; NOTE: Assertions have been autogenerated by utils/update_test_checks.py ; Check that phi analysis can determine the number of iterations of the ; loop to peel such that the phi nodes (other than the iteration variable) ; have their resulting values known and are thus removed by peeling the loop ; at least that many times. ; RUN: opt < %s -S -passes=loop-unroll | FileCheck %s ; RUN: opt < %s -S -passes=loop-unroll-full | FileCheck %s ; void f(float); ; void g(int); declare void @_Z1ff(float) declare void @_Z1gi(i32 signext) ; Check that phi analysis can handle a cast. define void @_Z8castTestv() { ; The phis become invariant through the chain of phis, with a unary ; instruction on a loop invariant. Check that the phis for x, a, and y ; are removed since x is based on a cast of y, which is based on a, which is ; set on the backedge. ; Consider the calls to g and f. ; First iteration: g(0), x=0, f(0.0), y=0.0, a=5.0 ; Second iteration: g(0), x=0, f(0.0), y=5.0, a=5.0 ; Third iteration: g(0), x=5 (requires cast), f(5.0), a=5.0 ; Fourth iteration (and subsequent): g(5), x=5, f(5.0), a=5.0 ; Therefore, peeling 3 times removes the phi nodes, so check for 3 peels. ; ; void castTest() { ; int x = 0; ; float y = 0.0; ; float a = 0.0; ; for(int i = 0; i <100000; ++i) { ; g(x); ; x = y; ; f(y); ; y = a; ; a = 5.0; ; } ; } ; ; CHECK-LABEL: @_Z8castTestv( ; CHECK-NEXT: entry: ; CHECK-NEXT: br label [[FOR_BODY_PEEL_BEGIN:%.*]] ; CHECK: for.body.peel.begin: ; CHECK-NEXT: br label [[FOR_BODY_PEEL:%.*]] ; CHECK: for.body.peel: ; CHECK-NEXT: tail call void @_Z1gi(i32 noundef signext 0) ; CHECK-NEXT: [[CONV_PEEL:%.*]] = fptosi float 0.000000e+00 to i32 ; CHECK-NEXT: tail call void @_Z1ff(float noundef 0.000000e+00) ; CHECK-NEXT: [[INC_PEEL:%.*]] = add nuw nsw i32 0, 1 ; CHECK-NEXT: [[EXITCOND_PEEL:%.*]] = icmp ne i32 [[INC_PEEL]], 100000 ; CHECK-NEXT: br i1 [[EXITCOND_PEEL]], label [[FOR_BODY_PEEL_NEXT:%.*]], label [[FOR_COND_CLEANUP:%.*]] ; CHECK: for.body.peel.next: ; CHECK-NEXT: br label [[FOR_BODY_PEEL2:%.*]] ; CHECK: for.body.peel2: ; CHECK-NEXT: tail call void @_Z1gi(i32 noundef signext [[CONV_PEEL]]) ; CHECK-NEXT: [[CONV_PEEL3:%.*]] = fptosi float 0.000000e+00 to i32 ; CHECK-NEXT: tail call void @_Z1ff(float noundef 0.000000e+00) ; CHECK-NEXT: [[INC_PEEL4:%.*]] = add nuw nsw i32 [[INC_PEEL]], 1 ; CHECK-NEXT: [[EXITCOND_PEEL5:%.*]] = icmp ne i32 [[INC_PEEL4]], 100000 ; CHECK-NEXT: br i1 [[EXITCOND_PEEL5]], label [[FOR_BODY_PEEL_NEXT1:%.*]], label [[FOR_COND_CLEANUP]] ; CHECK: for.body.peel.next1: ; CHECK-NEXT: br label [[FOR_BODY_PEEL7:%.*]] ; CHECK: for.body.peel7: ; CHECK-NEXT: tail call void @_Z1gi(i32 noundef signext [[CONV_PEEL3]]) ; CHECK-NEXT: [[CONV_PEEL8:%.