; NOTE: Assertions have been autogenerated by utils/update_test_checks.py UTC_ARGS: --version 3 ; RUN: opt < %s -mtriple=nvptx64-nvidia-cuda -passes=separate-const-offset-from-gep \ ; RUN: -reassociate-geps-verify-no-dead-code -S | FileCheck %s ; Several unit tests for separate-const-offset-from-gep. The transformation ; heavily relies on TargetTransformInfo, so we put these tests under ; target-specific folders. %struct.S = type { float, double } @struct_array = global [1024 x %struct.S] zeroinitializer, align 16 @float_2d_array = global [32 x [32 x float]] zeroinitializer, align 4 ; We should not extract any struct field indices, because fields in a struct ; may have different types. define ptr @struct(i32 %i) { ; CHECK-LABEL: define ptr @struct( ; CHECK-SAME: i32 [[I:%.*]]) { ; CHECK-NEXT: entry: ; CHECK-NEXT: [[TMP0:%.*]] = sext i32 [[I]] to i64 ; CHECK-NEXT: [[TMP1:%.*]] = getelementptr [1024 x %struct.S], ptr @struct_array, i64 0, i64 [[TMP0]], i32 1 ; CHECK-NEXT: [[P2:%.*]] = getelementptr inbounds i8, ptr [[TMP1]], i64 80 ; CHECK-NEXT: ret ptr [[P2]] ; entry: %add = add nsw i32 %i, 5 %idxprom = sext i32 %add to i64 %p = getelementptr inbounds [1024 x %struct.S], ptr @struct_array, i64 0, i64 %idxprom, i32 1 ret ptr %p } ; We should be able to trace into sext(a + b) if a + b is non-negative ; (e.g., used as an index of an inbounds GEP) and one of a and b is ; non-negative. define ptr @sext_add(i32 %i, i32 %j) { ; CHECK-LABEL: define ptr @sext_add( ; CHECK-SAME: i32 [[I:%.*]], i32 [[J:%.*]]) { ; CHECK-NEXT: entry: ; CHECK-NEXT: [[TMP0:%.*]] = add i32 [[J]], -2 ; CHECK-NEXT: [[TMP1:%.*]] = sext i32 [[TMP0]] to i64 ; CHECK-NEXT: [[TMP2:%.*]] = sext i32 [[I]] to i64 ; CHECK-NEXT: [[TMP3:%.*]] = getelementptr [32 x [32 x float]], ptr @float_2d_array, i64 0, i64 [[TMP2]], i64 [[TMP1]] ; CHECK-NEXT: [[P1:%.*]] = getelementptr inbounds i8, ptr [[TMP3]], i64 128 ; CHECK-NEXT: ret ptr [[P1]] ; entry: %0 = add i32 %i, 1 %1 = sext i32 %0 to i64 ; inbound sext(i + 1) = sext(i) + 1 %2 = add i32 %j, -2 ; However, inbound sext(j + -2) != sext(j) + -2, e.g., j = INT_MIN %3 = sext i32 %2 to i64 %p = getelementptr inbounds [32 x [32 x float]], ptr @float_2d_array, i64 0, i64 %1, i64 %3 ret ptr %p } ; We should be able to trace into sext/zext if it can be distributed to both ; operands, e.g., sext (add nsw a, b) == add nsw (sext a), (sext b) ; ; This test verifies we can transform ; gep base, a + sext(b +nsw 1), c + zext(d +nuw 1) ; to ; gep base, a + sext(b), c + zext(d); gep ..., 1 * 32 + 1 define ptr @ext_add_no_overflow(i64 %a, i32 %b, i64 %c, i32 %d) { ; CHECK-LABEL: define ptr @ext_add_no_overflow( ; CHECK-SAME: i64 [[A:%.*]], i32 [[B:%.*]], i64 [[C:%.