; NOTE: Assertions have been autogenerated by utils/update_test_checks.py ; RUN: opt < %s -passes=instsimplify -S | FileCheck %s ; fneg (fneg X) ==> X define float @fneg_fneg_var(float %a) { ; CHECK-LABEL: @fneg_fneg_var( ; CHECK-NEXT: ret float [[A:%.*]] ; %r = fneg float %a %r1 = fneg float %r ret float %r1 } ; fneg (fsub -0.0, X) ==> X define float @fsub_-0_x(float %a) { ; CHECK-LABEL: @fsub_-0_x( ; CHECK-NEXT: ret float [[A:%.*]] ; %t1 = fsub float -0.0, %a %ret = fneg float %t1 ret float %ret } define <2 x float> @fsub_-0_x_vec(<2 x float> %a) { ; CHECK-LABEL: @fsub_-0_x_vec( ; CHECK-NEXT: ret <2 x float> [[A:%.*]] ; %t1 = fsub <2 x float> , %a %ret = fneg <2 x float> %t1 ret <2 x float> %ret } define <2 x float> @fsub_-0_x_vec_undef_elts(<2 x float> %a) { ; CHECK-LABEL: @fsub_-0_x_vec_undef_elts( ; CHECK-NEXT: ret <2 x float> [[A:%.*]] ; %t1 = fsub <2 x float> , %a %ret = fneg <2 x float> %t1 ret <2 x float> %ret } define <2 x float> @fsub_negzero_vec_undef_elts(<2 x float> %x) { ; CHECK-LABEL: @fsub_negzero_vec_undef_elts( ; CHECK-NEXT: ret <2 x float> [[X:%.*]] ; %r = fsub nsz <2 x float> %x, ret <2 x float> %r } ; fsub -0.0, (fsub -0.0, X) ==> X define float @fsub_-0_-0_x(float %a) { ; CHECK-LABEL: @fsub_-0_-0_x( ; CHECK-NEXT: ret float [[A:%.*]] ; %t1 = fsub float -0.0, %a %ret = fsub float -0.0, %t1 ret float %ret } ; fsub -0.0, (fneg X) ==> X define float @fneg_x(float %a) { ; CHECK-LABEL: @fneg_x( ; CHECK-NEXT: ret float [[A:%.*]] ; %t1 = fneg float %a %ret = fsub float -0.0, %t1 ret float %ret } define <2 x float> @fsub_-0_-0_x_vec(<2 x float> %a) { ; CHECK-LABEL: @fsub_-0_-0_x_vec( ; CHECK-NEXT: ret <2 x float> [[A:%.*]] ; %t1 = fsub <2 x float> , %a %ret = fsub <2 x float> , %t1 ret <2 x float> %ret } define <2 x float> @fneg_x_vec(<2 x float> %a) { ; CHECK-LABEL: @fneg_x_vec( ; CHECK-NEXT: ret <2 x float> [[A:%.*]] ; %t1 = fneg <2 x float> %a %ret = fsub <2 x float> , %t1 ret <2 x float> %ret } define <2 x float> @fsub_-0_-0_x_vec_undef_elts(<2 x float> %a) { ; CHECK-LABEL: @fsub_-0_-0_x_vec_undef_elts( ; CHECK-NEXT: ret <2 x float> [[A:%.*]] ; %t1 = fsub <2 x float> , %a %ret = fsub <2 x float> , %t1 ret <2 x float> %ret } define <2 x float> @fneg_x_vec_undef_elts(<2 x float> %a) { ; CHECK-LABEL: @fneg_x_vec_undef_elts( ; CHECK-NEXT: ret <2 x float> [[A:%.*]] ; %t1 = fneg <2 x float> %a %ret = fsub <2 x float> , %t1 ret <2 x float> %ret } ; fsub -0.0, (fsub 0.0, X) != X define float @fsub_-0_0_x(float %a) { ; CHECK-LABEL: @fsub_-0_0_x( ; CHECK-NEXT: [[T1:%.*]] = fsub float 0.000000e+00, [[A:%.*]] ; CHECK-NEXT: [[RET:%.*]] = fsub float -0.000000e+00, [[T1]] ; CHECK-NEXT: ret float [[RET]] ; %t1 = fsub float 0.0, %a %ret = fsub float -0.0, %t1 ret float %ret } ; fsub 0.0, (fsub -0.0, X) != X define float @fsub_0_-0_x(float %a) { ; CHECK-LABEL: @fsub_0_-0_x( ; CHECK-NEXT: [[T1:%.*]] = fsub float -0.000000e+00, [[A:%.*]] ; CHECK-NEXT: [[RET:%.*]] = fsub float 0.000000e+00, [[T1]] ; CHECK-NEXT: ret float [[RET]] ; %t1 = fsub float -0.0, %a %ret = fsub float 0.0, %t1 ret float %ret } ; fsub X, 0 ==> X define float @fsub_x_0(float %x) { ; CHECK-LABEL: @fsub_x_0( ; CHECK-NEXT: ret float [[X:%.*]] ; %r = fsub float %x, 0.0 ret float %r } define <2 x float> @fsub_x_0_vec_undef(<2 x float> %x) { ; CHECK-LABEL: @fsub_x_0_vec_undef( ; CHECK-NEXT: ret <2 x float> [[X:%.*]] ; %r = fsub <2 x float> %x, ret <2 x float> %r } ; fadd X, -0 ==> X define float @fadd_x_n0(float %a) { ; CHECK-LABEL: @fadd_x_n0( ; CHECK-NEXT: ret float [[A:%.*]] ; %ret = fadd float %a, -0.0 ret float %ret } define <2 x float> @fadd_x_n0_vec_undef_elt(<2 x float> %a) { ; CHECK-LABEL: @fadd_x_n0_vec_undef_elt( ; CHECK-NEXT: ret <2 x float> [[A:%.*]] ; %ret = fadd <2 x float> %a, ret <2 x float> %ret } ; fmul X, 1.0 ==> X define double @fmul_X_1(double %a) { ; CHECK-LABEL: @fmul_X_1( ; CHECK-NEXT: ret double [[A:%.*]] ; %b = fmul double 1.0, %a ret double %b } define half @fmul_nnan_ninf_nneg_0.0(i15 %x) { ; CHECK-LABEL: @fmul_nnan_ninf_nneg_0.0( ; CHECK-NEXT: ret half 0xH0000 ; %f = uitofp i15 %x to half %r = fmul half %f, 0.0 ret half %r } define half @fmul_nnan_ninf_nneg_n0.0(i15 %x) { ; CHECK-LABEL: @fmul_nnan_ninf_nneg_n0.0( ; CHECK-NEXT: ret half 0xH8000 ; %f = uitofp i15 %x to half %r = fmul half %f, -0.0 ret half %r } ; negative test - the int could be big enough to round to INF define half @fmul_nnan_nneg_0.0(i16 %x) { ; CHECK-LABEL: @fmul_nnan_nneg_0.0( ; CHECK-NEXT: [[F:%.*]] = uitofp i16 [[X:%.*]] to half ; CHECK-NEXT: [[R:%.