// Test for the array-value-copy pass // RUN: fir-opt --split-input-file --array-value-copy %s | FileCheck %s // Test simple fir.array_load/fir.array_fetch conversion to fir.array_coor func.func @array_fetch_conversion(%arr1 : !fir.ref>, %m: index, %n: index) { %c10 = arith.constant 10 : index %c20 = arith.constant 20 : index %s = fir.shape %m, %n : (index, index) -> !fir.shape<2> %av1 = fir.array_load %arr1(%s) : (!fir.ref>, !fir.shape<2>) -> !fir.array %f = fir.array_fetch %av1, %c10, %c20 : (!fir.array, index, index) -> f32 return } // CHECK-LABEL: func @array_fetch_conversion( // CHECK-SAME: %[[ARRAY:.*]]: !fir.ref>, // CHECK-SAME: %[[ARG1:.*]]: index, // CHECK-SAME: %[[ARG2:.*]]: index) { // CHECK: %{{.*}} = fir.shape %[[ARG1]], %[[ARG2]] : (index, index) -> !fir.shape<2> // CHECK: %{{.*}} = fir.undefined !fir.array // CHECK: %[[VAL_0:.*]] = arith.addi %{{.*}}, %{{.*}} : index // CHECK: %[[VAL_1:.*]] = arith.addi %{{.*}}, %{{.*}} : index // CHECK-NOT: fir.array_load // CHECK-NOT: fir.array_fetch // CHECK: %{{.*}} = fir.array_coor %arg0(%0) %[[VAL_0]], %[[VAL_1]] : (!fir.ref>, !fir.shape<2>, index, index) -> !fir.ref // CHECK: %{{.*}} = fir.load %4 : !fir.ref // ----- // Test simple fir.array_load/fir.array_update conversion without copy-in/copy-out func.func @array_update_conversion(%arr1 : !fir.box>, %m: index, %n: index) { %c10 = arith.constant 10 : index %c20 = arith.constant 20 : index %c1 = arith.constant 1 : index %f = arith.constant 2.0 : f32 %s = fir.shape %m, %n : (index, index) -> !fir.shape<2> %av1 = fir.array_load %arr1(%s) : (!fir.box>, !fir.shape<2>) -> !fir.array %av2 = fir.array_update %av1, %f, %c1, %c1 : (!fir.array, f32, index, index) -> !fir.array return } // CHECK-LABEL: func @array_update_conversion // CHECK-NOT: fir.array_load // CHECK-NOT: fir.array_update // CHECK: %{{.*}} = arith.addi %{{.*}}, %{{.*}} : index // CHECK: %{{.*}} = arith.addi %{{.*}}, %{{.*}} : index // CHECK: %[[ARRAY_COOR:.*]] = fir.array_coor{{.*}}-> !fir.ref // CHECK: fir.store %{{.*}} to %[[ARRAY_COOR]] : !fir.ref // ----- // Test simple fir.array_load/fir.array_update conversion without copy-in/copy-out func.func @array_update_conversion(%arr1 : !fir.box>, %m: index, %n: index, %cond: i1) { %c10 = arith.constant 10 : index %c20 = arith.constant 20 : index %c1 = arith.constant 1 : index %f = arith.constant 2.0 : f32 %g = arith.constant 4.0 : f32 %s = fir.shape %m, %n : (index, index) -> !fir.shape<2> %av1 = fir.array_load %arr1(%s) : (!fir.box>, !fir.shape<2>) -> !fir.array fir.if %cond { %av2 = fir.array_update %av1, %f, %c1, %c1 : (!fir.array, f32, index, index) -> !fir.array } else { %av2 = fir.array_update %av1, %g, %c1, %c1 : (!fir.array, f32, index, index) -> !fir.array } return } // ----- // Test fir.array_load/fir.array_fetch/fir.array_update conversion with // an introduced copy-in/copy-out. // // This test corresponds to a simplified FIR version of the following Fortran // code. // ``` // integer :: i(10) // i = i(10:1:-1) // end // ``` func.func @conversion_with_temporary(%arr0 : !fir.ref>) { %c10 = arith.constant 10 : index %1 = fir.shape %c10 : (index) -> !fir.shape<1> %2 = fir.array_load %arr0(%1) : (!fir.ref>, !fir.shape<1>) -> !fir.array<10xi32> %c10_i64 = arith.constant 10 : i64 %3 = fir.convert %c10_i64 : (i64) -> index %c1_i64 = arith.constant 1 : i64 %c-1_i64 = arith.constant -1 : i64 %4 = fir.shape %c10 : (index) -> !fir.shape<1> %5 = fir.slice %c10_i64, %c1_i64, %c-1_i64 : (i64, i64, i64) -> !fir.slice<1> %6 = fir.array_load %arr0(%4) [%5] : (!fir.ref>, !fir.shape<1>, !fir.slice<1>) -> !fir.array<10xi32> %c1 = arith.constant 1 : index %c0 = arith.constant 0 : index %7 = arith.subi %3, %c1 : index %8 = fir.do_loop %arg0 = %c0 to %7 step %c1 unordered iter_args(%arg1 = %2) -> (!fir.array<10xi32>) { %9 = fir.array_fetch %6, %arg0 : (!fir.array<10xi32>, index) -> i32 %10 = fir.array_update %arg1, %9, %arg0 : (!fir.array<10xi32>, i32, index) -> !fir.array<10xi32> fir.result %10 : !fir.array<10xi32> } fir.array_merge_store %2, %8 to %arr0 : !fir.array<10xi32>, !fir.array<10xi32>, !fir.ref> return } // CHECK-LABEL: func @conversion_with_temporary( // CHECK-SAME: %[[ARR0:.*]]: !fir.ref>) // Allocation of temporary array. // CHECK: %[[TEMP:.*]] = fir.allocmem !fir.array<10xi32> // Copy of original array to temp. // CHECK: fir.do_loop %{{.*}} = %{{.*}} to %{{.*}} step %{{.*}} { // CHECK: %[[COOR0:.*]] = fir.array_coor %[[ARR0]](%{{.*}}) %{{.*}} : (!fir.ref>, !fir.shape<1>, index) -> !fir.ref // CHECK: %[[COOR1:.*]] = fir.array_coor %[[TEMP]](%{{.*}}) %{{.*}} : (!fir.heap>, !fir.shape<1>, index) -> !fir.ref // CHECK: %[[LOAD0:.*]] = fir.load %[[COOR0]] : !fir.ref // CHECK: fir.store %[[LOAD0]] to %[[COOR1]] : !fir.ref // CHECK: } // Perform the assignment i = i(10:1:-1) using the temporary array. // CHECK: %{{.*}} = fir.do_loop %{{.*}} = %{{.*}} to %{{.*}} step %{{.*}} unordered iter_args(%{{.*}} = %{{.*}}) -> (!fir.array<10xi32>) { // CHECK-NOT: %{{.*}} = fir.array_fetch // CHECK-NOT: %{{.*}} = fir.array_update // CHECK: %[[COOR0:.*]] = fir.array_coor %[[ARR0]](%{{.*}}) [%{{.*}}] %{{.*}} : (!fir.ref>, !fir.shape<1>, !fir.slice<1>, index) -> !fir.ref // CHECK: %[[LOAD0:.*]] = fir.load %[[COOR0]] : !fir.ref // CHECK: %[[COOR1:.*]] = fir.array_coor %[[TEMP]](%{{.*}}) %{{.*}} : (!fir.heap>, !fir.shape<1>, index) -> !fir.ref // CHECK: fir.store %[[LOAD0]] to %[[COOR1]] : !fir.ref // CHECK: fir.result %{{.*}} : !fir.array<10xi32> // CHECK: } // Copy the result back to the original array. // CHECK: fir.do_loop %{{.*}} = %{{.*}} to %{{.*}} step %{{.*}} { // CHECK: %[[COOR0:.*]] = fir.array_coor %[[TEMP]](%{{.*}}) %{{.*}} : (!fir.heap>, !fir.shape<1>, index) -> !fir.ref // CHECK: %[[COOR1:.*]] = fir.array_coor %[[ARR0]](%{{.*}}) %{{.*}} : (!fir.ref>, !fir.shape<1>, index) -> !fir.ref // CHECK: %[[LOAD0:.*]] = fir.load %[[COOR0:.*]] : !fir.ref // CHECK: fir.store %[[LOAD0]] to %[[COOR1]] : !fir.ref // CHECK: } // Free temporary array. // CHECK: fir.freemem %[[TEMP]] : !fir.heap> // ----- // Test fir.array_load/fir.array_fetch/fir.array_update conversion with // an introduced copy-in/copy-out on a multidimensional array. func.func @conversion_with_temporary_multidim(%0: !fir.ref>) { %c10 = arith.constant 10 : index %c5 = arith.constant 5 : index %1 = fir.shape %c10, %c5 : (index, index) -> !fir.shape<2> %2 = fir.array_load %0(%1) : (!fir.ref>, !fir.shape<2>) -> !fir.array<10x5xi32> %c10_i64 = arith.constant 10 : i64 %3 = fir.convert %c10_i64 : (i64) -> index %c5_i64 = arith.constant 5 : i64 %4 = fir.convert %c5_i64 : (i64) -> index %c1 = arith.constant 1 : index %c10_i64_0 = arith.constant 10 : i64 %c1_i64 = arith.constant 1 : i64 %c-1_i64 = arith.constant -1 : i64 %5 = arith.addi %c1, %c5 : index %6 = arith.subi %5, %c1 : index %c1_i64_1 = arith.constant 1 : i64 %7 = fir.shape %c10, %c5 : (index, index) -> !fir.shape<2> %8 = fir.slice %c10_i64_0, %c1_i64, %c-1_i64, %c1, %6, %c1_i64_1 : (i64, i64, i64, index, index, i64) -> !fir.slice<2> %9 = fir.array_load %0(%7) [%8] : (!fir.ref>, !fir.shape<2>, !fir.slice<2>) -> !fir.array<10x5xi32> %c1_2 = arith.constant 1 : index %c0 = arith.constant 0 : index %10 = arith.subi %3, %c1_2 : index %11 = arith.subi %4, %c1_2 : index %12 = fir.do_loop %arg0 = %c0 to %11 step %c1_2 unordered iter_args(%arg1 = %2) -> (!fir.array<10x5xi32>) { %13 = fir.do_loop %arg2 = %c0 to %10 step %c1_2 unordered iter_args(%arg3 = %arg1) -> (!fir.array<10x5xi32>) { %14 = fir.array_fetch %9, %arg2, %arg0 : (!fir.array<10x5xi32>, index, index) -> i32 %15 = fir.array_update %arg3, %14, %arg2, %arg0 : (!fir.array<10x5xi32>, i32, index, index) -> !fir.array<10x5xi32> fir.result %15 : !fir.array<10x5xi32> } fir.result %13 : !fir.array<10x5xi32> } fir.array_merge_store %2, %12 to %0 : !fir.array<10x5xi32>, !fir.array<10x5xi32>, !fir.ref> return } // CHECK-LABEL: func @conversion_with_temporary_multidim( // CHECK-SAME: %[[ARR0:.*]]: !fir.ref>) { // CHECK: %[[CST10:.*]] = arith.constant 10 : index // CHECK: %[[CST5:.*]] = arith.constant 5 : index // CHECK: %[[TEMP:.*]] = fir.allocmem !fir.array<10x5xi32> // CHECK: %[[IDX5:.*]] = fir.convert %[[CST5]] : (index) -> index // CHECK: %[[UB5:.*]] = arith.subi %[[IDX5]], %{{.*}} : index // CHECK: fir.do_loop %[[INDUC0:.*]] = %{{.*}} to %[[UB5]] step %{{.*}} { // CHECK: %[[IDX10:.*]] = fir.convert %[[CST10]] : (index) -> index // CHECK: %[[UB10:.*]] = arith.subi %[[IDX10]], %{{.*}} : index // CHECK: fir.do_loop %[[INDUC1:.*]] = %{{.*}} to %[[UB10]] step %{{.*}} { // CHECK: %[[IDX1:.*]] = arith.addi %[[INDUC1]], %{{.*}} : index // CHECK: %[[IDX2:.*]] = arith.addi %[[INDUC0]], %{{.*}} : index // CHECK: %[[COOR0:.*]] = fir.array_coor %[[ARR0]](%{{.*}}) %[[IDX1:.*]], %[[IDX2:.*]] : (!fir.ref>, !fir.shape<2>, index, index) -> !fir.ref // CHECK: %[[COOR1:.*]] = fir.array_coor %[[TEMP]](%{{.*}}) %{{.*}}, %{{.*}} : (!fir.heap>, !fir.shape<2>, index, index) -> !fir.ref // CHECK: %[[LOAD0:.*]] = fir.load %[[COOR0]] : !fir.ref // CHECK: fir.store %[[LOAD0]] to %[[COOR1]] : !fir.ref // CHECK: %{{.*}} = fir.do_loop %[[INDUC0:.*]] = %{{.*}} to %{{.*}} step %{{.*}} unordered iter_args(%{{.*}} = %{{.*}}) -> (!fir.array<10x5xi32>) { // CHECK: %{{.*}} = fir.do_loop %[[INDUC1:.*]] = %{{.*}} to %{{.*}} step %{{.*}} unordered iter_args(%{{.*}} = %{{.*}}) -> (!fir.array<10x5xi32>) { // CHECK: %[[IDX1:.*]] = arith.addi %[[INDUC1]], %{{.*}} : index // CHECK: %[[IDX2:.*]] = arith.addi %[[INDUC0]], %{{.*}} : index // CHECK-NOT: %{{.*}} = fir.array_fetch // CHECK-NOT: %{{.*}} = fir.array_update // CHECK: %[[COOR0:.*]] = fir.array_coor %[[ARR0]](%{{.*}}) [%{{.*}}] %[[IDX1]], %[[IDX2]] : (!fir.ref>, !fir.shape<2>, !fir.slice<2>, index, index) -> !fir.ref // CHECK: %[[LOAD0:.*]] = fir.load %[[COOR0]] : !fir.ref // CHECK: %[[COOR1:.*]] = fir.array_coor %[[TEMP]](%{{.*}}) %{{.*}}, %{{.