*]], i32 [[D:%.*]]) { ; CHECK-NEXT: [[TMP1:%.*]] = sext i32 [[B]] to i64 ; CHECK-NEXT: [[I2:%.*]] = add i64 [[A]], [[TMP1]] ; CHECK-NEXT: [[TMP2:%.*]] = zext i32 [[D]] to i64 ; CHECK-NEXT: [[J4:%.*]] = add i64 [[C]], [[TMP2]] ; CHECK-NEXT: [[TMP3:%.*]] = getelementptr [32 x [32 x float]], ptr @float_2d_array, i64 0, i64 [[I2]], i64 [[J4]] ; CHECK-NEXT: [[P5:%.*]] = getelementptr inbounds i8, ptr [[TMP3]], i64 132 ; CHECK-NEXT: ret ptr [[P5]] ; %b1 = add nsw i32 %b, 1 %b2 = sext i32 %b1 to i64 %i = add i64 %a, %b2 ; i = a + sext(b +nsw 1) %d1 = add nuw i32 %d, 1 %d2 = zext i32 %d1 to i64 %j = add i64 %c, %d2 ; j = c + zext(d +nuw 1) %p = getelementptr inbounds [32 x [32 x float]], ptr @float_2d_array, i64 0, i64 %i, i64 %j ret ptr %p } ; Verifies we handle nested sext/zext correctly. define void @sext_zext(i32 %a, i32 %b, ptr %out1, ptr %out2) { ; CHECK-LABEL: define void @sext_zext( ; CHECK-SAME: i32 [[A:%.*]], i32 [[B:%.*]], ptr [[OUT1:%.*]], ptr [[OUT2:%.*]]) { ; CHECK-NEXT: entry: ; CHECK-NEXT: [[TMP0:%.*]] = add nsw i32 [[B]], 2 ; CHECK-NEXT: [[TMP1:%.*]] = sext i32 [[TMP0]] to i48 ; CHECK-NEXT: [[TMP2:%.*]] = zext i48 [[TMP1]] to i64 ; CHECK-NEXT: [[TMP3:%.*]] = sext i32 [[A]] to i48 ; CHECK-NEXT: [[TMP4:%.*]] = zext i48 [[TMP3]] to i64 ; CHECK-NEXT: [[TMP5:%.*]] = getelementptr [32 x [32 x float]], ptr @float_2d_array, i64 0, i64 [[TMP4]], i64 [[TMP2]] ; CHECK-NEXT: [[P11:%.*]] = getelementptr i8, ptr [[TMP5]], i64 128 ; CHECK-NEXT: store ptr [[P11]], ptr [[OUT1]], align 8 ; CHECK-NEXT: [[TMP6:%.*]] = add nsw i32 [[B]], 4 ; CHECK-NEXT: [[TMP7:%.*]] = zext i32 [[TMP6]] to i48 ; CHECK-NEXT: [[TMP8:%.*]] = sext i48 [[TMP7]] to i64 ; CHECK-NEXT: [[TMP9:%.*]] = zext i32 [[A]] to i48 ; CHECK-NEXT: [[TMP10:%.*]] = sext i48 [[TMP9]] to i64 ; CHECK-NEXT: [[TMP11:%.*]] = getelementptr [32 x [32 x float]], ptr @float_2d_array, i64 0, i64 [[TMP10]], i64 [[TMP8]] ; CHECK-NEXT: [[P22:%.*]] = getelementptr i8, ptr [[TMP11]], i64 384 ; CHECK-NEXT: store ptr [[P22]], ptr [[OUT2]], align 8 ; CHECK-NEXT: ret void ; entry: %0 = add nsw nuw i32 %a, 1 %1 = sext i32 %0 to i48 %2 = zext i48 %1 to i64 ; zext(sext(a +nsw nuw 1)) = zext(sext(a)) + 1 %3 = add nsw i32 %b, 2 %4 = sext i32 %3 to i48 %5 = zext i48 %4 to i64 ; zext(sext(b +nsw 2)) != zext(sext(b)) + 2 %p1 = getelementptr [32 x [32 x float]], ptr @float_2d_array, i64 0, i64 %2, i64 %5 store ptr %p1, ptr %out1 %6 = add nuw i32 %a, 3 %7 = zext i32 %6 to i48 %8 = sext i48 %7 to i64 ; sext(zext(a +nuw 3)) = zext(a +nuw 3) = zext(a) + 3 %9 = add nsw i32 %b, 4 %10 = zext i32 %9 to i48 %11 = sext i48 %10 to i64 ; sext(zext(b +nsw 4)) != zext(b) + 4 %p2 = getelementptr [32 x [32 x float]], ptr @float_2d_array, i64 0, i64 %8, i64 %11 store ptr %p2, ptr %out2 ret void } ; Similar to @ext_add_no_overflow, we should be able to trace into s/zext if ; its operand is an OR and the two operands of the OR have no common bits. define ptr @sext_or(i64 %a, i32 %b) { ; CHECK-LABEL: define ptr @sext_or( ; CHECK-SAME: i64 [[A:%.