*]] = fmul half [[F]], 0xH0000 ; CHECK-NEXT: ret half [[R]] ; %f = uitofp i16 %x to half %r = fmul half %f, 0.0 ret half %r } define double @fmul_nnan_ninf_nneg_n0.0_commute(i127 %x) { ; CHECK-LABEL: @fmul_nnan_ninf_nneg_n0.0_commute( ; CHECK-NEXT: ret double -0.000000e+00 ; %f = uitofp i127 %x to float %e = fpext float %f to double %r = fmul double -0.0, %e ret double %r } ; Make sure we can infer %x can't be 0 based on assumes. define { float, float } @test_fmul_0_assumed_finite(float %x) { ; CHECK-LABEL: @test_fmul_0_assumed_finite( ; CHECK-NEXT: [[FABS_X:%.*]] = call float @llvm.fabs.f32(float [[X:%.*]]) ; CHECK-NEXT: [[IS_FINITE_X:%.*]] = fcmp one float [[FABS_X]], 0x7FF0000000000000 ; CHECK-NEXT: call void @llvm.assume(i1 [[IS_FINITE_X]]) ; CHECK-NEXT: ret { float, float } { float 0.000000e+00, float -0.000000e+00 } ; %fabs.x = call float @llvm.fabs.f32(float %x) %is.finite.x = fcmp one float %fabs.x, 0x7FF0000000000000 call void @llvm.assume(i1 %is.finite.x) %mul.0 = fmul float %fabs.x, 0.0 %mul.neg0 = fmul float %fabs.x, -0.0 %ins.0 = insertvalue { float, float } poison, float %mul.0, 0 %ins.1 = insertvalue { float, float } %ins.0, float %mul.neg0, 1 ret { float, float } %ins.1 } ; negative test - the int could be big enough to round to INF define double @fmul_nnan_ninf_nneg_0.0_commute(i128 %x) { ; CHECK-LABEL: @fmul_nnan_ninf_nneg_0.0_commute( ; CHECK-NEXT: [[F:%.*]] = uitofp i128 [[X:%.*]] to float ; CHECK-NEXT: [[E:%.*]] = fpext float [[F]] to double ; CHECK-NEXT: [[R:%.*]] = fmul double 0.000000e+00, [[E]] ; CHECK-NEXT: ret double [[R]] ; %f = uitofp i128 %x to float %e = fpext float %f to double %r = fmul double 0.0, %e ret double %r } ; PR2642 define <4 x float> @fmul_X_1_vec(<4 x float> %x) { ; CHECK-LABEL: @fmul_X_1_vec( ; CHECK-NEXT: ret <4 x float> [[X:%.*]] ; %m = fmul <4 x float> %x, ret <4 x float> %m } ; fdiv X, 1.0 ==> X define float @fdiv_x_1(float %a) { ; CHECK-LABEL: @fdiv_x_1( ; CHECK-NEXT: ret float [[A:%.*]] ; %ret = fdiv float %a, 1.0 ret float %ret } ; We can't optimize away the fadd in this test because the input ; value to the function and subsequently to the fadd may be -0.0. ; In that one special case, the result of the fadd should be +0.0 ; rather than the first parameter of the fadd. ; Fragile test warning: We need 6 sqrt calls to trigger the bug ; because the internal logic has a magic recursion limit of 6. ; This is presented without any explanation or ability to customize. declare float @sqrtf(float) define float @PR22688(float %x) { ; CHECK-LABEL: @PR22688( ; CHECK-NEXT: [[TMP1:%.*]] = call float @sqrtf(float [[X:%.*]]) ; CHECK-NEXT: [[TMP2:%.*]] = call float @sqrtf(float [[TMP1]]) ; CHECK-NEXT: [[TMP3:%.*]] = call float @sqrtf(float [[TMP2]]) ; CHECK-NEXT: [[TMP4:%.*]] = call float @sqrtf(float [[TMP3]]) ; CHECK-NEXT: [[TMP5:%.*]] = call float @sqrtf(float [[TMP4]]) ; CHECK-NEXT: [[TMP6:%.*]] = call float @sqrtf(float [[TMP5]]) ; CHECK-NEXT: [[TMP7:%.*]] = fadd float [[TMP6]], 0.000000e+00 ; CHECK-NEXT: ret float [[TMP7]] ; %1 = call float @sqrtf(float %x) %2 = call float @sqrtf(float %1) %3 = call float @sqrtf(float %2) %4 = call float @sqrtf(float %3) %5 = call float @sqrtf(float %4) %6 = call float @sqrtf(float %5) %7 = fadd float %6, 0.0 ret float %7 } declare float @llvm.fabs.f32(float) declare double @llvm.fabs.f64(double) declare float @llvm.canonicalize.f32(float) declare float @llvm.floor.f32(float) declare float @llvm.ceil.f32(float) declare float @llvm.trunc.f32(float) declare float @llvm.rint.f32(float) declare float @llvm.nearbyint.f32(float) declare float @llvm.round.f32(float) declare float @llvm.roundeven.f32(float) declare float @llvm.fptrunc.round.f32.f64(double, metadata) declare float @llvm.arithmetic.fence.f32(float) declare float @llvm.copysign.f32(float, float) declare <2 x float> @llvm.fabs.v2f32(<2 x float>) declare float @llvm.sqrt.f32(float) declare float @llvm.maxnum.f32(float, float) declare void @llvm.assume(i1 noundef) define float @fabs_select_positive_constants(i32 %c) { ; CHECK-LABEL: @fabs_select_positive_constants( ; CHECK-NEXT: [[CMP:%.*]] = icmp eq i32 [[C:%.*]], 0 ; CHECK-NEXT: [[SELECT:%.*]] = select i1 [[CMP]], float 1.000000e+00, float 2.000000e+00 ; CHECK-NEXT: ret float [[SELECT]] ; %cmp = icmp eq i32 %c, 0 %select = select i1 %cmp, float 1.0, float 2.0 %fabs = call float @llvm.fabs.f32(float %select) ret float %fabs } define <2 x float> @fabs_select_positive_constants_vector(i32 %c) { ; CHECK-LABEL: @fabs_select_positive_constants_vector( ; CHECK-NEXT: [[CMP:%.*]] = icmp eq i32 [[C:%.*]], 0 ; CHECK-NEXT: [[SELECT:%.*]] = select i1 [[CMP]], <2 x float> , <2 x float> ; CHECK-NEXT: ret <2 x float> [[SELECT]] ; %cmp = icmp eq i32 %c, 0 %select = select i1 %cmp, <2 x float> , <2 x float> %fabs = call <2 x float> @llvm.fabs.v2f32(<2 x float> %select) ret <2 x float> %fabs } define float @fabs_select_constant_variable(i32 %c, float %x) { ; CHECK-LABEL: @fabs_select_constant_variable( ; CHECK-NEXT: [[CMP:%.*]] = icmp eq i32 [[C:%.