*}} : (!fir.heap>, !fir.shape<2>, index, index) -> !fir.ref // CHECK: fir.store %[[LOAD0]] to %[[COOR1]] : !fir.ref // CHECK: %[[IDX5:.*]] = fir.convert %[[CST5]] : (index) -> index // CHECK: %[[UB5:.*]] = arith.subi %[[IDX5]], %{{.*}} : index // CHECK: fir.do_loop %[[INDUC0:.*]] = %{{.*}} to %[[UB5]] step %{{.*}} { // CHECK: %[[IDX10:.*]] = fir.convert %[[CST10]] : (index) -> index // CHECK: %[[UB10:.*]] = arith.subi %[[IDX10]], %{{.*}} : index // CHECK: fir.do_loop %[[INDUC1:.*]] = %{{.*}} to %[[UB10]] step %{{.*}} { // CHECK: %[[IDX1:.*]] = arith.addi %[[INDUC1]], %{{.*}} : index // CHECK: %[[IDX2:.*]] = arith.addi %[[INDUC0]], %{{.*}} : index // CHECK: %[[COOR0:.*]] = fir.array_coor %[[TEMP]](%{{.*}}) %[[IDX1]], %[[IDX2]] : (!fir.heap>, !fir.shape<2>, index, index) -> !fir.ref // CHECK: %[[COOR1:.*]] = fir.array_coor %[[ARR0]](%{{.*}}) %{{.*}}, %{{.*}} : (!fir.ref>, !fir.shape<2>, index, index) -> !fir.ref // CHECK: %[[LOAD0:.*]] = fir.load %[[COOR0]] : !fir.ref // CHECK: fir.store %[[LOAD0]] to %[[COOR1]] : !fir.ref // CHECK: fir.freemem %[[TEMP]] : !fir.heap> // ----- // Test fir.array_modify conversion with no overlap. func.func @array_modify_no_overlap(%arg0: !fir.ref>, %arg1: !fir.ref>) { %c100 = arith.constant 100 : index %c99 = arith.constant 99 : index %c1 = arith.constant 1 : index %c0 = arith.constant 0 : index %0 = fir.alloca f32 %1 = fir.shape %c100 : (index) -> !fir.shape<1> %2 = fir.array_load %arg0(%1) : (!fir.ref>, !fir.shape<1>) -> !fir.array<100xf32> %3 = fir.array_load %arg1(%1) : (!fir.ref>, !fir.shape<1>) -> !fir.array<100xf32> %4 = fir.do_loop %arg2 = %c0 to %c99 step %c1 unordered iter_args(%arg3 = %2) -> (!fir.array<100xf32>) { %5 = fir.array_fetch %3, %arg2 : (!fir.array<100xf32>, index) -> f32 %6:2 = fir.array_modify %arg3, %arg2 : (!fir.array<100xf32>, index) -> (!fir.ref, !fir.array<100xf32>) fir.store %5 to %0 : !fir.ref fir.call @user_defined_assignment(%6#0, %0) : (!fir.ref, !fir.ref) -> () fir.result %6#1 : !fir.array<100xf32> } fir.array_merge_store %2, %4 to %arg0 : !fir.array<100xf32>, !fir.array<100xf32>, !fir.ref> return } func.func private @user_defined_assignment(!fir.ref, !fir.ref) // CHECK-LABEL: func @array_modify_no_overlap( // CHECK-SAME: %[[ARR0:.*]]: !fir.ref>, // CHECK-SAME: %[[ARR1:.*]]: !fir.ref>) { // CHECK: %[[VAR0:.*]] = fir.alloca f32 // CHECK-COUNT-1: %{{.*}} = fir.do_loop %{{.*}} = %{{.*}} to %{{.*}} step %{{.*}} unordered iter_args(%{{.*}} = %{{.*}}) -> (!fir.array<100xf32>) { // CHECK-NOT: %{{.*}} = fir.array_fetch // CHECK-NOT: %{{.*}} = fir.array_modify // CHECK: %[[COOR0:.*]] = fir.array_coor %arg1(%1) %5 : (!fir.ref>, !fir.shape<1>, index) -> !fir.ref // CHECK: %[[LOAD0:.*]] = fir.load %[[COOR0]] : !fir.ref // CHECK: %[[COOR1:.*]] = fir.array_coor %[[ARR0]](%{{.*}}) %{{.*}} : (!fir.ref>, !fir.shape<1>, index) -> !fir.ref // CHECK: fir.store %[[LOAD0]] to %[[VAR0]] : !fir.ref // CHECK: fir.call @{{.