; The CGSCC pass manager includes an SCC iteration utility that tracks indirect ; calls that are turned into direct calls (devirtualization) and re-visits the ; SCC to expose those calls to the SCC-based IPO passes. We trigger ; devirtualization here with GVN which forwards a store through a load and to ; an indirect call. ; ; RUN: opt -aa-pipeline=basic-aa -passes='module(inferattrs),cgscc(function-attrs,function(gvn,instcombine))' -S < %s | FileCheck %s --check-prefix=CHECK --check-prefix=BEFORE ; RUN: opt -aa-pipeline=basic-aa -passes='module(inferattrs),cgscc(devirt<1>(function-attrs,function(gvn,instcombine)))' -S < %s | FileCheck %s --check-prefix=CHECK --check-prefix=AFTER --check-prefix=AFTER1 ; RUN: opt -aa-pipeline=basic-aa -passes='module(inferattrs),cgscc(devirt<2>(function-attrs,function(gvn,instcombine)))' -S < %s | FileCheck %s --check-prefix=CHECK --check-prefix=AFTER --check-prefix=AFTER2 ; ; RUN: not --crash opt -abort-on-max-devirt-iterations-reached -aa-pipeline=basic-aa -passes='module(inferattrs),cgscc(devirt<1>(function-attrs,function(gvn,instcombine)))' -S < %s ; RUN: opt -abort-on-max-devirt-iterations-reached -aa-pipeline=basic-aa -passes='module(inferattrs),cgscc(devirt<2>(function-attrs,function(gvn,instcombine)))' -S < %s ; ; We also verify that the real O2 pipeline catches these cases. ; RUN: opt -aa-pipeline=basic-aa -passes='default' -S < %s | FileCheck %s --check-prefix=CHECK --check-prefix=AFTER --check-prefix=AFTER2 declare void @readnone() readnone ; CHECK: Function Attrs: nofree nosync memory(none) ; CHECK-NEXT: declare void @readnone() declare void @unknown() ; CHECK-NOT: Function Attrs ; CHECK-LABEL: declare void @unknown(){{ *$}} ; The @test1 function checks that when we refine an indirect call to a direct ; call we revisit the SCC passes to reflect the more precise information. This ; is the basic functionality. define void @test1() { ; BEFORE-NOT: Function Attrs ; AFTER: Function Attrs: nofree nosync memory(none) ; CHECK-LABEL: define void @test1() entry: %fptr = alloca ptr store ptr @readnone, ptr %fptr %f = load ptr, ptr %fptr call void %f() ret void } ; The @test2_* functions check that when we need multiple (in this case 2) ; repetitions to compute some state that is incrementally exposed with each ; one, the limit on repetitions is enforced. So we make progress with ; one repetition but not as much as with three. ; ; This is somewhat awkward to test because we have to contrive to have a state ; repetition triggered and observed with very few passes. The technique here ; is to have one indirect call that can only be resolved when the entire SCC is ; deduced as readonly, and mark that indirect call at the call site as readonly ; to make that possible. This forces us to first deduce readonly, then ; devirtualize again, and then deduce readnone. declare void @readnone_with_arg(ptr) readnone ; CHECK: Function Attrs: nofree nosync memory(none) ; CHECK-LABEL: declare void @readnone_with_arg(ptr) define void @test2_a(ptr %ignore) { ; BEFORE-NOT: Function Attrs ; AFTER1: Function Attrs: nofree memory(read) ; AFTER2: Function Attrs: nofree nosync memory(none) ; BEFORE: define void @test2_a(ptr %ignore) ; AFTER: define void @test2_a(ptr readnone %ignore) entry: %f1ptr = alloca ptr store ptr @readnone_with_arg, ptr %f1ptr %f1 = load ptr, ptr %f1ptr ; This indirect call is the first to be resolved, allowing us to deduce ; readonly but not (yet) readnone. call void %f1(ptr %ignore) ; CHECK: call void @readnone_with_arg(ptr %ignore) ; Bogus call to test2_b to make this a cycle. call void @test2_b() ret void } define void @test2_b() { ; BEFORE-NOT: Function Attrs ; AFTER1: Function Attrs: nofree memory(read) ; AFTER2: Function Attrs: nofree nosync memory(none) ; CHECK-LABEL: define void @test2_b() entry: %f2ptr = alloca ptr store ptr @readnone, ptr %f2ptr ; Call the other function here to prevent forwarding until the SCC has had ; function attrs deduced. call void @test2_a(ptr %f2ptr) %f2 = load ptr, ptr %f2ptr ; This is the second indirect call to be resolved, and can only be resolved ; after we deduce 'readonly' for the rest of the SCC. Once it is ; devirtualized, we can deduce readnone for the SCC. call void %f2() readonly ; BEFORE: call void %f2() ; AFTER: call void @readnone() ret void } declare ptr @memcpy(ptr, ptr, i64) ; CHECK-LABEL: ptr @memcpy( ; The @test3 function checks that when we refine an indirect call to an ; intrinsic we still revisit the SCC pass. This also covers cases where the ; value handle itself doesn't persist due to the nature of how instcombine ; creates the memcpy intrinsic call, and we rely on the count of indirect calls ; decreasing and the count of direct calls increasing. ; Adding 'noinline' attribute to force attributes for improved matching. define void @test3(ptr %src, ptr %dest, i64 %size) noinline { ; CHECK: Function Attrs ; CHECK-NOT: read ; CHECK-SAME: noinline ; BEFORE-LABEL: define void @test3(ptr %src, ptr %dest, i64 %size) ; AFTER-LABEL: define void @test3(ptr nocapture readonly %src, ptr nocapture writeonly %dest, i64 %size) %fptr = alloca ptr store ptr @memcpy, ptr %fptr %f = load ptr, ptr %fptr call ptr %f(ptr %dest, ptr %src, i64 %size) ; CHECK: call void @llvm.memcpy ret void } ; A boring function that just keeps our declarations around. define void @keep(ptr %sink) { ; CHECK-NOT: Function Attrs ; CHECK-LABEL: define void @keep( entry: store volatile ptr @readnone, ptr %sink store volatile ptr @unknown, ptr %sink store volatile ptr @memcpy, ptr %sink call void @unknown() ret void }