*]] = fptosi float 5.000000e+00 to i32 ; CHECK-NEXT: tail call void @_Z1ff(float noundef 5.000000e+00) ; CHECK-NEXT: [[INC_PEEL9:%.*]] = add nuw nsw i32 [[INC_PEEL4]], 1 ; CHECK-NEXT: [[EXITCOND_PEEL10:%.*]] = icmp ne i32 [[INC_PEEL9]], 100000 ; CHECK-NEXT: br i1 [[EXITCOND_PEEL10]], label [[FOR_BODY_PEEL_NEXT6:%.*]], label [[FOR_COND_CLEANUP]] ; CHECK: for.body.peel.next6: ; CHECK-NEXT: br label [[FOR_BODY_PEEL_NEXT11:%.*]] ; CHECK: for.body.peel.next11: ; CHECK-NEXT: br label [[ENTRY_PEEL_NEWPH:%.*]] ; CHECK: entry.peel.newph: ; CHECK-NEXT: br label [[FOR_BODY:%.*]] ; CHECK: for.cond.cleanup.loopexit: ; CHECK-NEXT: br label [[FOR_COND_CLEANUP]] ; CHECK: for.cond.cleanup: ; CHECK-NEXT: ret void ; CHECK: for.body: ; CHECK-NEXT: [[I:%.*]] = phi i32 [ [[INC_PEEL9]], [[ENTRY_PEEL_NEWPH]] ], [ [[INC:%.*]], [[FOR_BODY]] ] ; CHECK-NEXT: [[X:%.*]] = phi i32 [ [[CONV_PEEL8]], [[ENTRY_PEEL_NEWPH]] ], [ 5, [[FOR_BODY]] ] ; CHECK-NEXT: tail call void @_Z1gi(i32 noundef signext [[X]]) ; CHECK-NEXT: tail call void @_Z1ff(float noundef 5.000000e+00) ; CHECK-NEXT: [[INC]] = add nuw nsw i32 [[I]], 1 ; CHECK-NEXT: [[EXITCOND:%.*]] = icmp ne i32 [[INC]], 100000 ; CHECK-NEXT: br i1 [[EXITCOND]], label [[FOR_BODY]], label [[FOR_COND_CLEANUP_LOOPEXIT:%.*]], !llvm.loop [[LOOP0:![0-9]+]] ; entry: br label %for.body for.cond.cleanup: ret void for.body: %i = phi i32 [ 0, %entry ], [ %inc, %for.body ] %a = phi float [ 0.000000e+00, %entry ], [ 5.000000e+00, %for.body ] %y = phi float [ 0.000000e+00, %entry ], [ %a, %for.body ] %x = phi i32 [ 0, %entry ], [ %conv, %for.body ] tail call void @_Z1gi(i32 noundef signext %x) %conv = fptosi float %y to i32 tail call void @_Z1ff(float noundef %y) %inc = add nuw nsw i32 %i, 1 %exitcond = icmp ne i32 %inc, 100000 br i1 %exitcond, label %for.body, label %for.cond.cleanup } ; Check that phi analysis can handle a binary operator. define void @_Z6binaryv() { ; The phis become invariant through the chain of phis, with a unary ; instruction on a loop invariant. Check that the phis for x, a, and y ; are removed since x is based on y, which is based on a, which is based ; on a binary add of a phi and a constant. ; Consider the calls to g: ; First iteration: g(0), x=0, g(0), y=1, a=5 ; Second iteration: g(0), x=1, g(5), y=6(binary operator), a=5 ; Third iteration: g(1), x=6, g(5), y=6, a=5 ; Fourth iteration (and subsequent): g(6), x=6, g(5), y=6, a=5 ; Therefore, peeling 3 times removes the phi nodes. ; ; void g(int); ; void binary() { ; int x = 0; ; int y = 0; ; int a = 0; ; for(int i = 0; i <100000; ++i) { ; g(x); ; x = y; ; g(a); ; y = a + 1; ; a = 5; ; } ; } ; ; CHECK-LABEL: @_Z6binaryv( ; CHECK-NEXT: entry: ; CHECK-NEXT: br label [[FOR_BODY_PEEL_BEGIN:%.