//===- Barvinok.cpp - Barvinok's Algorithm ----------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "mlir/Analysis/Presburger/Barvinok.h" #include "mlir/Analysis/Presburger/Utils.h" #include "llvm/ADT/Sequence.h" #include using namespace mlir; using namespace presburger; using namespace mlir::presburger::detail; /// Assuming that the input cone is pointed at the origin, /// converts it to its dual in V-representation. /// Essentially we just remove the all-zeroes constant column. ConeV mlir::presburger::detail::getDual(ConeH cone) { unsigned numIneq = cone.getNumInequalities(); unsigned numVar = cone.getNumCols() - 1; ConeV dual(numIneq, numVar, 0, 0); // Assuming that an inequality of the form // a1*x1 + ... + an*xn + b ≥ 0 // is represented as a row [a1, ..., an, b] // and that b = 0. for (auto i : llvm::seq(0, numIneq)) { assert(cone.atIneq(i, numVar) == 0 && "H-representation of cone is not centred at the origin!"); for (unsigned j = 0; j < numVar; ++j) { dual.at(i, j) = cone.atIneq(i, j); } } // Now dual is of the form [ [a1, ..., an] , ... ] // which is the V-representation of the dual. return dual; } /// Converts a cone in V-representation to the H-representation /// of its dual, pointed at the origin (not at the original vertex). /// Essentially adds a column consisting only of zeroes to the end. ConeH mlir::presburger::detail::getDual(ConeV cone) { unsigned rows = cone.getNumRows(); unsigned columns = cone.getNumColumns(); ConeH dual = defineHRep(columns); // Add a new column (for constants) at the end. // This will be initialized to zero. cone.insertColumn(columns); for (unsigned i = 0; i < rows; ++i) dual.addInequality(cone.getRow(i)); // Now dual is of the form [ [a1, ..., an, 0] , ... ] // which is the H-representation of the dual. return dual; } /// Find the index of a cone in V-representation. MPInt mlir::presburger::detail::getIndex(ConeV cone) { if (cone.getNumRows() > cone.getNumColumns()) return MPInt(0); return cone.determinant(); } /// Compute the generating function for a unimodular cone. /// This consists of a single term of the form /// sign * x^num / prod_j (1 - x^den_j) /// /// sign is either +1 or -1. /// den_j is defined as the set of generators of the cone. /// num is computed by expressing the vertex as a weighted /// sum of the generators, and then taking the floor of the /// coefficients. GeneratingFunction mlir::presburger::detail::unimodularConeGeneratingFunction( ParamPoint vertex, int sign, ConeH cone) { // Consider a cone with H-representation [0 -1]. // [-1 -2] // Let the vertex be given by the matrix [ 2 2 0], with 2 params. // [-1 -1/2 1] // `cone` must be unimodular. assert(getIndex(getDual(cone)) == 1 && "input cone is not unimodular!"); unsigned numVar = cone.getNumVars(); unsigned numIneq = cone.getNumInequalities(); // Thus its ray matrix, U, is the inverse of the // transpose of its inequality matrix, `cone`. // The last column of the inequality matrix is null, // so we remove it to obtain a square matrix. FracMatrix transp = FracMatrix(cone.getInequalities()).transpose(); transp.removeRow(numVar); FracMatrix generators(numVar, numIneq); transp.determinant(/*inverse=*/&generators); // This is the U-matrix. // Thus the generators are given by U = [2 -1]. // [-1 0] // The powers in the denominator of the generating // function are given by the generators of the cone, // i.e., the rows of the matrix U. std::vector denominator(numIneq); ArrayRef row; for (auto i : llvm::seq(0, numVar)) { row = generators.getRow(i); denominator[i] = Point(row); } // The vertex is v \in Z^{d x (n+1)} // We need to find affine functions of parameters λ_i(p) // such that v = Σ λ_i(p)*u_i, // where u_i are the rows of U (generators) // The λ_i are given by the columns of Λ = v^T