/* * Copyright (c) 2014 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ // This version is derived from the generic fma software implementation // (__clc_sw_fma), but avoids the use of ulong in favor of uint2. The logic has // been updated as appropriate. #include #include "../../../generic/lib/clcmacro.h" #include "../../../generic/lib/math/math.h" struct fp { uint2 mantissa; int exponent; uint sign; }; static uint2 u2_set(uint hi, uint lo) { uint2 res; res.lo = lo; res.hi = hi; return res; } static uint2 u2_set_u(uint val) { return u2_set(0, val); } static uint2 u2_mul(uint a, uint b) { uint2 res; res.hi = mul_hi(a, b); res.lo = a * b; return res; } static uint2 u2_sll(uint2 val, uint shift) { if (shift == 0) return val; if (shift < 32) { val.hi <<= shift; val.hi |= val.lo >> (32 - shift); val.lo <<= shift; } else { val.hi = val.lo << (shift - 32); val.lo = 0; } return val; } static uint2 u2_srl(uint2 val, uint shift) { if (shift == 0) return val; if (shift < 32) { val.lo >>= shift; val.lo |= val.hi << (32 - shift); val.hi >>= shift; } else { val.lo = val.hi >> (shift - 32); val.hi = 0; } return val; } static uint2 u2_or(uint2 a, uint b) { a.lo |= b; return a; } static uint2 u2_and(uint2 a, uint2 b) { a.lo &= b.lo; a.hi &= b.hi; return a; } static uint2 u2_add(uint2 a, uint2 b) { uint carry = (hadd(a.lo, b.lo) >> 31) & 0x1; a.lo += b.lo; a.hi += b.hi + carry; return a; } static uint2 u2_add_u(uint2 a, uint b) { return u2_add(a, u2_set_u(b)); } static uint2 u2_inv(uint2 a) { a.lo = ~a.lo; a.hi = ~a.hi; return u2_add_u(a, 1); } static uint u2_clz(uint2 a) { uint leading_zeroes = clz(a.hi); if (leading_zeroes == 32) { leading_zeroes += clz(a.lo); } return leading_zeroes; } static bool u2_eq(uint2 a, uint2 b) { return a.lo == b.lo && a.hi == b.hi; } static bool u2_zero(uint2 a) { return u2_eq(a, u2_set_u(0)); } static bool u2_gt(uint2 a, uint2 b) { return a.hi > b.hi || (a.hi == b.hi && a.lo > b.lo); } _CLC_DEF _CLC_OVERLOAD float fma(float a, float b, float c) { /* special cases */ if (isnan(a) || isnan(b) || isnan(c) || isinf(a) || isinf(b)) { return mad(a, b, c); } /* If only c is inf, and both a,b are regular numbers, the result is c*/ if (isinf(c)) { return c; } a = __clc_flush_denormal_if_not_supported(a); b = __clc_flush_denormal_if_not_supported(b); c = __clc_flush_denormal_if_not_supported(c); if (a == 0.0f || b == 0.0f) { return c; } if (c == 0) { return a * b; } struct fp st_a, st_b, st_c; st_a.exponent = a == .0f ? 0 : ((as_uint(a) & 0x7f800000) >> 23) - 127; st_b.exponent = b == .0f ? 0 : ((as_uint(b) & 0x7f800000) >> 23) - 127; st_c.exponent = c == .0f ? 0 : ((as_uint(c) & 0x7f800000) >> 23) - 127; st_a.mantissa = u2_set_u(a == .0f ? 0 : (as_uint(a) & 0x7fffff) | 0x800000); st_b.mantissa = u2_set_u(b == .0f ? 0 : (as_uint(b) & 0x7fffff) | 0x800000); st_c.mantissa = u2_set_u(c == .0f ? 