*]], i32 [[B:%.*]]) { ; CHECK-NEXT: entry: ; CHECK-NEXT: [[B1:%.*]] = shl i32 [[B]], 2 ; CHECK-NEXT: [[B3:%.*]] = or i32 [[B1]], 4 ; CHECK-NEXT: [[B3_EXT:%.*]] = sext i32 [[B3]] to i64 ; CHECK-NEXT: [[J:%.*]] = add i64 [[A]], [[B3_EXT]] ; CHECK-NEXT: [[TMP0:%.*]] = zext i32 [[B1]] to i64 ; CHECK-NEXT: [[I2:%.*]] = add i64 [[A]], [[TMP0]] ; CHECK-NEXT: [[TMP1:%.*]] = getelementptr [32 x [32 x float]], ptr @float_2d_array, i64 0, i64 [[I2]], i64 [[J]] ; CHECK-NEXT: [[P3:%.*]] = getelementptr inbounds i8, ptr [[TMP1]], i64 128 ; CHECK-NEXT: ret ptr [[P3]] ; entry: %b1 = shl i32 %b, 2 %b2 = or i32 %b1, 1 ; (b << 2) and 1 have no common bits %b3 = or i32 %b1, 4 ; (b << 2) and 4 may have common bits %b2.ext = zext i32 %b2 to i64 %b3.ext = sext i32 %b3 to i64 %i = add i64 %a, %b2.ext %j = add i64 %a, %b3.ext %p = getelementptr inbounds [32 x [32 x float]], ptr @float_2d_array, i64 0, i64 %i, i64 %j ret ptr %p } ; The subexpression (b + 5) is used in both "i = a + (b + 5)" and "*out = b + ; 5". When extracting the constant offset 5, make sure "*out = b + 5" isn't ; affected. define ptr @expr(i64 %a, i64 %b, ptr %out) { ; CHECK-LABEL: define ptr @expr( ; CHECK-SAME: i64 [[A:%.*]], i64 [[B:%.*]], ptr [[OUT:%.*]]) { ; CHECK-NEXT: entry: ; CHECK-NEXT: [[B5:%.*]] = add i64 [[B]], 5 ; CHECK-NEXT: [[I2:%.*]] = add i64 [[B]], [[A]] ; CHECK-NEXT: [[TMP0:%.*]] = getelementptr [32 x [32 x float]], ptr @float_2d_array, i64 0, i64 [[I2]], i64 0 ; CHECK-NEXT: [[P3:%.*]] = getelementptr inbounds i8, ptr [[TMP0]], i64 640 ; CHECK-NEXT: store i64 [[B5]], ptr [[OUT]], align 8 ; CHECK-NEXT: ret ptr [[P3]] ; entry: %b5 = add i64 %b, 5 %i = add i64 %b5, %a %p = getelementptr inbounds [32 x [32 x float]], ptr @float_2d_array, i64 0, i64 %i, i64 0 store i64 %b5, ptr %out ret ptr %p } ; d + sext(a +nsw (b +nsw (c +nsw 8))) => (d + sext(a) + sext(b) + sext(c)) + 8 define ptr @sext_expr(i32 %a, i32 %b, i32 %c, i64 %d) { ; CHECK-LABEL: define ptr @sext_expr( ; CHECK-SAME: i32 [[A:%.*]], i32 [[B:%.*]], i32 [[C:%.*]], i64 [[D:%.*]]) { ; CHECK-NEXT: entry: ; CHECK-NEXT: [[TMP0:%.*]] = sext i32 [[A]] to i64 ; CHECK-NEXT: [[TMP1:%.*]] = sext i32 [[B]] to i64 ; CHECK-NEXT: [[TMP2:%.*]] = sext i32 [[C]] to i64 ; CHECK-NEXT: [[TMP3:%.*]] = add i64 [[TMP1]], [[TMP2]] ; CHECK-NEXT: [[TMP4:%.*]] = add i64 [[TMP0]], [[TMP3]] ; CHECK-NEXT: [[I1:%.*]] = add i64 [[D]], [[TMP4]] ; CHECK-NEXT: [[TMP5:%.