*]], 0 ; CHECK-NEXT: [[SELECT:%.*]] = select i1 [[CMP]], float 1.000000e+00, float [[X:%.*]] ; CHECK-NEXT: [[FABS:%.*]] = call float @llvm.fabs.f32(float [[SELECT]]) ; CHECK-NEXT: ret float [[FABS]] ; %cmp = icmp eq i32 %c, 0 %select = select i1 %cmp, float 1.0, float %x %fabs = call float @llvm.fabs.f32(float %select) ret float %fabs } define <2 x float> @fabs_select_constant_variable_vector(i32 %c, <2 x float> %x) { ; CHECK-LABEL: @fabs_select_constant_variable_vector( ; CHECK-NEXT: [[CMP:%.*]] = icmp eq i32 [[C:%.*]], 0 ; CHECK-NEXT: [[SELECT:%.*]] = select i1 [[CMP]], <2 x float> , <2 x float> [[X:%.*]] ; CHECK-NEXT: [[FABS:%.*]] = call <2 x float> @llvm.fabs.v2f32(<2 x float> [[SELECT]]) ; CHECK-NEXT: ret <2 x float> [[FABS]] ; %cmp = icmp eq i32 %c, 0 %select = select i1 %cmp, <2 x float> , <2 x float> %x %fabs = call <2 x float> @llvm.fabs.v2f32(<2 x float> %select) ret <2 x float> %fabs } define float @fabs_select_neg0_pos0(i32 %c) { ; CHECK-LABEL: @fabs_select_neg0_pos0( ; CHECK-NEXT: [[CMP:%.*]] = icmp eq i32 [[C:%.*]], 0 ; CHECK-NEXT: [[SELECT:%.*]] = select i1 [[CMP]], float -0.000000e+00, float 0.000000e+00 ; CHECK-NEXT: [[FABS:%.*]] = call float @llvm.fabs.f32(float [[SELECT]]) ; CHECK-NEXT: ret float [[FABS]] ; %cmp = icmp eq i32 %c, 0 %select = select i1 %cmp, float -0.0, float 0.0 %fabs = call float @llvm.fabs.f32(float %select) ret float %fabs } define <2 x float> @fabs_select_neg0_pos0_vector(i32 %c) { ; CHECK-LABEL: @fabs_select_neg0_pos0_vector( ; CHECK-NEXT: [[CMP:%.*]] = icmp eq i32 [[C:%.*]], 0 ; CHECK-NEXT: [[SELECT:%.*]] = select i1 [[CMP]], <2 x float> , <2 x float> zeroinitializer ; CHECK-NEXT: [[FABS:%.*]] = call <2 x float> @llvm.fabs.v2f32(<2 x float> [[SELECT]]) ; CHECK-NEXT: ret <2 x float> [[FABS]] ; %cmp = icmp eq i32 %c, 0 %select = select i1 %cmp, <2 x float> , <2 x float> %fabs = call <2 x float> @llvm.fabs.v2f32(<2 x float> %select) ret <2 x float> %fabs } define float @fabs_select_neg0_neg1(i32 %c) { ; CHECK-LABEL: @fabs_select_neg0_neg1( ; CHECK-NEXT: [[CMP:%.*]] = icmp eq i32 [[C:%.*]], 0 ; CHECK-NEXT: [[SELECT:%.*]] = select i1 [[CMP]], float -0.000000e+00, float -1.000000e+00 ; CHECK-NEXT: [[FABS:%.*]] = call float @llvm.fabs.f32(float [[SELECT]]) ; CHECK-NEXT: ret float [[FABS]] ; %cmp = icmp eq i32 %c, 0 %select = select i1 %cmp, float -0.0, float -1.0 %fabs = call float @llvm.fabs.f32(float %select) ret float %fabs } define <2 x float> @fabs_select_neg0_neg1_vector(i32 %c) { ; CHECK-LABEL: @fabs_select_neg0_neg1_vector( ; CHECK-NEXT: [[CMP:%.*]] = icmp eq i32 [[C:%.*]], 0 ; CHECK-NEXT: [[SELECT:%.*]] = select i1 [[CMP]], <2 x float> , <2 x float> ; CHECK-NEXT: [[FABS:%.*]] = call <2 x float> @llvm.fabs.v2f32(<2 x float> [[SELECT]]) ; CHECK-NEXT: ret <2 x float> [[FABS]] ; %cmp = icmp eq i32 %c, 0 %select = select i1 %cmp, <2 x float> , <2 x float> %fabs = call <2 x float> @llvm.fabs.v2f32(<2 x float> %select) ret <2 x float> %fabs } define float @fabs_select_nan_nan(i32 %c) { ; CHECK-LABEL: @fabs_select_nan_nan( ; CHECK-NEXT: [[CMP:%.*]] = icmp eq i32 [[C:%.*]], 0 ; CHECK-NEXT: [[SELECT:%.*]] = select i1 [[CMP]], float 0x7FF8000000000000, float 0x7FF8000100000000 ; CHECK-NEXT: ret float [[SELECT]] ; %cmp = icmp eq i32 %c, 0 %select = select i1 %cmp, float 0x7FF8000000000000, float 0x7FF8000100000000 %fabs = call float @llvm.fabs.f32(float %select) ret float %fabs } define <2 x float> @fabs_select_nan_nan_vector(i32 %c) { ; CHECK-LABEL: @fabs_select_nan_nan_vector( ; CHECK-NEXT: [[CMP:%.*]] = icmp eq i32 [[C:%.*]], 0 ; CHECK-NEXT: [[SELECT:%.*]] = select i1 [[CMP]], <2 x float> , <2 x float> ; CHECK-NEXT: ret <2 x float> [[SELECT]] ; %cmp = icmp eq i32 %c, 0 %select = select i1 %cmp, <2 x float> , <2 x float> %fabs = call <2 x float> @llvm.fabs.v2f32(<2 x float> %select) ret <2 x float> %fabs } define float @fabs_select_negnan_nan(i32 %c) { ; CHECK-LABEL: @fabs_select_negnan_nan( ; CHECK-NEXT: [[CMP:%.*]] = icmp eq i32 [[C:%.*]], 0 ; CHECK-NEXT: [[SELECT:%.*]] = select i1 [[CMP]], float 0xFFF8000000000000, float 0x7FF8000000000000 ; CHECK-NEXT: [[FABS:%.*]] = call float @llvm.fabs.f32(float [[SELECT]]) ; CHECK-NEXT: ret float [[FABS]] ; %cmp = icmp eq i32 %c, 0 %select = select i1 %cmp, float 0xFFF8000000000000, float 0x7FF8000000000000 %fabs = call float @llvm.fabs.f32(float %select) ret float %fabs } define <2 x float> @fabs_select_negnan_nan_vector(i32 %c) { ; CHECK-LABEL: @fabs_select_negnan_nan_vector( ; CHECK-NEXT: [[CMP:%.*]] = icmp eq i32 [[C:%.*]], 0 ; CHECK-NEXT: [[SELECT:%.*]] = select i1 [[CMP]], <2 x float> , <2 x float> ; CHECK-NEXT: [[FABS:%.