*}}(%[[COOR1]], %[[VAR0]]) : (!fir.ref, !fir.ref) -> () // ----- // Test fir.array_modify conversion with an overlap. // Test user_defined_assignment(arg0(:), arg0(100:1:-1)) func.func @array_modify_overlap(%arg0: !fir.ref>) { %c100 = arith.constant 100 : index %c99 = arith.constant 99 : index %c1 = arith.constant 1 : index %c-1 = arith.constant -1 : index %c0 = arith.constant 0 : index %0 = fir.alloca f32 %1 = fir.shape %c100 : (index) -> !fir.shape<1> %2 = fir.array_load %arg0(%1) : (!fir.ref>, !fir.shape<1>) -> !fir.array<100xf32> %3 = fir.slice %c100, %c1, %c-1 : (index, index, index) -> !fir.slice<1> %4 = fir.array_load %arg0(%1) [%3] : (!fir.ref>, !fir.shape<1>, !fir.slice<1>) -> !fir.array<100xf32> %5 = fir.do_loop %arg1 = %c0 to %c99 step %c1 unordered iter_args(%arg2 = %2) -> (!fir.array<100xf32>) { %6 = fir.array_fetch %4, %arg1 : (!fir.array<100xf32>, index) -> f32 %7:2 = fir.array_modify %arg2, %arg1 : (!fir.array<100xf32>, index) -> (!fir.ref, !fir.array<100xf32>) fir.store %6 to %0 : !fir.ref fir.call @user_defined_assignment(%7#0, %0) : (!fir.ref, !fir.ref) -> () fir.result %7#1 : !fir.array<100xf32> } fir.array_merge_store %2, %5 to %arg0 : !fir.array<100xf32>, !fir.array<100xf32>, !fir.ref> return } func.func private @user_defined_assignment(!fir.ref, !fir.ref) // CHECK-LABEL: func @array_modify_overlap( // CHECK-SAME: %[[ARR0:.*]]: !fir.ref>) { // CHECK: %[[VAR0:.*]] = fir.alloca f32 // Allocate the temporary array. // CHECK: %[[TEMP:.*]] = fir.allocmem !fir.array<100xf32> // Copy original array to temp. // CHECK: fir.do_loop %{{.*}} = %{{.*}} to %{{.*}} step %{{.*}} { // CHECK: %[[COOR0:.*]] = fir.array_coor %[[ARR0]](%{{.*}}) %{{.*}} : (!fir.ref>, !fir.shape<1>, index) -> !fir.ref // CHECK: %[[COOR1:.*]] = fir.array_coor %[[TEMP]](%{{.*}}) %{{.*}} : (!fir.heap>, !fir.shape<1>, index) -> !fir.ref // CHECK: %[[LOAD0:.*]] = fir.load %[[COOR0]] : !fir.ref // CHECK: fir.store %[[LOAD0]] to %[[COOR1]] : !fir.ref // CHECK: } // CHECK: %[[VAL_21:.*]] = fir.undefined !fir.array<100xf32> // CHECK: %[[VAL_23:.*]] = fir.undefined !fir.array<100xf32> // CHECK-NOT: %{{.*}} = fir.array_fetch // CHECK-NOT: %{{.*}} = fir.array_modify // CHECK: %[[COOR0:.*]] = fir.array_coor %[[ARR0]](%{{.*}}) {{\[}}%{{.*}}] %{{.*}} : (!fir.ref>, !fir.shape<1>, !fir.slice<1>, index) -> !fir.ref // CHECK: %[[LOAD0:.*]] = fir.load %[[COOR0]] : !fir.ref // CHECK: %[[COOR1:.*]] = fir.array_coor %[[TEMP]](%{{.*}}) %{{.*}} : (!fir.heap>, !fir.shape<1>, index) -> !fir.ref // CHECK: fir.store %[[LOAD0]] to %[[VAR0]] : !fir.ref // CHECK: fir.call @user_defined_assignment(%[[COOR1]], %[[VAR0]]) : (!fir.ref, !fir.ref) -> () // CHECK: } // Copy back result to original array from temp. // CHECK: fir.do_loop %{{.*}} = %{{.*}} to %{{.*}} step %{{.*}} { // CHECK: %[[COOR0:.*]] = fir.array_coor %[[TEMP]](%{{.*}}) %{{.*}} : (!fir.heap>, !fir.shape<1>, index) -> !fir.ref // CHECK: %[[COOR1:.*]] = fir.array_coor %[[ARR0]](%{{.*}}) %{{.*}} : (!fir.ref>, !fir.shape<1>, index) -> !fir.ref // CHECK: %[[LOAD0:.*]] = fir.load %[[COOR0]] : !fir.ref // CHECK: fir.store %[[LOAD0]] to %[[COOR1]] : !fir.ref // CHECK: } // Free the temporary array. // CHECK: fir.freemem %[[TEMP]] : !fir.heap> // CHECK: return // CHECK: } // ----- // Test array of types with no overlap func.func @array_of_types() { %0 = fir.alloca i32 {bindc_name = "j", uniq_name = "_QEj"} %1 = fir.address_of(@_QEtypes) : !fir.ref}>>> %c1_i32 = arith.constant 1 : i32 %2 = fir.convert %c1_i32 : (i32) -> index %c10_i32 = arith.constant 10 : i32 %3 = fir.convert %c10_i32 : (i32) -> index %c1 = arith.constant 1 : index %4 = fir.do_loop %arg0 = %2 