*]] = getelementptr [32 x [32 x float]], ptr @float_2d_array, i64 0, i64 0, i64 [[I1]] ; CHECK-NEXT: [[P2:%.*]] = getelementptr inbounds i8, ptr [[TMP5]], i64 32 ; CHECK-NEXT: ret ptr [[P2]] ; entry: %0 = add nsw i32 %c, 8 %1 = add nsw i32 %b, %0 %2 = add nsw i32 %a, %1 %3 = sext i32 %2 to i64 %i = add i64 %d, %3 %p = getelementptr inbounds [32 x [32 x float]], ptr @float_2d_array, i64 0, i64 0, i64 %i ret ptr %p } ; Verifies we handle "sub" correctly. define ptr @sub(i64 %i, i64 %j) { ; CHECK-LABEL: define ptr @sub( ; CHECK-SAME: i64 [[I:%.*]], i64 [[J:%.*]]) { ; CHECK-NEXT: [[J22:%.*]] = sub i64 0, [[J]] ; CHECK-NEXT: [[TMP1:%.*]] = getelementptr [32 x [32 x float]], ptr @float_2d_array, i64 0, i64 [[I]], i64 [[J22]] ; CHECK-NEXT: [[P3:%.*]] = getelementptr inbounds i8, ptr [[TMP1]], i64 -620 ; CHECK-NEXT: ret ptr [[P3]] ; %i2 = sub i64 %i, 5 ; i - 5 %j2 = sub i64 5, %j ; 5 - i %p = getelementptr inbounds [32 x [32 x float]], ptr @float_2d_array, i64 0, i64 %i2, i64 %j2 ret ptr %p } %struct.Packed = type <{ [3 x i32], [8 x i64] }> ; <> means packed ; Verifies we can emit correct uglygep if the address is not natually aligned. define ptr @packed_struct(i32 %i, i32 %j) { ; CHECK-LABEL: define ptr @packed_struct( ; CHECK-SAME: i32 [[I:%.*]], i32 [[J:%.*]]) { ; CHECK-NEXT: entry: ; CHECK-NEXT: [[S:%.*]] = alloca [1024 x %struct.Packed], align 16 ; CHECK-NEXT: [[TMP0:%.*]] = sext i32 [[I]] to i64 ; CHECK-NEXT: [[TMP1:%.*]] = sext i32 [[J]] to i64 ; CHECK-NEXT: [[TMP2:%.*]] = getelementptr [1024 x %struct.Packed], ptr [[S]], i64 0, i64 [[TMP0]], i32 1, i64 [[TMP1]] ; CHECK-NEXT: [[ARRAYIDX33:%.*]] = getelementptr inbounds i8, ptr [[TMP2]], i64 100 ; CHECK-NEXT: ret ptr [[ARRAYIDX33]] ; entry: %s = alloca [1024 x %struct.Packed], align 16 %add = add nsw i32 %j, 3 %idxprom = sext i32 %add to i64 %add1 = add nsw i32 %i, 1 %idxprom2 = sext i32 %add1 to i64 %arrayidx3 = getelementptr inbounds [1024 x %struct.Packed], ptr %s, i64 0, i64 %idxprom2, i32 1, i64 %idxprom ret ptr %arrayidx3 } ; We shouldn't be able to extract the 8 from "zext(a +nuw (b + 8))", ; because "zext(b + 8) != zext(b) + 8" define ptr @zext_expr(i32 %a, i32 %b) { ; CHECK-LABEL: define ptr @zext_expr( ; CHECK-SAME: i32 [[A:%.*]], i32 [[B:%.*]]) { ; CHECK-NEXT: entry: ; CHECK-NEXT: [[TMP0:%.*]] = add i32 [[B]], 8 ; CHECK-NEXT: [[TMP1:%.*]] = add nuw i32 [[A]], [[TMP0]] ; CHECK-NEXT: [[I:%.*]] = zext i32 [[TMP1]] to i64 ; CHECK-NEXT: [[P:%.