*]] ; CHECK: for.body.peel.begin: ; CHECK-NEXT: br label [[FOR_BODY_PEEL:%.*]] ; CHECK: for.body.peel: ; CHECK-NEXT: tail call void @_Z1gi(i32 signext 0) ; CHECK-NEXT: tail call void @_Z1gi(i32 signext 0) ; CHECK-NEXT: [[ADD_PEEL:%.*]] = add nuw nsw i32 0, 1 ; CHECK-NEXT: [[INC_PEEL:%.*]] = add nuw nsw i32 0, 1 ; CHECK-NEXT: [[EXITCOND_PEEL:%.*]] = icmp eq i32 [[INC_PEEL]], 100000 ; CHECK-NEXT: br i1 [[EXITCOND_PEEL]], label [[FOR_COND_CLEANUP:%.*]], label [[FOR_BODY_PEEL_NEXT:%.*]] ; CHECK: for.body.peel.next: ; CHECK-NEXT: br label [[FOR_BODY_PEEL2:%.*]] ; CHECK: for.body.peel2: ; CHECK-NEXT: tail call void @_Z1gi(i32 signext 0) ; CHECK-NEXT: tail call void @_Z1gi(i32 signext 5) ; CHECK-NEXT: [[INC_PEEL4:%.*]] = add nuw nsw i32 [[INC_PEEL]], 1 ; CHECK-NEXT: [[EXITCOND_PEEL5:%.*]] = icmp eq i32 [[INC_PEEL4]], 100000 ; CHECK-NEXT: br i1 [[EXITCOND_PEEL5]], label [[FOR_COND_CLEANUP]], label [[FOR_BODY_PEEL_NEXT1:%.*]] ; CHECK: for.body.peel.next1: ; CHECK-NEXT: br label [[FOR_BODY_PEEL7:%.*]] ; CHECK: for.body.peel7: ; CHECK-NEXT: tail call void @_Z1gi(i32 signext [[ADD_PEEL]]) ; CHECK-NEXT: tail call void @_Z1gi(i32 signext 5) ; CHECK-NEXT: [[INC_PEEL9:%.*]] = add nuw nsw i32 [[INC_PEEL4]], 1 ; CHECK-NEXT: [[EXITCOND_PEEL10:%.*]] = icmp eq i32 [[INC_PEEL9]], 100000 ; CHECK-NEXT: br i1 [[EXITCOND_PEEL10]], label [[FOR_COND_CLEANUP]], label [[FOR_BODY_PEEL_NEXT6:%.*]] ; CHECK: for.body.peel.next6: ; CHECK-NEXT: br label [[FOR_BODY_PEEL_NEXT11:%.*]] ; CHECK: for.body.peel.next11: ; CHECK-NEXT: br label [[ENTRY_PEEL_NEWPH:%.*]] ; CHECK: entry.peel.newph: ; CHECK-NEXT: br label [[FOR_BODY:%.*]] ; CHECK: for.cond.cleanup.loopexit: ; CHECK-NEXT: br label [[FOR_COND_CLEANUP]] ; CHECK: for.cond.cleanup: ; CHECK-NEXT: ret void ; CHECK: for.body: ; CHECK-NEXT: [[I:%.*]] = phi i32 [ [[INC_PEEL9]], [[ENTRY_PEEL_NEWPH]] ], [ [[INC:%.*]], [[FOR_BODY]] ] ; CHECK-NEXT: tail call void @_Z1gi(i32 signext 6) ; CHECK-NEXT: tail call void @_Z1gi(i32 signext 5) ; CHECK-NEXT: [[INC]] = add nuw nsw i32 [[I]], 1 ; CHECK-NEXT: [[EXITCOND:%.*]] = icmp eq i32 [[INC]], 100000 ; CHECK-NEXT: br i1 [[EXITCOND]], label [[FOR_COND_CLEANUP_LOOPEXIT:%.*]], label [[FOR_BODY]], !llvm.loop [[LOOP2:![0-9]+]] ; entry: br label %for.body for.cond.cleanup: ret void for.body: %i = phi i32 [ 0, %entry ], [ %inc, %for.body ] %a = phi i32 [ 0, %entry ], [ 5, %for.body ] %y = phi i32 [ 0, %entry ], [ %add, %for.body ] %x = phi i32 [ 0, %entry ], [ %y, %for.body ] tail call void @_Z1gi(i32 signext %x) tail call void @_Z1gi(i32 signext %a) %add = add nuw nsw i32 %a, 1 %inc = add nuw nsw i32 %i, 1 %exitcond = icmp eq i32 %inc, 100000 br i1 %exitcond, label %for.cond.cleanup, label %for.body }