*]] = call <2 x float> @llvm.fabs.v2f32(<2 x float> [[SELECT]]) ; CHECK-NEXT: ret <2 x float> [[FABS]] ; %cmp = icmp eq i32 %c, 0 %select = select i1 %cmp, <2 x float> , <2 x float> %fabs = call <2 x float> @llvm.fabs.v2f32(<2 x float> %select) ret <2 x float> %fabs } define float @fabs_select_negnan_negnan(i32 %c) { ; CHECK-LABEL: @fabs_select_negnan_negnan( ; CHECK-NEXT: [[CMP:%.*]] = icmp eq i32 [[C:%.*]], 0 ; CHECK-NEXT: [[SELECT:%.*]] = select i1 [[CMP]], float 0xFFF8000000000000, float 0x7FF8000100000000 ; CHECK-NEXT: [[FABS:%.*]] = call float @llvm.fabs.f32(float [[SELECT]]) ; CHECK-NEXT: ret float [[FABS]] ; %cmp = icmp eq i32 %c, 0 %select = select i1 %cmp, float 0xFFF8000000000000, float 0x7FF8000100000000 %fabs = call float @llvm.fabs.f32(float %select) ret float %fabs } define <2 x float> @fabs_select_negnan_negnan_vector(i32 %c) { ; CHECK-LABEL: @fabs_select_negnan_negnan_vector( ; CHECK-NEXT: [[CMP:%.*]] = icmp eq i32 [[C:%.*]], 0 ; CHECK-NEXT: [[SELECT:%.*]] = select i1 [[CMP]], <2 x float> , <2 x float> ; CHECK-NEXT: [[FABS:%.*]] = call <2 x float> @llvm.fabs.v2f32(<2 x float> [[SELECT]]) ; CHECK-NEXT: ret <2 x float> [[FABS]] ; %cmp = icmp eq i32 %c, 0 %select = select i1 %cmp, <2 x float> , <2 x float> %fabs = call <2 x float> @llvm.fabs.v2f32(<2 x float> %select) ret <2 x float> %fabs } define float @fabs_select_negnan_negzero(i32 %c) { ; CHECK-LABEL: @fabs_select_negnan_negzero( ; CHECK-NEXT: [[CMP:%.*]] = icmp eq i32 [[C:%.*]], 0 ; CHECK-NEXT: [[SELECT:%.*]] = select i1 [[CMP]], float 0xFFF8000000000000, float -0.000000e+00 ; CHECK-NEXT: [[FABS:%.*]] = call float @llvm.fabs.f32(float [[SELECT]]) ; CHECK-NEXT: ret float [[FABS]] ; %cmp = icmp eq i32 %c, 0 %select = select i1 %cmp, float 0xFFF8000000000000, float -0.0 %fabs = call float @llvm.fabs.f32(float %select) ret float %fabs } define <2 x float> @fabs_select_negnan_negzero_vector(i32 %c) { ; CHECK-LABEL: @fabs_select_negnan_negzero_vector( ; CHECK-NEXT: [[CMP:%.*]] = icmp eq i32 [[C:%.*]], 0 ; CHECK-NEXT: [[SELECT:%.*]] = select i1 [[CMP]], <2 x float> , <2 x float> ; CHECK-NEXT: [[FABS:%.*]] = call <2 x float> @llvm.fabs.v2f32(<2 x float> [[SELECT]]) ; CHECK-NEXT: ret <2 x float> [[FABS]] ; %cmp = icmp eq i32 %c, 0 %select = select i1 %cmp, <2 x float> , <2 x float> %fabs = call <2 x float> @llvm.fabs.v2f32(<2 x float> %select) ret <2 x float> %fabs } define float @fabs_select_negnan_zero(i32 %c) { ; CHECK-LABEL: @fabs_select_negnan_zero( ; CHECK-NEXT: [[CMP:%.*]] = icmp eq i32 [[C:%.*]], 0 ; CHECK-NEXT: [[SELECT:%.*]] = select i1 [[CMP]], float 0xFFF8000000000000, float 0.000000e+00 ; CHECK-NEXT: [[FABS:%.*]] = call float @llvm.fabs.f32(float [[SELECT]]) ; CHECK-NEXT: ret float [[FABS]] ; %cmp = icmp eq i32 %c, 0 %select = select i1 %cmp, float 0xFFF8000000000000, float 0.0 %fabs = call float @llvm.fabs.f32(float %select) ret float %fabs } define <2 x float> @fabs_select_negnan_zero_vector(i32 %c) { ; CHECK-LABEL: @fabs_select_negnan_zero_vector( ; CHECK-NEXT: [[CMP:%.*]] = icmp eq i32 [[C:%.*]], 0 ; CHECK-NEXT: [[SELECT:%.*]] = select i1 [[CMP]], <2 x float> , <2 x float> zeroinitializer ; CHECK-NEXT: [[FABS:%.*]] = call <2 x float> @llvm.fabs.v2f32(<2 x float> [[SELECT]]) ; CHECK-NEXT: ret <2 x float> [[FABS]] ; %cmp = icmp eq i32 %c, 0 %select = select i1 %cmp, <2 x float> , <2 x float> %fabs = call <2 x float> @llvm.fabs.v2f32(<2 x float> %select) ret <2 x float> %fabs } ; The fabs can't be eliminated because llvm.sqrt.f32 may return -0 or NaN with ; an arbitrary sign bit. define float @fabs_sqrt(float %a) { ; CHECK-LABEL: @fabs_sqrt( ; CHECK-NEXT: [[SQRT:%.*]] = call float @llvm.sqrt.f32(float [[A:%.*]]) ; CHECK-NEXT: [[FABS:%.*]] = call float @llvm.fabs.f32(float [[SQRT]]) ; CHECK-NEXT: ret float [[FABS]] ; %sqrt = call float @llvm.sqrt.f32(float %a) %fabs = call float @llvm.fabs.f32(float %sqrt) ret float %fabs } ; The fabs can't be eliminated because the nnan sqrt may still return -0. define float @fabs_sqrt_nnan(float %a) { ; CHECK-LABEL: @fabs_sqrt_nnan( ; CHECK-NEXT: [[SQRT:%.*]] = call nnan float @llvm.sqrt.f32(float [[A:%.*]]) ; CHECK-NEXT: [[FABS:%.*]] = call float @llvm.fabs.f32(float [[SQRT]]) ; CHECK-NEXT: ret float [[FABS]] ; %sqrt = call nnan float @llvm.sqrt.f32(float %a) %fabs = call float @llvm.fabs.f32(float %sqrt) ret float %fabs } ; The fabs can't be eliminated because the nsz sqrt may still return NaN. define float @fabs_sqrt_nsz(float %a) { ; CHECK-LABEL: @fabs_sqrt_nsz( ; CHECK-NEXT: [[SQRT:%.*]] = call nsz float @llvm.sqrt.f32(float [[A:%.*]]) ; CHECK-NEXT: [[FABS:%.*]] = call float @llvm.fabs.f32(float [[SQRT]]) ; CHECK-NEXT: ret float [[FABS]] ; %sqrt = call nsz float @llvm.sqrt.f32(float %a) %fabs = call float @llvm.fabs.f32(float %sqrt) ret float %fabs } ; The fabs can be eliminated because we're nsz and nnan. define float @fabs_sqrt_nnan_nsz(float %a) { ; CHECK-LABEL: @fabs_sqrt_nnan_nsz( ; CHECK-NEXT: [[SQRT:%.