*]] = getelementptr [32 x [32 x float]], ptr @float_2d_array, i64 0, i64 0, i64 [[I]] ; CHECK-NEXT: ret ptr [[P]] ; entry: %0 = add i32 %b, 8 %1 = add nuw i32 %a, %0 %i = zext i32 %1 to i64 %p = getelementptr [32 x [32 x float]], ptr @float_2d_array, i64 0, i64 0, i64 %i ret ptr %p } ; Per http://llvm.org/docs/LangRef.html#id181, the indices of a off-bound gep ; should be considered sign-extended to the pointer size. Therefore, ; gep base, (add i32 a, b) != gep (gep base, i32 a), i32 b ; because ; sext(a + b) != sext(a) + sext(b) ; ; This test verifies we do not illegitimately extract the 8 from ; gep base, (i32 a + 8) define ptr @i32_add(i32 %a) { ; CHECK-LABEL: define ptr @i32_add( ; CHECK-SAME: i32 [[A:%.*]]) { ; CHECK-NEXT: entry: ; CHECK-NEXT: [[I:%.*]] = add i32 [[A]], 8 ; CHECK-NEXT: [[IDXPROM:%.*]] = sext i32 [[I]] to i64 ; CHECK-NEXT: [[P:%.*]] = getelementptr [32 x [32 x float]], ptr @float_2d_array, i64 0, i64 0, i64 [[IDXPROM]] ; CHECK-NEXT: ret ptr [[P]] ; entry: %i = add i32 %a, 8 %p = getelementptr [32 x [32 x float]], ptr @float_2d_array, i64 0, i64 0, i32 %i ret ptr %p } ; Verifies that we compute the correct constant offset when the index is ; sign-extended and then zero-extended. The old version of our code failed to ; handle this case because it simply computed the constant offset as the ; sign-extended value of the constant part of the GEP index. define ptr @apint(i1 %a) { ; CHECK-LABEL: define ptr @apint( ; CHECK-SAME: i1 [[A:%.*]]) { ; CHECK-NEXT: entry: ; CHECK-NEXT: [[TMP0:%.*]] = sext i1 [[A]] to i4 ; CHECK-NEXT: [[TMP1:%.*]] = zext i4 [[TMP0]] to i64 ; CHECK-NEXT: [[TMP2:%.*]] = getelementptr [32 x [32 x float]], ptr @float_2d_array, i64 0, i64 0, i64 [[TMP1]] ; CHECK-NEXT: [[P1:%.*]] = getelementptr i8, ptr [[TMP2]], i64 60 ; CHECK-NEXT: ret ptr [[P1]] ; entry: %0 = add nsw nuw i1 %a, 1 %1 = sext i1 %0 to i4 %2 = zext i4 %1 to i64 ; zext (sext i1 1 to i4) to i64 = 15 %p = getelementptr [32 x [32 x float]], ptr @float_2d_array, i64 0, i64 0, i64 %2 ret ptr %p } ; Do not trace into binary operators other than ADD, SUB, and OR. define ptr @and(i64 %a) { ; CHECK-LABEL: define ptr @and( ; CHECK-SAME: i64 [[A:%.*]]) { ; CHECK-NEXT: entry: ; CHECK-NEXT: [[TMP0:%.*]] = shl i64 [[A]], 2 ; CHECK-NEXT: [[TMP1:%.*]] = and i64 [[TMP0]], 1 ; CHECK-NEXT: [[P:%.*]] = getelementptr [32 x [32 x float]], ptr @float_2d_array, i64 0, i64 0, i64 [[TMP1]] ; CHECK-NEXT: ret ptr [[P]] ; entry: %0 = shl i64 %a, 2 %1 = and i64 %0, 1 %p = getelementptr [32 x [32 x float]], ptr @float_2d_array, i64 0, i64 0, i64 %1 ret ptr %p } ; The code that rebuilds an OR expression used to be buggy, and failed on this ; test. define ptr @shl_add_or(i64 %a, ptr %ptr) { ; CHECK-LABEL: define ptr @shl_add_or( ; CHECK-SAME: i64 [[A:%.*]], ptr [[PTR:%.*]]) { ; CHECK-NEXT: entry: ; CHECK-NEXT: [[SHL:%.*]] = shl i64 [[A]], 2 ; CHECK-NEXT: [[OR2:%.*]] = add i64 [[SHL]], 1 ; CHECK-NEXT: [[TMP0:%.