *enclosingContext{GetEnclosingContextWithDir(enclosingDir)}) { for (auto it{enclosingContext->clauseInfo.begin()}; it != enclosingContext->clauseInfo.end(); ++it) { if (enclosingClauseSet.test(it->first)) { if (const auto *ompObjectList{GetOmpObjectList(*it->second)}) { GetSymbolsInObjectList(*ompObjectList, enclosingSymbols); } } } // Check if the symbols in current context are private in outer context for (auto iter{currSymbols.begin()}; iter != currSymbols.end(); ++iter) { const auto *symbol{iter->first}; const auto source{iter->second}; if (enclosingSymbols.find(symbol) != enclosingSymbols.end()) { context_.Say(source, "%s variable '%s' is PRIVATE in outer context"_err_en_US, parser::ToUpperCaseLetters(getClauseName(currClause).str()), symbol->name()); } } } } } bool OmpStructureChecker::CheckTargetBlockOnlyTeams( const parser::Block &block) { bool nestedTeams{false}; if (!block.empty()) { auto it{block.begin()}; if (const auto *ompConstruct{ parser::Unwrap(*it)}) { if (const auto *ompBlockConstruct{ std::get_if(&ompConstruct->u)}) { const auto &beginBlockDir{ std::get(ompBlockConstruct->t)}; const auto &beginDir{ std::get(beginBlockDir.t)}; if (beginDir.v == llvm::omp::Directive::OMPD_teams) { nestedTeams = true; } } } if (nestedTeams && ++it == block.end()) { return true; } } return false; } void OmpStructureChecker::CheckWorkshareBlockStmts( const parser::Block &block, parser::CharBlock source) { OmpWorkshareBlockChecker ompWorkshareBlockChecker{context_, source}; for (auto it{block.begin()}; it != block.end(); ++it) { if (parser::Unwrap(*it) || parser::Unwrap(*it) || parser::Unwrap(*it) || parser::Unwrap(*it) || parser::Unwrap(*it)) { parser::Walk(*it, ompWorkshareBlockChecker); } else if (const auto *ompConstruct{ parser::Unwrap(*it)}) { if (const auto *ompAtomicConstruct{ std::get_if(&ompConstruct->u)}) { // Check if assignment statements in the enclosing OpenMP Atomic // construct are allowed in the Workshare construct parser::Walk(*ompAtomicConstruct, ompWorkshareBlockChecker); } else if (const auto *ompCriticalConstruct{ std::get_if( &ompConstruct->u)}) { // All the restrictions on the Workshare construct apply to the // statements in the enclosing critical constructs const auto &criticalBlock{ std::get(ompCriticalConstruct->t)}; CheckWorkshareBlockStmts(criticalBlock, source); } else { // Check if OpenMP constructs enclosed in the Workshare construct are // 'Parallel' constructs auto currentDir{llvm::omp::Directive::OMPD_unknown}; if (const auto *ompBlockConstruct{ std::get_if(&ompConstruct->u)}) { const auto &beginBlockDir{ std::get(ompBlockConstruct->t)}; const auto &beginDir{ std::get(beginBlockDir.t)}; currentDir = beginDir.v; } else if (const auto *ompLoopConstruct{ std::get_if( &ompConstruct->u)}) { const auto &beginLoopDir{ std::get(ompLoopConstruct->t)}; const auto &beginDir{ std::get(beginLoopDir.t)}; currentDir = beginDir.v; } else if (const auto *ompSectionsConstruct{ std::get_if( &ompConstruct->u)}) { const auto &beginSectionsDir{ std::get( ompSectionsConstruct->t)}; const auto &beginDir{ std::get(beginSectionsDir.t)}; currentDir = beginDir.v; } if (!llvm::omp::topParallelSet.test(currentDir)) { context_.Say(source, "OpenMP constructs enclosed in WORKSHARE construct may consist " "of ATOMIC, CRITICAL or PARALLEL constructs only"_err_en_US); } } } else { context_.Say(source, "The structured block in a WORKSHARE construct may consist of only " "SCALAR or ARRAY assignments, FORALL or WHERE statements, " "FORALL, WHERE, ATOMIC, CRITICAL or PARALLEL constructs"_err_en_US); } } } const parser::OmpObjectList *OmpStructureChecker::GetOmpObjectList( const parser::OmpClause &clause) { // Clauses with OmpObjectList as its data member using MemberObjectListClauses = std::tuple; // Clauses with OmpObjectList in the tuple using TupleObjectListClauses = std::tuple; // TODO:: Generate the tuples using TableGen. // Handle other constructs with OmpObjectList such as OpenMPThreadprivate. return common::visit( common::visitors{ [&](const auto &x) -> const parser::OmpObjectList * { using Ty = std::decay_t; if constexpr (common::HasMember) { return &x.v; } else if constexpr (common::HasMember) { return &(std::get(x.v.t)); } else { return nullptr; } }, }, clause.u); } void OmpStructureChecker::Enter( const parser::OmpClause::AtomicDefaultMemOrder &x) { CheckAllowedRequiresClause(llvm::omp::Clause::OMPC_atomic_default_mem_order); } void OmpStructureChecker::Enter(const parser::OmpClause::DynamicAllocators &x) { CheckAllowedRequiresClause(llvm::omp::Clause::OMPC_dynamic_allocators); } void OmpStructureChecker::Enter(const parser::OmpClause::ReverseOffload &x) { CheckAllowedRequiresClause(llvm::omp::Clause::OMPC_reverse_offload); } void OmpStructureChecker::Enter(const parser::OmpClause::UnifiedAddress &x) { CheckAllowedRequiresClause(llvm::omp::Clause::OMPC_unified_address); } void OmpStructureChecker::Enter( const parser::OmpClause::UnifiedSharedMemory &x) { CheckAllowedRequiresClause(llvm::omp::Clause::OMPC_unified_shared_memory); } void OmpStructureChecker::CheckAllowedRequiresClause(llvmOmpClause clause) { CheckAllowed(clause); if (clause != llvm::omp::Clause::OMPC_atomic_default_mem_order) { // Check that it does not appear after a device construct if (deviceConstructFound_) { context_.Say(GetContext().clauseSource, "REQUIRES directive with '%s' clause found lexically after device " "construct"_err_en_US, parser::ToUpperCaseLetters(getClauseName(clause).str())); } } } } // namespace Fortran::semantics