*]] = call nnan nsz float @llvm.sqrt.f32(float [[A:%.*]]) ; CHECK-NEXT: ret float [[SQRT]] ; %sqrt = call nnan nsz float @llvm.sqrt.f32(float %a) %fabs = call float @llvm.fabs.f32(float %sqrt) ret float %fabs } ; The second fabs can be eliminated because the operand to sqrt cannot be -0. define float @fabs_sqrt_nnan_fabs(float %a) { ; CHECK-LABEL: @fabs_sqrt_nnan_fabs( ; CHECK-NEXT: [[B:%.*]] = call float @llvm.fabs.f32(float [[A:%.*]]) ; CHECK-NEXT: [[SQRT:%.*]] = call nnan float @llvm.sqrt.f32(float [[B]]) ; CHECK-NEXT: ret float [[SQRT]] ; %b = call float @llvm.fabs.f32(float %a) %sqrt = call nnan float @llvm.sqrt.f32(float %b) %fabs = call float @llvm.fabs.f32(float %sqrt) ret float %fabs } define float @fabs_select_positive_constants_vector_extract(i32 %c) { ; CHECK-LABEL: @fabs_select_positive_constants_vector_extract( ; CHECK-NEXT: [[CMP:%.*]] = icmp eq i32 [[C:%.*]], 0 ; CHECK-NEXT: [[SELECT:%.*]] = select i1 [[CMP]], <2 x float> , <2 x float> ; CHECK-NEXT: [[EXTRACT:%.*]] = extractelement <2 x float> [[SELECT]], i32 0 ; CHECK-NEXT: ret float [[EXTRACT]] ; %cmp = icmp eq i32 %c, 0 %select = select i1 %cmp, <2 x float> , <2 x float> %extract = extractelement <2 x float> %select, i32 0 %fabs = call float @llvm.fabs.f32(float %extract) ret float %fabs } ; Y - (Y - X) --> X define float @fsub_fsub_common_op(float %x, float %y) { ; CHECK-LABEL: @fsub_fsub_common_op( ; CHECK-NEXT: ret float [[X:%.*]] ; %s = fsub float %y, %x %r = fsub reassoc nsz float %y, %s ret float %r } define <2 x float> @fsub_fsub_common_op_vec(<2 x float> %x, <2 x float> %y) { ; CHECK-LABEL: @fsub_fsub_common_op_vec( ; CHECK-NEXT: ret <2 x float> [[X:%.*]] ; %s = fsub <2 x float> %y, %x %r = fsub reassoc nsz <2 x float> %y, %s ret <2 x float> %r } ; Negative test - fsub is not commutative. ; Y - (X - Y) --> (Y - X) + Y (canonicalized) define float @fsub_fsub_wrong_common_op(float %x, float %y) { ; CHECK-LABEL: @fsub_fsub_wrong_common_op( ; CHECK-NEXT: [[S:%.*]] = fsub float [[X:%.*]], [[Y:%.*]] ; CHECK-NEXT: [[R:%.*]] = fsub reassoc nsz float [[Y]], [[S]] ; CHECK-NEXT: ret float [[R]] ; %s = fsub float %x, %y %r = fsub reassoc nsz float %y, %s ret float %r } ; Negative test - negated operand needed. ; (Y - X) - Y --> -X define float @fsub_fsub_common_op_wrong_commute(float %x, float %y) { ; CHECK-LABEL: @fsub_fsub_common_op_wrong_commute( ; CHECK-NEXT: [[S:%.*]] = fsub float [[Y:%.*]], [[X:%.*]] ; CHECK-NEXT: [[R:%.*]] = fsub reassoc nsz float [[S]], [[Y]] ; CHECK-NEXT: ret float [[R]] ; %s = fsub float %y, %x %r = fsub reassoc nsz float %s, %y ret float %r } ; Negative test - fsub is not commutative. ; (X - Y) - Y --> ? define float @fsub_fsub_wrong_common_op_wrong_commute(float %x, float %y) { ; CHECK-LABEL: @fsub_fsub_wrong_common_op_wrong_commute( ; CHECK-NEXT: [[S:%.*]] = fsub float [[X:%.*]], [[Y:%.*]] ; CHECK-NEXT: [[R:%.*]] = fsub reassoc nsz float [[S]], [[Y]] ; CHECK-NEXT: ret float [[R]] ; %s = fsub float %x, %y %r = fsub reassoc nsz float %s, %y ret float %r } ; (Y + X) - Y --> X define float @fadd_fsub_common_op(float %x, float %y) { ; CHECK-LABEL: @fadd_fsub_common_op( ; CHECK-NEXT: ret float [[X:%.*]] ; %a = fadd float %y, %x %r = fsub reassoc nsz float %a, %y ret float %r } ; (X + Y) - Y --> X define <2 x float> @fadd_fsub_common_op_commute_vec(<2 x float> %x, <2 x float> %y) { ; CHECK-LABEL: @fadd_fsub_common_op_commute_vec( ; CHECK-NEXT: ret <2 x float> [[X:%.*]] ; %a = fadd <2 x float> %x, %y %r = fsub reassoc nsz <2 x float> %a, %y ret <2 x float> %r } ; Negative test - negated operand needed. ; Y - (Y + X) --> -X define float @fadd_fsub_common_op_wrong_commute(float %x, float %y) { ; CHECK-LABEL: @fadd_fsub_common_op_wrong_commute( ; CHECK-NEXT: [[A:%.*]] = fadd float [[Y:%.*]], [[X:%.*]] ; CHECK-NEXT: [[R:%.*]] = fsub reassoc nsz float [[Y]], [[A]] ; CHECK-NEXT: ret float [[R]] ; %a = fadd float %y, %x %r = fsub reassoc nsz float %y, %a ret float %r } ; Negative test - negated operand needed. ; Y - (X + Y) --> -X define float @fadd_fsub_common_op_wrong_commute_commute(float %x, float %y) { ; CHECK-LABEL: @fadd_fsub_common_op_wrong_commute_commute( ; CHECK-NEXT: [[A:%.*]] = fadd float [[X:%.*]], [[Y:%.*]] ; CHECK-NEXT: [[R:%.*]] = fsub reassoc nsz float [[Y]], [[A]] ; CHECK-NEXT: ret float [[R]] ; %a = fadd float %x, %y %r = fsub reassoc nsz float %y, %a ret float %r } ; Y + (X - Y) --> X define <2 x float> @fsub_fadd_common_op_vec(<2 x float> %x, <2 x float> %y) { ; CHECK-LABEL: @fsub_fadd_common_op_vec( ; CHECK-NEXT: ret <2 x float> [[X:%.*]] ; %s = fsub <2 x float> %x, %y %r = fadd reassoc nsz <2 x float> %y, %s ret <2 x float> %r } ; (X - Y) + Y --> X define float @fsub_fadd_common_op_commute(float %x, float %y) { ; CHECK-LABEL: @fsub_fadd_common_op_commute( ; CHECK-NEXT: ret float [[X:%.