0 : (as_uint(c) & 0x7fffff) | 0x800000); st_a.sign = as_uint(a) & 0x80000000; st_b.sign = as_uint(b) & 0x80000000; st_c.sign = as_uint(c) & 0x80000000; // Multiplication. // Move the product to the highest bits to maximize precision // mantissa is 24 bits => product is 48 bits, 2bits non-fraction. // Add one bit for future addition overflow, // add another bit to detect subtraction underflow struct fp st_mul; st_mul.sign = st_a.sign ^ st_b.sign; st_mul.mantissa = u2_sll(u2_mul(st_a.mantissa.lo, st_b.mantissa.lo), 14); st_mul.exponent = !u2_zero(st_mul.mantissa) ? st_a.exponent + st_b.exponent : 0; // FIXME: Detecting a == 0 || b == 0 above crashed GCN isel if (st_mul.exponent == 0 && u2_zero(st_mul.mantissa)) return c; // Mantissa is 23 fractional bits, shift it the same way as product mantissa #define C_ADJUST 37ul // both exponents are bias adjusted int exp_diff = st_mul.exponent - st_c.exponent; st_c.mantissa = u2_sll(st_c.mantissa, C_ADJUST); uint2 cutoff_bits = u2_set_u(0); uint2 cutoff_mask = u2_add(u2_sll(u2_set_u(1), abs(exp_diff)), u2_set(0xffffffff, 0xffffffff)); if (exp_diff > 0) { cutoff_bits = exp_diff >= 64 ? st_c.mantissa : u2_and(st_c.mantissa, cutoff_mask); st_c.mantissa = exp_diff >= 64 ? u2_set_u(0) : u2_srl(st_c.mantissa, exp_diff); } else { cutoff_bits = -exp_diff >= 64 ? st_mul.mantissa : u2_and(st_mul.mantissa, cutoff_mask); st_mul.mantissa = -exp_diff >= 64 ? u2_set_u(0) : u2_srl(st_mul.mantissa, -exp_diff); } struct fp st_fma; st_fma.sign = st_mul.sign; st_fma.exponent = max(st_mul.exponent, st_c.exponent); if (st_c.sign == st_mul.sign) { st_fma.mantissa = u2_add(st_mul.mantissa, st_c.mantissa); } else { // cutoff bits borrow one st_fma.mantissa = u2_add(u2_add(st_mul.mantissa, u2_inv(st_c.mantissa)), (!u2_zero(cutoff_bits) && (st_mul.exponent > st_c.exponent) ? u2_set(0xffffffff, 0xffffffff) : u2_set_u(0))); } // underflow: st_c.sign != st_mul.sign, and magnitude switches the sign if (u2_gt(st_fma.mantissa, u2_set(0x7fffffff, 0xffffffff))) { st_fma.mantissa = u2_inv(st_fma.mantissa); st_fma.sign = st_mul.sign ^ 0x80000000; } // detect overflow/underflow int overflow_bits = 3 - u2_clz(st_fma.mantissa); // adjust exponent st_fma.exponent += overflow_bits; // handle underflow if (overflow_bits < 0) { st_fma.mantissa = u2_sll(st_fma.mantissa, -overflow_bits); overflow_bits = 0; } // rounding uint2 trunc_mask = u2_add(u2_sll(u2_set_u(1), C_ADJUST + overflow_bits), u2_set(0xffffffff, 0xffffffff)); uint2 trunc_bits = u2_or(u2_and(st_fma.mantissa, trunc_mask), !u2_zero(cutoff_bits)); uint2 last_bit = u2_and(st_fma.mantissa, u2_sll(u2_set_u(1), C_ADJUST + overflow_bits)); uint2 grs_bits = u2_sll(u2_set_u(4), C_ADJUST - 3 + overflow_bits); // round to nearest even if (u2_gt(trunc_bits, grs_bits) || (u2_eq(trunc_bits, grs_bits) && !u2_zero(last_bit))) { st_fma.mantissa = u2_add(st_fma.mantissa, u2_sll(u2_set_u(1), C_ADJUST + overflow_bits)); } // Shift mantissa back to bit 23 st_fma.mantissa = u2_srl(st_fma.mantissa, C_ADJUST + overflow_bits); // Detect rounding overflow if (u2_gt(st_fma.mantissa, u2_set_u(0xffffff))) { ++st_fma.exponent; st_fma.mantissa = u2_srl(st_fma.mantissa, 1); } if (u2_zero(st_fma.mantissa)) { return 0.0f; } // Flating point range limit if (st_fma.exponent > 127) { return as_float(as_uint(INFINITY) | st_fma.sign); } // Flush denormals if (st_fma.exponent <= -127) { return as_float(st_fma.sign); } return as_float(st_fma.sign | ((st_fma.exponent + 127) << 23) | ((uint)st_fma.mantissa.lo & 0x7fffff)); } _CLC_TERNARY_VECTORIZE(_CLC_DEF _CLC_OVERLOAD, float, fma, float, float, float)