//===-- flang/unittests/Runtime/Time.cpp ----------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #ifndef __clang__ // 16.0.3 lacks #include "gtest/gtest.h" #include "flang/Runtime/time-intrinsic.h" #include #include #include #include using namespace Fortran::runtime; TEST(TimeIntrinsics, CpuTime) { // We can't really test that we get the "right" result for CPU_TIME, but we // can have a smoke test to see that we get something reasonable on the // platforms where we expect to support it. double start{RTNAME(CpuTime)()}; ASSERT_GE(start, 0.0); // Loop until we get a different value from CpuTime. If we don't get one // before we time out, then we should probably look into an implementation // for CpuTime with a better timer resolution. for (double end = start; end == start; end = RTNAME(CpuTime)()) { ASSERT_GE(end, 0.0); ASSERT_GE(end, start); } } using count_t = std::int64_t; TEST(TimeIntrinsics, SystemClock) { // We can't really test that we get the "right" result for SYSTEM_CLOCK, but // we can have a smoke test to see that we get something reasonable on the // platforms where we expect to support it. // The value of the count rate and max will vary by platform, but they should // always be strictly positive if we have a working implementation of // SYSTEM_CLOCK. EXPECT_GT(RTNAME(SystemClockCountRate)(), 0); count_t max1{RTNAME(SystemClockCountMax)(1)}; EXPECT_GT(max1, 0); EXPECT_LE(max1, static_cast(0x7f)); count_t start1{RTNAME(SystemClockCount)(1)}; EXPECT_GE(start1, 0); EXPECT_LE(start1, max1); count_t max2{RTNAME(SystemClockCountMax)(2)}; EXPECT_GT(max2, 0); EXPECT_LE(max2, static_cast(0x7fff)); count_t start2{RTNAME(SystemClockCount)(2)}; EXPECT_GE(start2, 0); EXPECT_LE(start2, max2); count_t max4{RTNAME(SystemClockCountMax)(4)}; EXPECT_GT(max4, 0); EXPECT_LE(max4, static_cast(0x7fffffff)); count_t start4{RTNAME(SystemClockCount)(4)}; EXPECT_GE(start4, 0); EXPECT_LE(start4, max4); count_t max8{RTNAME(SystemClockCountMax)(8)}; EXPECT_GT(max8, 0); count_t start8{RTNAME(SystemClockCount)(8)}; EXPECT_GE(start8, 0); EXPECT_LT(start8, max8); count_t max16{RTNAME(SystemClockCountMax)(16)}; EXPECT_GT(max16, 0); count_t start16{RTNAME(SystemClockCount)(16)}; EXPECT_GE(start16, 0); EXPECT_LT(start16, max16); // Loop until we get a different value from SystemClockCount. If we don't get // one before we time out, then we should probably look into an implementation // for SystemClokcCount with a better timer resolution on this platform. for (count_t end{start8}; end == start8; end = RTNAME(SystemClockCount)(8)) { EXPECT_GE(end, 0); EXPECT_LE(end, max8); EXPECT_GE(end, start8); } } TEST(TimeIntrinsics, DateAndTime) { constexpr std::size_t bufferSize{16}; std::string date(bufferSize, 'Z'), time(bufferSize, 'Z'), zone(bufferSize, 'Z'); RTNAME(DateAndTime) (date.data(), date.size(), time.data(), time.size(), zone.data(), zone.size(), /*source=*/nullptr, /*line=*/0, /*values=*/nullptr); auto isBlank = [](const std::string &s) -> bool { return std::all_of( s.begin(), s.end(), [](char c) { return std::isblank(c); }); }; // Validate date is blank or YYYYMMDD. if (isBlank(date)) { EXPECT_TRUE(true); } else { count_t number{-1}; auto [_, ec]{ std::from_chars(date.data(), date.data() + date.size(), number)}; ASSERT_TRUE(ec != std::errc::invalid_argument && ec != std::errc::result_out_of_range); EXPECT_GE(number, 0); auto year = number / 10000; auto month = (number - year * 10000) / 100; auto day = number % 100; // Do not assume anything about the year, the test could be // run on system with fake/outdated dates. EXPECT_LE(month, 12); EXPECT_GT(month, 0); EXPECT_LE(day, 31); EXPECT_GT(day, 0); } // Validate time is hhmmss.sss or blank. if (isBlank(time)) { EXPECT_TRUE(true); } else { count_t number{-1}; auto [next, ec]{ std::from_chars(time.data(), time.data() + date.size(), number)}; ASSERT_TRUE(ec != std::errc::invalid_argument && ec != std::errc::result_out_of_range); ASSERT_GE(number, 0); auto hours = number / 10000; auto minutes = (number - hours * 10000) / 100; auto seconds = number % 100; EXPECT_LE(hours, 23); EXPECT_LE(minutes, 59); // Accept 60 for leap seconds. EXPECT_LE(seconds, 60); ASSERT_TRUE(next != time.data() + time.size()); EXPECT_EQ(*next, '.'); count_t milliseconds{-1}; ASSERT_TRUE(next + 1 != time.data() + time.size()); auto [_, ec2]{ std::from_chars(next + 1, time.data() + date.size(), milliseconds)}; ASSERT_TRUE(ec2 != std::errc::invalid_argument && ec2 != std::errc::result_out_of_range); EXPECT_GE(milliseconds, 0); EXPECT_LE(milliseconds, 999); } // Validate zone is +hhmm or -hhmm or blank. if (isBlank(zone)) { EXPECT_TRUE(true); } else { ASSERT_TRUE(zone.size() > 1); EXPECT_TRUE(zone[0] == '+' || zone[0] == '-'); count_t number{-1}; auto [next, ec]{ std::from_chars(zone.data() + 1, zone.data() + zone.size(), number)}; ASSERT_TRUE(ec != std::errc::invalid_argument && ec != std::errc::result_out_of_range); ASSERT_GE(number, 0); auto hours = number / 100; auto minutes = number % 100; EXPECT_LE(hours, 23); EXPECT_LE(minutes, 59); } } #endif // __clang__