*]] ; %s = fsub float %x, %y %r = fadd reassoc nsz float %s, %y ret float %r } ; Negative test. ; Y + (Y - X) --> ? define float @fsub_fadd_common_op_wrong_commute(float %x, float %y) { ; CHECK-LABEL: @fsub_fadd_common_op_wrong_commute( ; CHECK-NEXT: [[S:%.*]] = fsub float [[Y:%.*]], [[X:%.*]] ; CHECK-NEXT: [[R:%.*]] = fadd reassoc nsz float [[Y]], [[S]] ; CHECK-NEXT: ret float [[R]] ; %s = fsub float %y, %x %r = fadd reassoc nsz float %y, %s ret float %r } ; Negative test. ; (Y - X) + Y --> ? define float @fsub_fadd_common_op_wrong_commute_commute(float %x, float %y) { ; CHECK-LABEL: @fsub_fadd_common_op_wrong_commute_commute( ; CHECK-NEXT: [[S:%.*]] = fsub float [[Y:%.*]], [[X:%.*]] ; CHECK-NEXT: [[R:%.*]] = fadd reassoc nsz float [[S]], [[Y]] ; CHECK-NEXT: ret float [[R]] ; %s = fsub float %y, %x %r = fadd reassoc nsz float %s, %y ret float %r } ; PR46627 - https://bugs.llvm.org/show_bug.cgi?id=46627 define float @maxnum_with_poszero_op(float %a) { ; CHECK-LABEL: @maxnum_with_poszero_op( ; CHECK-NEXT: [[MAX:%.*]] = call float @llvm.maxnum.f32(float [[A:%.*]], float 0.000000e+00) ; CHECK-NEXT: [[FABS:%.*]] = call float @llvm.fabs.f32(float [[MAX]]) ; CHECK-NEXT: ret float [[FABS]] ; %max = call float @llvm.maxnum.f32(float %a, float 0.0) %fabs = call float @llvm.fabs.f32(float %max) ret float %fabs } define float @maxnum_with_poszero_op_commute(float %a) { ; CHECK-LABEL: @maxnum_with_poszero_op_commute( ; CHECK-NEXT: [[SQRT:%.*]] = call float @llvm.sqrt.f32(float [[A:%.*]]) ; CHECK-NEXT: [[MAX:%.*]] = call float @llvm.maxnum.f32(float 0.000000e+00, float [[SQRT]]) ; CHECK-NEXT: [[FABS:%.*]] = call float @llvm.fabs.f32(float [[MAX]]) ; CHECK-NEXT: ret float [[FABS]] ; %sqrt = call float @llvm.sqrt.f32(float %a) %max = call float @llvm.maxnum.f32(float 0.0, float %sqrt) %fabs = call float @llvm.fabs.f32(float %max) ret float %fabs } define float @maxnum_with_negzero_op(float %a) { ; CHECK-LABEL: @maxnum_with_negzero_op( ; CHECK-NEXT: [[NNAN:%.*]] = call nnan float @llvm.sqrt.f32(float [[A:%.*]]) ; CHECK-NEXT: [[FABSA:%.*]] = call float @llvm.fabs.f32(float [[NNAN]]) ; CHECK-NEXT: [[MAX:%.*]] = call float @llvm.maxnum.f32(float -0.000000e+00, float [[FABSA]]) ; CHECK-NEXT: [[FABS:%.*]] = call float @llvm.fabs.f32(float [[MAX]]) ; CHECK-NEXT: ret float [[FABS]] ; %nnan = call nnan float @llvm.sqrt.f32(float %a) %fabsa = call float @llvm.fabs.f32(float %nnan) %max = call float @llvm.maxnum.f32(float -0.0, float %fabsa) %fabs = call float @llvm.fabs.f32(float %max) ret float %fabs } define float @maxnum_with_negzero_op_commute(float %a) { ; CHECK-LABEL: @maxnum_with_negzero_op_commute( ; CHECK-NEXT: [[NNAN:%.*]] = call nnan float @llvm.sqrt.f32(float [[A:%.*]]) ; CHECK-NEXT: [[FABSA:%.*]] = call float @llvm.fabs.f32(float [[NNAN]]) ; CHECK-NEXT: [[MAX:%.*]] = call float @llvm.maxnum.f32(float [[FABSA]], float -0.000000e+00) ; CHECK-NEXT: [[FABS:%.*]] = call float @llvm.fabs.f32(float [[MAX]]) ; CHECK-NEXT: ret float [[FABS]] ; %nnan = call nnan float @llvm.sqrt.f32(float %a) %fabsa = call float @llvm.fabs.f32(float %nnan) %max = call float @llvm.maxnum.f32(float %fabsa, float -0.0) %fabs = call float @llvm.fabs.f32(float %max) ret float %fabs } ; If an operand is strictly greater than 0.0, we know the sign of the result of maxnum. define float @maxnum_with_pos_one_op(float %a) { ; CHECK-LABEL: @maxnum_with_pos_one_op( ; CHECK-NEXT: [[MAX:%.*]] = call float @llvm.maxnum.f32(float [[A:%.*]], float 1.000000e+00) ; CHECK-NEXT: ret float [[MAX]] ; %max = call float @llvm.maxnum.f32(float %a, float 1.0) %fabs = call float @llvm.fabs.f32(float %max) ret float %fabs } define double @fadd_nnan_inf_op0(double %x) { ; CHECK-LABEL: @fadd_nnan_inf_op0( ; CHECK-NEXT: ret double 0x7FF0000000000000 ; %r = fadd nnan double 0x7ff0000000000000, %x ret double %r } define double @fadd_nnan_inf_op1(double %x) { ; CHECK-LABEL: @fadd_nnan_inf_op1( ; CHECK-NEXT: ret double 0x7FF0000000000000 ; %r = fadd nnan double %x, 0x7ff0000000000000 ret double %r } define <2 x double> @fadd_nnan_neginf_op1(<2 x double> %x) { ; CHECK-LABEL: @fadd_nnan_neginf_op1( ; CHECK-NEXT: ret <2 x double> ; %r = fadd nnan <2 x double> %x, ret <2 x double> %r } define double @fadd_nnan_neginf_op0(double %x) { ; CHECK-LABEL: @fadd_nnan_neginf_op0( ; CHECK-NEXT: ret double 0xFFF0000000000000 ; %r = fadd nnan double 0xfff0000000000000, %x ret double %r } ; negative test - requires nnan define double @fadd_inf_op0(double %x) { ; CHECK-LABEL: @fadd_inf_op0( ; CHECK-NEXT: [[R:%.*]] = fadd double 0x7FF0000000000000, [[X:%.