*]] = getelementptr float, ptr [[PTR]], i64 [[OR2]] ; CHECK-NEXT: [[P3:%.*]] = getelementptr i8, ptr [[TMP0]], i64 48 ; CHECK-NEXT: ret ptr [[P3]] ; entry: %shl = shl i64 %a, 2 %add = add i64 %shl, 12 %or = or i64 %add, 1 ; ((a << 2) + 12) and 1 have no common bits. Therefore, ; SeparateConstOffsetFromGEP is able to extract the 12. ; TODO(jingyue): We could reassociate the expression to combine 12 and 1. %p = getelementptr float, ptr %ptr, i64 %or ret ptr %p } ; The source code used to be buggy in checking ; (AccumulativeByteOffset % ElementTypeSizeOfGEP == 0) ; where AccumulativeByteOffset is signed but ElementTypeSizeOfGEP is unsigned. ; The compiler would promote AccumulativeByteOffset to unsigned, causing ; unexpected results. For example, while -64 % (int64_t)24 != 0, ; -64 % (uint64_t)24 == 0. %struct3 = type { i64, i32 } %struct2 = type { %struct3, i32 } %struct1 = type { i64, %struct2 } %struct0 = type { i32, i32, ptr, [100 x %struct1] } define ptr @sign_mod_unsign(ptr %ptr, i64 %idx) { ; CHECK-LABEL: define ptr @sign_mod_unsign( ; CHECK-SAME: ptr [[PTR:%.*]], i64 [[IDX:%.*]]) { ; CHECK-NEXT: entry: ; CHECK-NEXT: [[TMP0:%.*]] = getelementptr [[STRUCT0:%.*]], ptr [[PTR]], i64 0, i32 3, i64 [[IDX]], i32 1 ; CHECK-NEXT: [[PTR22:%.*]] = getelementptr inbounds i8, ptr [[TMP0]], i64 -64 ; CHECK-NEXT: ret ptr [[PTR22]] ; entry: %arrayidx = add nsw i64 %idx, -2 %ptr2 = getelementptr inbounds %struct0, ptr %ptr, i64 0, i32 3, i64 %arrayidx, i32 1 ret ptr %ptr2 } ; Check that we can see through explicit trunc() instruction. define ptr @trunk_explicit(ptr %ptr, i64 %idx) { ; CHECK-LABEL: define ptr @trunk_explicit( ; CHECK-SAME: ptr [[PTR:%.*]], i64 [[IDX:%.*]]) { ; CHECK-NEXT: entry: ; CHECK-NEXT: [[TMP0:%.*]] = getelementptr [[STRUCT0:%.*]], ptr [[PTR]], i64 0, i32 3, i64 [[IDX]], i32 1 ; CHECK-NEXT: [[PTR21:%.*]] = getelementptr inbounds i8, ptr [[TMP0]], i64 3216 ; CHECK-NEXT: ret ptr [[PTR21]] ; entry: %idx0 = trunc i64 1 to i32 %ptr2 = getelementptr inbounds %struct0, ptr %ptr, i32 %idx0, i32 3, i64 %idx, i32 1 ret ptr %ptr2 } ; Check that we can deal with trunc inserted by ; canonicalizeArrayIndicesToPointerSize() if size of an index is larger than ; that of the pointer. define ptr @trunk_long_idx(ptr %ptr, i64 %idx) { ; CHECK-LABEL: define ptr @trunk_long_idx( ; CHECK-SAME: ptr [[PTR:%.*]], i64 [[IDX:%.*]]) { ; CHECK-NEXT: entry: ; CHECK-NEXT: [[TMP0:%.*]] = getelementptr [[STRUCT0:%.*]], ptr [[PTR]], i64 0, i32 3, i64 [[IDX]], i32 1 ; CHECK-NEXT: [[PTR21:%.*]] = getelementptr inbounds i8, ptr [[TMP0]], i64 3216 ; CHECK-NEXT: ret ptr [[PTR21]] ; entry: %ptr2 = getelementptr inbounds %struct0, ptr %ptr, i65 1, i32 3, i64 %idx, i32 1 ret ptr %ptr2 }