to %3 step %c1 -> index { %6 = fir.convert %arg0 : (index) -> i32 fir.store %6 to %0 : !fir.ref %c1_0 = arith.constant 1 : index %7 = fir.load %0 : !fir.ref %8 = fir.convert %7 : (i32) -> i64 %c1_i64 = arith.constant 1 : i64 %9 = arith.subi %8, %c1_i64 : i64 %10 = fir.coordinate_of %1, %9 : (!fir.ref}>>>, i64) -> !fir.ref}>> %11 = fir.field_index i, !fir.type<_QTd{i:!fir.array<10xi32>}> %12 = fir.coordinate_of %10, %11 : (!fir.ref}>>, !fir.field) -> !fir.ref> %c10 = arith.constant 10 : index %13 = arith.addi %c1_0, %c10 : index %14 = arith.subi %13, %c1_0 : index %c1_i64_1 = arith.constant 1 : i64 %15 = fir.shape %c10 : (index) -> !fir.shape<1> %16 = fir.slice %c1_0, %14, %c1_i64_1 : (index, index, i64) -> !fir.slice<1> %17 = fir.array_load %12(%15) [%16] : (!fir.ref>, !fir.shape<1>, !fir.slice<1>) -> !fir.array<10xi32> %c10_i64 = arith.constant 10 : i64 %18 = fir.convert %c10_i64 : (i64) -> index %c0_i32 = arith.constant 0 : i32 %c1_2 = arith.constant 1 : index %c0 = arith.constant 0 : index %19 = arith.subi %18, %c1_2 : index %20 = fir.do_loop %arg1 = %c0 to %19 step %c1_2 unordered iter_args(%arg2 = %17) -> (!fir.array<10xi32>) { %22 = fir.array_update %arg2, %c0_i32, %arg1 : (!fir.array<10xi32>, i32, index) -> !fir.array<10xi32> fir.result %22 : !fir.array<10xi32> } fir.array_merge_store %17, %20 to %12[%16] : !fir.array<10xi32>, !fir.array<10xi32>, !fir.ref>, !fir.slice<1> %21 = arith.addi %arg0, %c1 : index fir.result %21 : index } %5 = fir.convert %4 : (index) -> i32 fir.store %5 to %0 : !fir.ref return } // CHECK-LABEL: func @array_of_types() { // CHECK: %{{.*}} = fir.do_loop %{{.*}} = %{{.*}} to %{{.*}} step %{{.*}} -> index { // CHECK: %{{.*}} = fir.do_loop %{{.*}} = %{{.*}} to %{{.*}} step %{{.*}} unordered iter_args(%arg2 = %17) -> (!fir.array<10xi32>) { // CHECK-NOT: %{{.*}} = fir.array_update // CHECK: %[[COOR0:.*]] = fir.array_coor %{{.*}}(%{{.*}}) [%{{.*}}] %{{.*}} : (!fir.ref>, !fir.shape<1>, !fir.slice<1>, index) -> !fir.ref // CHECK: fir.store %{{.*}} to %[[COOR0]] : !fir.ref // CHECK-NOT: fir.array_merge_store // ----- // Test fir.array_load/boxed array func.func @conversion_with_temporary_boxed_array(%arr0 : !fir.box>) { %c10 = arith.constant 10 : index %1:3 = fir.box_dims %arr0, %c10 : (!fir.box>, index) -> (index, index, index) %shift = fir.shift %1#0 : (index) -> !fir.shift<1> %2 = fir.array_load %arr0(%shift) : (!fir.box>, !fir.shift<1>) -> !fir.array<10xi32> %c10_i64 = arith.constant 10 : i64 %3 = fir.convert %c10_i64 : (i64) -> index %c1_i64 = arith.constant 1 : i64 %c-1_i64 = arith.constant -1 : i64 %4 = fir.shape %c10 : (index) -> !fir.shape<1> %5 = fir.slice %c10_i64, %c1_i64, %c-1_i64 : (i64, i64, i64) -> !fir.slice<1> %6 = fir.array_load %arr0(%4) [%5] : (!fir.box>, !fir.shape<1>, !fir.slice<1>) -> !fir.array<10xi32> %c1 = arith.constant 1 : index %c0 = arith.constant 0 : index %7 = arith.subi %3, %c1 : index %8 = fir.do_loop %arg0 = %c0 to %7 step %c1 unordered iter_args(%arg1 = %2) -> (!fir.array<10xi32>) { %9 = fir.array_fetch %6, %arg0 : (!fir.array<10xi32>, index) -> i32 %10 = fir.array_update %arg1, %9, %arg0 : (!fir.array<10xi32>, i32, index) -> !fir.array<10xi32> fir.result %10 : !fir.array<10xi32> } fir.array_merge_store %2, %8 to %arr0 : !fir.array<10xi32>, !fir.array<10xi32>, !fir.box> return } // CHECK-LABEL: func @conversion_with_temporary_boxed_array( // CHECK-SAME: %[[ARR0:.