*]] ; CHECK-NEXT: ret double [[R]] ; %r = fadd double 0x7ff0000000000000, %x ret double %r } define double @fsub_nnan_inf_op0(double %x) { ; CHECK-LABEL: @fsub_nnan_inf_op0( ; CHECK-NEXT: ret double 0x7FF0000000000000 ; %r = fsub nnan double 0x7ff0000000000000, %x ret double %r } ; flip sign define double @fsub_nnan_inf_op1(double %x) { ; CHECK-LABEL: @fsub_nnan_inf_op1( ; CHECK-NEXT: ret double 0xFFF0000000000000 ; %r = fsub nnan double %x, 0x7ff0000000000000 ret double %r } define <2 x double> @fsub_nnan_inf_op1_vec(<2 x double> %x) { ; CHECK-LABEL: @fsub_nnan_inf_op1_vec( ; CHECK-NEXT: ret <2 x double> ; %r = fsub nnan <2 x double> %x, ret <2 x double> %r } define <2 x double> @fsub_nnan_neginf_op0(<2 x double> %x) { ; CHECK-LABEL: @fsub_nnan_neginf_op0( ; CHECK-NEXT: ret <2 x double> ; %r = fsub nnan <2 x double> , %x ret <2 x double> %r } ; flip sign define double @fsub_nnan_neginf_op1(double %x) { ; CHECK-LABEL: @fsub_nnan_neginf_op1( ; CHECK-NEXT: ret double 0x7FF0000000000000 ; %r = fsub nnan double %x, 0xfff0000000000000 ret double %r } ; negative test - requires nnan define double @fsub_inf_op0(double %x) { ; CHECK-LABEL: @fsub_inf_op0( ; CHECK-NEXT: [[R:%.*]] = fsub double 0x7FF0000000000000, [[X:%.*]] ; CHECK-NEXT: ret double [[R]] ; %r = fsub double 0x7ff0000000000000, %x ret double %r } define i1 @canonicalize_known_positive(float %a) { ; CHECK-LABEL: @canonicalize_known_positive( ; CHECK-NEXT: ret i1 true ; %fabs = call float @llvm.fabs.f32(float %a) %known.positive = call float @llvm.canonicalize.f32(float %fabs) %cmp = fcmp nnan oge float %known.positive, 0.0 ret i1 %cmp } define i1 @canonicalize_unknown_positive(float %unknown) { ; CHECK-LABEL: @canonicalize_unknown_positive( ; CHECK-NEXT: [[CMP:%.*]] = fcmp nnan oge float [[UNKNOWN:%.*]], 0.000000e+00 ; CHECK-NEXT: ret i1 [[CMP]] ; %cmp = fcmp nnan oge float %unknown, 0.0 ret i1 %cmp } define i1 @arithmetic_fence_known_positive(float %a) { ; CHECK-LABEL: @arithmetic_fence_known_positive( ; CHECK-NEXT: ret i1 true ; %fabs = call float @llvm.fabs.f32(float %a) %known.positive = call float @llvm.arithmetic.fence.f32(float %fabs) %cmp = fcmp nnan oge float %known.positive, 0.0 ret i1 %cmp } define i1 @arithmetic_fence_unknown_positive(float %unknown) { ; CHECK-LABEL: @arithmetic_fence_unknown_positive( ; CHECK-NEXT: [[KNOWN_POSITIVE:%.*]] = call float @llvm.arithmetic.fence.f32(float [[UNKNOWN:%.*]]) ; CHECK-NEXT: [[CMP:%.*]] = fcmp nnan oge float [[KNOWN_POSITIVE]], 0.000000e+00 ; CHECK-NEXT: ret i1 [[CMP]] ; %known.positive = call float @llvm.arithmetic.fence.f32(float %unknown) %cmp = fcmp nnan oge float %known.positive, 0.0 ret i1 %cmp } define i1 @copysign_known_positive_maybe_neg0(float %unknown, float %sign) { ; CHECK-LABEL: @copysign_known_positive_maybe_neg0( ; CHECK-NEXT: [[SQRT:%.*]] = call nnan ninf float @llvm.sqrt.f32(float [[SIGN:%.*]]) ; CHECK-NEXT: [[COPYSIGN:%.*]] = call float @llvm.copysign.f32(float [[UNKNOWN:%.*]], float [[SQRT]]) ; CHECK-NEXT: [[CMP:%.*]] = fcmp nnan oge float [[COPYSIGN]], 0.000000e+00 ; CHECK-NEXT: ret i1 [[CMP]] ; %sqrt = call ninf nnan float @llvm.sqrt.f32(float %sign) %copysign = call float @llvm.copysign.f32(float %unknown, float %sqrt) %cmp = fcmp nnan oge float %copysign, 0.0 ret i1 %cmp } define i1 @copysign_known_positive(float %unknown, float %sign) { ; CHECK-LABEL: @copysign_known_positive( ; CHECK-NEXT: ret i1 true ; %sqrt = call ninf nnan nsz float @llvm.sqrt.f32(float %sign) %copysign = call float @llvm.copysign.f32(float %unknown, float %sqrt) %cmp = fcmp nnan oge float %copysign, 0.0 ret i1 %cmp } define i1 @copysign_unknown_positive(float %unknown, float %unknown.sign) { ; CHECK-LABEL: @copysign_unknown_positive( ; CHECK-NEXT: [[COPYSIGN:%.*]] = call float @llvm.copysign.f32(float [[UNKNOWN:%.*]], float [[UNKNOWN_SIGN:%.*]]) ; CHECK-NEXT: [[CMP:%.*]] = fcmp nnan oge float [[COPYSIGN]], 0.000000e+00 ; CHECK-NEXT: ret i1 [[CMP]] ; %copysign = call float @llvm.copysign.f32(float %unknown, float %unknown.sign) %cmp = fcmp nnan oge float %copysign, 0.0 ret i1 %cmp } ; https://alive2.llvm.org/ce/z/Y-EyY3 define i1 @floor_known_positive(float %a) { ; CHECK-LABEL: @floor_known_positive( ; CHECK-NEXT: ret i1 true ; %fabs = call float @llvm.fabs.f32(float %a) %known.positive = call float @llvm.floor.f32(float %fabs) %cmp = fcmp nnan oge float %known.positive, 0.0 ret i1 %cmp } define i1 @floor_unknown_positive(float %unknown) { ; CHECK-LABEL: @floor_unknown_positive( ; CHECK-NEXT: [[OP:%.*]] = call float @llvm.floor.f32(float [[UNKNOWN:%.*]]) ; CHECK-NEXT: [[CMP:%.*]] = fcmp nnan oge float [[OP]], 0.000000e+00 ; CHECK-NEXT: ret i1 [[CMP]] ; %op = call float @llvm.floor.f32(float %unknown) %cmp = fcmp nnan oge float %op, 0.0 ret i1 %cmp } ; https://alive2.llvm.org/ce/z/3tBUoW define i1 @ceil_known_positive(float %a) { ; CHECK-LABEL: @ceil_known_positive( ; CHECK-NEXT: ret i1 true ; %fabs = call float @llvm.fabs.f32(float %a) %known.positive = call float @llvm.ceil.f32(float %fabs) %cmp = fcmp nnan oge float %known.positive, 0.0 ret i1 %cmp } define i1 @ceil_unknown_positive(float %unknown) { ; CHECK-LABEL: @ceil_unknown_positive( ; CHECK-NEXT: [[OP:%.