//===- AttributorTest.cpp - Attributor unit tests ------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===---------------------------------------------------------------------===// #include "llvm/Transforms/IPO/Attributor.h" #include "AttributorTestBase.h" #include "llvm/ADT/StringRef.h" #include "llvm/Analysis/CGSCCPassManager.h" #include "llvm/Analysis/CallGraphSCCPass.h" #include "llvm/Analysis/LoopAnalysisManager.h" #include "llvm/AsmParser/Parser.h" #include "llvm/Support/Allocator.h" #include "llvm/Testing/Support/Error.h" #include "llvm/Transforms/Utils/CallGraphUpdater.h" #include "gtest/gtest.h" #include namespace llvm { TEST_F(AttributorTestBase, IRPPositionCallBaseContext) { const char *ModuleString = R"( define i32 @foo(i32 %a) { entry: ret i32 %a } )"; parseModule(ModuleString); Function *F = M->getFunction("foo"); IRPosition Pos = IRPosition::function(*F, (const llvm::CallBase *)(uintptr_t)0xDEADBEEF); EXPECT_TRUE(Pos.hasCallBaseContext()); EXPECT_FALSE(Pos.stripCallBaseContext().hasCallBaseContext()); } TEST_F(AttributorTestBase, TestCast) { const char *ModuleString = R"( define i32 @foo(i32 %a, i32 %b) { entry: %c = add i32 %a, %b ret i32 %c } )"; Module &M = parseModule(ModuleString); SetVector Functions; AnalysisGetter AG; for (Function &F : M) Functions.insert(&F); CallGraphUpdater CGUpdater; BumpPtrAllocator Allocator; InformationCache InfoCache(M, AG, Allocator, nullptr); AttributorConfig AC(CGUpdater); Attributor A(Functions, InfoCache, AC); Function *F = M.getFunction("foo"); const AbstractAttribute *AA = A.getOrCreateAAFor(IRPosition::function(*F)); EXPECT_TRUE(AA); const auto *SFail = dyn_cast(AA); const auto *SSucc = dyn_cast(AA); ASSERT_EQ(SFail, nullptr); ASSERT_TRUE(SSucc); } TEST_F(AttributorTestBase, AAReachabilityTest) { const char *ModuleString = R"( @x = external global i32 define void @func4() { store i32 0, i32* @x ret void } define internal void @func3() { store i32 0, i32* @x ret void } define internal void @func8() { store i32 0, i32* @x ret void } define internal void @func2() { entry: call void @func3() ret void } define void @func1() { entry: call void @func2() ret void } declare void @unknown() define internal void @func5(void ()* %ptr) { entry: call void %ptr() call void @unknown() ret void } define void @func6() { entry: store i32 0, i32* @x call void @func5(void ()* @func3) ret void } define void @func7() { entry: call void @func2() call void @func4() ret void } define internal void @func9() { entry: call void @func2() call void @func8() ret void } define void @func10() { entry: call void @func9() call void @func4() ret void } )"; Module &M = parseModule(ModuleString); SetVector Functions; AnalysisGetter AG; for (Function &F : M) Functions.insert(&F); CallGraphUpdater CGUpdater; BumpPtrAllocator Allocator; InformationCache InfoCache(M, AG, Allocator, nullptr); AttributorConfig AC(CGUpdater); AC.DeleteFns = false; Attributor A(Functions, InfoCache, AC); Function &F1 = *M.getFunction("func1"); Function &F3 = *M.getFunction("func3"); Function &F4 = *M.getFunction("func4"); Function &F6 = *M.getFunction("func6"); Function &F7 = *M.getFunction("func7"); Function &F9 = *M.getFunction("func9"); // call void @func2() CallBase &F7FirstCB = static_cast(*F7.getEntryBlock().begin()); // call void @func2() Instruction &F9FirstInst = *F9.getEntryBlock().begin(); // call void @func8 Instruction &F9SecondInst = *++(F9.getEntryBlock().begin()); const AAInterFnReachability &F1AA = *A.getOrCreateAAFor(IRPosition::function(F1)); const AAInterFnReachability &F6AA = *A.getOrCreateAAFor(IRPosition::function(F6)); const AAInterFnReachability &F7AA = *A.getOrCreateAAFor(IRPosition::function(F7)); const AAInterFnReachability &F9AA = *A.getOrCreateAAFor(IRPosition::function(F9)); F1AA.canReach(A, F3); F1AA.canReach(A, F4); F6AA.canReach(A, F4); F7AA.instructionCanReach(A, F7FirstCB, F3); F7AA.instructionCanReach(A, F7FirstCB, F4); F9AA.instructionCanReach(A, F9SecondInst, F3); F9AA.instructionCanReach(A, F9FirstInst, F3); F9AA.instructionCanReach(A, F9FirstInst, F4); A.run(); ASSERT_TRUE(F1AA.canReach(A, F3)); ASSERT_FALSE(F1AA.canReach(A, F4)); ASSERT_TRUE(F7AA.instructionCanReach(A, F7FirstCB, F3)); ASSERT_TRUE(F7AA.instructionCanReach(A, F7FirstCB, F4)); // Assumed to be reacahable, since F6 can reach a function with // a unknown callee. ASSERT_TRUE(F6AA.canReach(A, F4)); // The second instruction of F9 can't reach the first call. ASSERT_FALSE(F9AA.instructionCanReach(A, F9SecondInst, F3)); // The first instruction of F9 can reach the first call. ASSERT_TRUE(F9AA.instructionCanReach(A, F9FirstInst, F3)); // Because func10 calls the func4 after the call to func9 it is reachable but // as it requires backwards logic we would need AA::isPotentiallyReachable. ASSERT_FALSE(F9AA.instructionCanReach(A, F9FirstInst, F4)); } } // namespace llvm