*]]: !fir.box>) // Allocation of temporary array. // CHECK: %[[TEMP:.*]] = fir.allocmem !fir.array<10xi32> // Copy of original array to temp. // CHECK: fir.do_loop %{{.*}} = %{{.*}} to %{{.*}} step %{{.*}} { // CHECK: %[[COOR0:.*]] = fir.array_coor %[[ARR0]](%{{.*}}) %{{.*}} : (!fir.box>, !fir.shapeshift<1>, index) -> !fir.ref // CHECK: %[[COOR1:.*]] = fir.array_coor %[[TEMP]](%{{.*}}) %{{.*}} : (!fir.heap>, !fir.shapeshift<1>, index) -> !fir.ref // CHECK: %[[LOAD0:.*]] = fir.load %[[COOR0]] : !fir.ref // CHECK: fir.store %[[LOAD0]] to %[[COOR1]] : !fir.ref // CHECK: } // Perform the assignment i = i(10:1:-1) using the temporary array. // CHECK: %{{.*}} = fir.do_loop %{{.*}} = %{{.*}} to %{{.*}} step %{{.*}} unordered iter_args(%{{.*}} = %{{.*}}) -> (!fir.array<10xi32>) { // CHECK-NOT: %{{.*}} = fir.array_fetch // CHECK-NOT: %{{.*}} = fir.update // CHECK: %[[COOR0:.*]] = fir.array_coor %[[ARR0]](%{{.*}}) [%{{.*}}] %{{.*}} : (!fir.box>, !fir.shape<1>, !fir.slice<1>, index) -> !fir.ref // CHECK: %[[LOAD0:.*]] = fir.load %[[COOR0]] : !fir.ref // CHECK: %[[COOR1:.*]] = fir.array_coor %[[TEMP]](%{{.*}}) %{{.*}} : (!fir.heap>, !fir.shapeshift<1>, index) -> !fir.ref // CHECK: fir.store %[[LOAD0]] to %[[COOR1]] : !fir.ref // CHECK: fir.result %{{.*}} : !fir.array<10xi32> // CHECK: } // Copy the result back to the original array. // CHECK: fir.do_loop %{{.*}} = %{{.*}} to %{{.*}} step %{{.*}} { // CHECK: %[[COOR0:.*]] = fir.array_coor %[[TEMP]](%{{.*}}) %{{.*}} : (!fir.heap>, !fir.shapeshift<1>, index) -> !fir.ref // CHECK: %[[COOR1:.*]] = fir.array_coor %[[ARR0]](%{{.*}}) %{{.*}} : (!fir.box>, !fir.shapeshift<1>, index) -> !fir.ref // CHECK: %[[LOAD0:.*]] = fir.load %[[COOR0:.*]] : !fir.ref // CHECK: fir.store %[[LOAD0]] to %[[COOR1]] : !fir.ref // CHECK: } // Free temporary array. // CHECK: fir.freemem %[[TEMP]] : !fir.heap> // ----- // Test simple fir.array_update with Fortran.offsets attribute. func.func @array_update_conversion(%arr1 : !fir.box>, %m: index, %n: index) { %c10 = arith.constant 10 : index %c20 = arith.constant 20 : index %c1 = arith.constant 1 : index %f = arith.constant 2.0 : f32 %s = fir.shape %m, %n : (index, index) -> !fir.shape<2> %av1 = fir.array_load %arr1(%s) : (!fir.box>, !fir.shape<2>) -> !fir.array %av2 = fir.array_update %av1, %f, %c1, %c1 {Fortran.offsets} : (!fir.array, f32, index, index) -> !fir.array return } // CHECK-LABEL: func @array_update_conversion // CHECK-NOT: fir.array_update // CHECK-NOT: %{{.*}} = arith.addi %{{.*}}, %{{.*}} : index // CHECK: %[[ARRAY_COOR:.*]] = fir.array_coor{{.*}}-> !fir.ref // CHECK: fir.store %{{.*}} to %[[ARRAY_COOR]] : !fir.ref // ----- // Test fir.array_fetch on derived type members in an array of derived types. func.func @array_fetch_derived_type(%0 : !fir.ref}>>>) { %1 = fir.alloca i32 {bindc_name = "i", uniq_name = "_QEi"} %c1_i32 = arith.constant 1 : i32 %2 = fir.convert %c1_i32 : (i32) -> index %c10_i32 = arith.constant 10 : i32 %3 = fir.convert %c10_i32 : (i32) -> index %c1 = arith.constant 1 : index %shape = fir.shape %2 : (index) -> !fir.shape<1> %arr0 = fir.array_load %0(%shape) : (!fir.ref}>>>, !fir.shape<1>) -> !fir.array<10x!fir.type<_QTu{mt:!fir.type<_QTt{mem:i32}>}>> %4 = fir.do_loop %arg0 = %2 to %3 step %c1 -> index { %6 = fir.convert %arg0 : (index) -> i32 fir.store %6 to %1 : !fir.ref %c1_i32_0 = arith.constant 1 : i32 %7 = fir.load %1 : !fir.ref %8 = fir.convert %7 : (i32) -> i64 %c1_i64 = arith.constant 1 : i64 %9 = arith.subi %8, %c1_i64 : i64 %11 = fir.field_index mt, !fir.type<_QTu{mt:!fir.type<_QTt{mem:i32}>}> %12 = fir.field_index mem, !fir.type<_QTt{mem:i32}> %idx = fir.convert %9 : (i64) -> index %res = fir.array_fetch %arr0, %idx, %11, %12 : (!fir.array<10x!fir.type<_QTu{mt:!fir.type<_QTt{mem:i32}>}>>, index, !fir.field, !fir.field) -> i32 %14 = arith.addi %arg0, %c1 : index fir.result %14 : index } %5 = fir.convert %4 : (index) -> i32 fir.store %5 to %1 : !fir.ref return } // CHECK-LABEL: func @array_fetch_derived_type( // CHECK-SAME: %[[ARR0:.*]]: !fir.ref}>>>) { // CHECK: %{{.*}} = fir.do_loop // CHECK: %[[FIELD_MT:.*]] = fir.field_index mt, !fir.type<_QTu{mt:!fir.type<_QTt{mem:i32}>}> // CHECK: %[[FIELD_MEM:.*]] = fir.field_index mem, !fir.type<_QTt{mem:i32}> // CHECK-NOT: %{{.*}} = fir.array_fetch // CHECK: %[[COOR0:.*]] = fir.array_coor %[[ARR0]](%{{.*}}) %{{.*}} : (!fir.ref}>>>, !fir.shape<1>, index) -> !fir.ref}>> // CHECK: %[[COOR_OF:.*]] = fir.coordinate_of %[[COOR0]], %[[FIELD_MT]], %[[FIELD_MEM]] : (!fir.ref}>>, !fir.field, !fir.field) -> !fir.ref // CHECK: %{{.*}} = fir.load %[[COOR_OF]] : !fir.ref // ----- // Test simple fir.array_load/fir.array_update conversion without copy-in/copy-out with a `fir.box` func.func @array_update_conversion(%arr1 : !fir.box>, %m: index, %n: index) { %c10 = arith.constant 10 : index %c20 = arith.constant 20 : index %c1 = arith.constant 1 : index %f = arith.constant 2.0 : f32 %s = fir.shape %m, %n : (index, index) -> !fir.shape<2> %av1 = fir.array_load %arr1(%s) : (!fir.box>, !fir.shape<2>) -> !fir.array %av2 = fir.array_update %av1, %f, %c1, %c1 : (!fir.array, f32, index, index) -> !fir.array return } // ----- // Test array operation with conditional update. func.func @array_operation_with_cond_update(%arg0: !fir.ref>, %cond1: i1) { %c100 = arith.constant 100 : index %c1 = arith.constant 1 : index %c-1 = arith.constant -1 : index %f = arith.constant 2.0 : f32 %1 = fir.shape %c100 : (index) -> !fir.shape<1> %2 = fir.array_load %arg0(%1) : (!fir.ref>, !fir.shape<1>) -> !fir.array<100xf32> %arg2 = fir.if %cond1 -> !fir.array<100xf32> { fir.result %2 : !fir.array<100xf32> } else { %r = fir.array_update %2, %f, %c1 : (!fir.array<100xf32>, f32, index) -> !fir.array<100xf32> fir.result %r : !fir.array<100xf32> } fir.array_merge_store %2, %arg2 to %arg0 : !fir.array<100xf32>, !fir.array<100xf32>, !fir.ref> return } // CHECK-LABEL: func @array_operation_with_cond_update( // CHECK-SAME: %[[ARG0:.*]]: !fir.ref>, %[[COND:.*]]: i1) { // CHECK: %[[ARRAY_LOAD:.*]] = fir.undefined !fir.array<100xf32> // CHECK: %[[IF_RES:.*]] = fir.if %[[COND]] -> (!fir.array<100xf32>) { // CHECK: fir.result %[[ARRAY_LOAD]] : !fir.array<100xf32> // CHECK: } else { // CHECK: %[[UPDATE0:.*]] = fir.array_coor %[[ARG0]](%{{.*}}) %{{.*}} : (!fir.ref>, !fir.shape<1>, index) -> !fir.ref // CHECK: fir.store %{{.*}} to %{{.*}} : !fir.ref // CHECK: fir.result %[[ARRAY_LOAD]] : !fir.array<100xf32> // CHECK: }