*]] = call float @llvm.ceil.f32(float [[UNKNOWN:%.*]]) ; CHECK-NEXT: [[CMP:%.*]] = fcmp nnan oge float [[OP]], 0.000000e+00 ; CHECK-NEXT: ret i1 [[CMP]] ; %op = call float @llvm.ceil.f32(float %unknown) %cmp = fcmp nnan oge float %op, 0.0 ret i1 %cmp } ; https://alive2.llvm.org/ce/z/RbyJPX define i1 @trunc_known_positive(float %a) { ; CHECK-LABEL: @trunc_known_positive( ; CHECK-NEXT: ret i1 true ; %fabs = call float @llvm.fabs.f32(float %a) %known.positive = call float @llvm.trunc.f32(float %fabs) %cmp = fcmp nnan oge float %known.positive, 0.0 ret i1 %cmp } define i1 @trunc_unknown_positive(float %unknown) { ; CHECK-LABEL: @trunc_unknown_positive( ; CHECK-NEXT: [[OP:%.*]] = call float @llvm.trunc.f32(float [[UNKNOWN:%.*]]) ; CHECK-NEXT: [[CMP:%.*]] = fcmp nnan oge float [[OP]], 0.000000e+00 ; CHECK-NEXT: ret i1 [[CMP]] ; %op = call float @llvm.trunc.f32(float %unknown) %cmp = fcmp nnan oge float %op, 0.0 ret i1 %cmp } ; https://alive2.llvm.org/ce/z/bjC2Jm define i1 @rint_known_positive(float %a) { ; CHECK-LABEL: @rint_known_positive( ; CHECK-NEXT: ret i1 true ; %fabs = call float @llvm.fabs.f32(float %a) %known.positive = call float @llvm.rint.f32(float %fabs) %cmp = fcmp nnan oge float %known.positive, 0.0 ret i1 %cmp } define i1 @rint_unknown_positive(float %unknown) { ; CHECK-LABEL: @rint_unknown_positive( ; CHECK-NEXT: [[OP:%.*]] = call float @llvm.rint.f32(float [[UNKNOWN:%.*]]) ; CHECK-NEXT: [[CMP:%.*]] = fcmp nnan oge float [[OP]], 0.000000e+00 ; CHECK-NEXT: ret i1 [[CMP]] ; %op = call float @llvm.rint.f32(float %unknown) %cmp = fcmp nnan oge float %op, 0.0 ret i1 %cmp } ; https://alive2.llvm.org/ce/z/dFiL9n define i1 @nearbyint_known_positive(float %a) { ; CHECK-LABEL: @nearbyint_known_positive( ; CHECK-NEXT: ret i1 true ; %fabs = call float @llvm.fabs.f32(float %a) %known.positive = call float @llvm.nearbyint.f32(float %fabs) %cmp = fcmp nnan oge float %known.positive, 0.0 ret i1 %cmp } define i1 @nearbyint_unknown_positive(float %unknown) { ; CHECK-LABEL: @nearbyint_unknown_positive( ; CHECK-NEXT: [[OP:%.*]] = call float @llvm.nearbyint.f32(float [[UNKNOWN:%.*]]) ; CHECK-NEXT: [[CMP:%.*]] = fcmp nnan oge float [[OP]], 0.000000e+00 ; CHECK-NEXT: ret i1 [[CMP]] ; %op = call float @llvm.nearbyint.f32(float %unknown) %cmp = fcmp nnan oge float %op, 0.0 ret i1 %cmp } ; https://alive2.llvm.org/ce/z/kPhS-d define i1 @round_known_positive(float %a) { ; CHECK-LABEL: @round_known_positive( ; CHECK-NEXT: ret i1 true ; %fabs = call float @llvm.fabs.f32(float %a) %known.positive = call float @llvm.round.f32(float %fabs) %cmp = fcmp nnan oge float %known.positive, 0.0 ret i1 %cmp } define i1 @round_unknown_positive(float %unknown) { ; CHECK-LABEL: @round_unknown_positive( ; CHECK-NEXT: [[OP:%.*]] = call float @llvm.round.f32(float [[UNKNOWN:%.*]]) ; CHECK-NEXT: [[CMP:%.*]] = fcmp nnan oge float [[OP]], 0.000000e+00 ; CHECK-NEXT: ret i1 [[CMP]] ; %op = call float @llvm.round.f32(float %unknown) %cmp = fcmp nnan oge float %op, 0.0 ret i1 %cmp } ; https://alive2.llvm.org/ce/z/Z_tfsu define i1 @roundeven_known_positive(float %a) { ; CHECK-LABEL: @roundeven_known_positive( ; CHECK-NEXT: ret i1 true ; %fabs = call float @llvm.fabs.f32(float %a) %known.positive = call float @llvm.roundeven.f32(float %fabs) %cmp = fcmp nnan oge float %known.positive, 0.0 ret i1 %cmp } define i1 @roundeven_unknown_positive(float %unknown) { ; CHECK-LABEL: @roundeven_unknown_positive( ; CHECK-NEXT: [[OP:%.*]] = call float @llvm.roundeven.f32(float [[UNKNOWN:%.*]]) ; CHECK-NEXT: [[CMP:%.*]] = fcmp nnan oge float [[OP]], 0.000000e+00 ; CHECK-NEXT: ret i1 [[CMP]] ; %op = call float @llvm.roundeven.f32(float %unknown) %cmp = fcmp nnan oge float %op, 0.0 ret i1 %cmp } define i1 @fptrunc_round_known_positive(double %a) { ; CHECK-LABEL: @fptrunc_round_known_positive( ; CHECK-NEXT: ret i1 true ; %fabs = call double @llvm.fabs.f64(double %a) %known.positive = call float @llvm.fptrunc.round.f32.f64(double %fabs, metadata !"round.downward") %cmp = fcmp nnan oge float %known.positive, 0.0 ret i1 %cmp } define i1 @fptrunc_round_unknown_positive(double %unknown) { ; CHECK-LABEL: @fptrunc_round_unknown_positive( ; CHECK-NEXT: [[OP:%.*]] = call float @llvm.fptrunc.round.f32.f64(double [[UNKNOWN:%.*]], metadata !"round.downward") ; CHECK-NEXT: [[CMP:%.*]] = fcmp nnan oge float [[OP]], 0.000000e+00 ; CHECK-NEXT: ret i1 [[CMP]] ; %op = call float @llvm.fptrunc.round.f32.f64(double %unknown, metadata !"round.downward") %cmp = fcmp nnan oge float %op, 0.0 ret i1 %cmp }