U^{-1}, and // we have transp = U^{-1}. // Then the exponent in the numerator will be // Σ -floor(-λ_i(p))*u_i. // Thus we store the (exponent of the) numerator as the affine function -Λ, // since the generators u_i are already stored as the exponent of the // denominator. Note that the outer -1 will have to be accounted for, as it is // not stored. See end for an example. unsigned numColumns = vertex.getNumColumns(); unsigned numRows = vertex.getNumRows(); ParamPoint numerator(numColumns, numRows); SmallVector ithCol(numRows); for (auto i : llvm::seq(0, numColumns)) { for (auto j : llvm::seq(0, numRows)) ithCol[j] = vertex(j, i); numerator.setRow(i, transp.preMultiplyWithRow(ithCol)); numerator.negateRow(i); } // Therefore Λ will be given by [ 1 0 ] and the negation of this will be // [ 1/2 -1 ] // [ -1 -2 ] // stored as the numerator. // Algebraically, the numerator exponent is // [ -2 ⌊ - N - M/2 + 1 ⌋ + 1 ⌊ 0 + M + 2 ⌋ ] -> first COLUMN of U is [2, -1] // [ 1 ⌊ - N - M/2 + 1 ⌋ + 0 ⌊ 0 + M + 2 ⌋ ] -> second COLUMN of U is [-1, 0] return GeneratingFunction(numColumns - 1, SmallVector(1, sign), std::vector({numerator}), std::vector({denominator})); } /// We use an iterative procedure to find a vector not orthogonal /// to a given set, ignoring the null vectors. /// Let the inputs be {x_1, ..., x_k}, all vectors of length n. /// /// In the following, /// vs[:i] means the elements of vs up to and including the i'th one, /// means the dot product of vs and us, /// vs ++ [v] means the vector vs with the new element v appended to it. /// /// We proceed iteratively; for steps d = 0, ... n-1, we construct a vector /// which is not orthogonal to any of {x_1[:d], ..., x_n[:d]}, ignoring /// the null vectors. /// At step d = 0, we let vs = [1]. Clearly this is not orthogonal to /// any vector in the set {x_1[0], ..., x_n[0]}, except the null ones, /// which we ignore. /// At step d > 0 , we need a number v /// s.t. != 0 for all i. /// => + x_i[d]*v != 0 /// => v != - / x_i[d] /// We compute this value for all x_i, and then /// set v to be the maximum element of this set plus one. Thus /// v is outside the set as desired, and we append it to vs /// to obtain the result of the d'th step. Point mlir::presburger::detail::getNonOrthogonalVector( ArrayRef vectors) { unsigned dim = vectors[0].size(); assert( llvm::all_of(vectors, [&](const Point &vector) { return vector.size() == dim; }) && "all vectors need to be the same size!"); SmallVector newPoint = {Fraction(1, 1)}; Fraction maxDisallowedValue = -Fraction(1, 0), disallowedValue = Fraction(0, 1); for (unsigned d = 1; d < dim; ++d) { // Compute the disallowed values - / x_i[d] for each i. maxDisallowedValue = -Fraction(1, 0); for (const Point &vector : vectors) { if (vector[d] == 0) continue; disallowedValue = -dotProduct(ArrayRef(vector).slice(0, d), newPoint) / vector[d]; // Find the biggest such value maxDisallowedValue = std::max(maxDisallowedValue, disallowedValue); } newPoint.push_back(maxDisallowedValue + 1); } return newPoint; } /// We use the following recursive formula to find the coefficient of /// s^power in the rational function given by P(s)/Q(s). /// /// Let P[i] denote the coefficient of s^i in the polynomial P(s). /// (P/Q)[r] = /// if (r == 0) then /// P[0]/Q[0] /// else /// (P[r] - {Σ_{i=1}^r (P/Q)[r-i] * Q[i])}/(Q[0]) /// We therefore recursively call `getCoefficientInRationalFunction` on /// all i \in [0, power). /// /// https://math.ucdavis.edu/~deloera/researchsummary/ /// barvinokalgorithm-latte1.pdf, p. 1285 QuasiPolynomial mlir::presburger::detail::getCoefficientInRationalFunction( unsigned power, ArrayRef num, ArrayRef den) { assert(den.size() != 0 && "division by empty denominator in rational function!"); unsigned numParam = num[0].getNumInputs(); // We use the `isEqual` method of PresburgerSpace, which QuasiPolynomial // inherits from. assert( llvm::all_of( num, [&](const QuasiPolynomial &qp) { return num[0].isEqual(qp); }) && "the quasipolynomials should all belong to the same space!"); std::vector coefficients; coefficients.reserve(power + 1); coefficients.push_back(num[0] / den[0]); for (unsigned i = 1; i <= power; ++i) { // If the power is not there in the numerator, the coefficient is zero. coefficients.push_back(i < num.size() ? num[i] : QuasiPolynomial(numParam, 0)); // After den.size(), the coefficients are zero, so we stop // subtracting at that point (if it is less than i). unsigned limit = std::min(i, den.size() - 1); for (unsigned j = 1; j <= limit; ++j) coefficients[i] = coefficients[i] - coefficients[i - j] * QuasiPolynomial(numParam, den[j]); coefficients[i] = coefficients[i] / den[0]; } return coefficients[power].simplify(); } /// Substitute x_i = t^μ_i in one term of a generating function, returning /// a quasipolynomial which represents the exponent of the numerator /// of the result, and a vector which represents the exponents of the /// denominator of the result. /// If the returned value is {num, dens}, it represents the function /// t^num / \prod_j (1 - t^dens[j]). /// v represents the affine functions whose floors are multiplied by the /// generators, and ds represents the list of generators. std::pair> substituteMuInTerm(unsigned numParams, ParamPoint v, std::vector ds, Point mu) { unsigned numDims = mu.size(); #ifndef NDEBUG for (const Point &d : ds) assert(d.size() == numDims && "μ has to have the same number of dimensions as the generators!"); #endif // First, the exponent in the numerator becomes // - (μ • u_1) * (floor(first col of v)) // - (μ • u_2) * (floor(second col of v)) - ... // - (μ • u_d) * (floor(d'th col of v)) // So we store the negation of the dot products. // We have d terms, each of whose coefficient is the negative dot product. SmallVector coefficients; coefficients.reserve(numDims); for (const Point &d : ds) coefficients.push_back(-dotProduct(mu, d)); // Then, the affine function is a single floor expression, given by the // corresponding column of v. ParamPoint vTranspose = v.transpose(); std::vector>> affine; affine.reserve(numDims); for (unsigned j = 0; j < numDims; ++j) affine.push_back({SmallVector(vTranspose.getRow(j))}); QuasiPolynomial num(numParams, coefficients, affine); num = num.simplify(); std::vector dens; dens.reserve(ds.size()); // Similarly, each term in the denominator has exponent // given by the dot product of μ with u_i. for (const Point &d : ds) { // This term in the denominator is // (1 - t^dens.back()) dens.push_back(dotProduct(d, mu)); } return {num, dens}; } /// Normalize all denominator exponents `dens` to their absolute values /// by multiplying and dividing by the inverses, in a function of the form /// sign * t^num / prod_j (1 - t^dens[j]). /// Here, sign = ± 1, /// num is a QuasiPolynomial, and /// each dens[j] is a Fraction. void normalizeDenominatorExponents(int &sign, QuasiPolynomial &num, std::vector &dens) { // We track the number of exponents that are negative in the // denominator, and convert them to their absolute values. unsigned numNegExps = 0; Fraction sumNegExps(0, 1); for (unsigned j = 0, e = dens.size(); j < e; ++j) { if (dens[j] < 0) { numNegExps += 1; sumNegExps += dens[j]; } } // If we have (1 - t^-c) in the denominator, for positive c, // multiply and divide by t^c. // We convert all negative-exponent terms at once; therefore // we multiply and divide by t^sumNegExps. // Then we get // -(1 - t^c) in the denominator, // increase the numerator by c, and // flip the sign of the function. if (numNegExps % 2 == 1) sign = -sign; num = num - QuasiPolynomial(num.getNumInputs(), sumNegExps); } /// Compute the binomial coefficients nCi for 0 ≤ i ≤ r, /// where n is a QuasiPolynomial. std::vector getBinomialCoefficients(QuasiPolynomial n, unsigned r) { unsigned numParams = n.getNumInputs(); std::vector coefficients; coefficients.reserve(r + 1); coefficients.push_back(QuasiPolynomial(numParams, 1)); for (unsigned j = 1; j <= r; ++j) // We use the recursive formula for binomial coefficients here and below. coefficients.push_back( (coefficients[j - 1] * (n - QuasiPolynomial(numParams, j - 1)) / Fraction(j, 1)) .simplify()); return coefficients; } /// Compute the binomial coefficients nCi for 0 ≤ i ≤ r, /// where n is a QuasiPolynomial. std::vector getBinomialCoefficients(Fraction n, Fraction r) { std::vector coefficients; coefficients.reserve((int64_t)floor(r)); coefficients.push_back(1); for (unsigned j = 1; j <= r; ++j) coefficients.push_back(coefficients[j - 1] * (n - (j - 1)) / (j)); return coefficients; } /// We have a generating function of the form /// f_p(x) = \sum_i sign_i * (x^n_i(p)) / (\prod_j (1 - x^d_{ij}) /// /// where sign_i is ±1, /// n_i \in Q^p -> Q^d is the sum of the vectors d_{ij}, weighted by the /// floors of d affine functions on p parameters. /// d_{ij} \in Q^d are vectors. /// /// We need to find the number of terms of the form x^t in the expansion of /// this function. /// However, direct substitution (x = (1, ..., 1)) causes the denominator /// to become zero. /// /// We therefore use the following procedure instead: /// 1. Substitute x_i = (s+1)^μ_i for some vector μ. This makes the generating /// function a function of a scalar s. /// 2. Write each term in this function as P(s)/Q(s), where P and Q are /// polynomials. P has coefficients as quasipolynomials in d parameters, while /// Q has coefficients as scalars. /// 3. Find the constant term in the expansion of each term P(s)/Q(s). This is /// equivalent to substituting s = 0. /// /// Verdoolaege, Sven, et al. "Counting integer points in parametric /// polytopes using Barvinok's rational functions." Algorithmica 48 (2007): /// 37-66. QuasiPolynomial mlir::presburger::detail::computeNumTerms(const GeneratingFunction &gf) { // Step (1) We need to find a μ such that we can substitute x_i = // (s+1)^μ_i. After this substitution, the exponent of (s+1) in the // denominator is (μ_i • d_{ij}) in each term. Clearly, this cannot become // zero. Hence we find a vector μ that is not orthogonal to any of the // d_{ij} and substitute x accordingly. std::vector allDenominators; for (ArrayRef den : gf.getDenominators()) allDenominators.insert(allDenominators.end(), den.begin(), den.end()); Point mu = getNonOrthogonalVector(allDenominators); unsigned numParams = gf.getNumParams(); const std::vector> &ds = gf.getDenominators(); QuasiPolynomial totalTerm(numParams, 0); for (unsigned i = 0, e = ds.size(); i < e; ++i) { int sign = gf.getSigns()[i]; // Compute the new exponents of (s+1) for the numerator and the // denominator after substituting μ. auto [numExp, dens] = substituteMuInTerm(numParams, gf.getNumerators()[i], ds[i], mu); // Now the numerator is (s+1)^numExp // and the denominator is \prod_j (1 - (s+1)^dens[j]). // Step (2) We need to express the terms in the function as quotients of // polynomials. Each term is now of the form // sign_i * (s+1)^numExp / (\prod_j (1 - (s+1)^dens[j])) // For the i'th term, we first normalize the denominator to have only // positive exponents. We convert all the dens[j] to their // absolute values and change the sign and exponent in the numerator. normalizeDenominatorExponents(sign, numExp, dens); // Then, using the formula for geometric series, we replace each (1 - // (s+1)^(dens[j])) with // (-s)(\sum_{0 ≤ k < dens[j]} (s+1)^k). for (unsigned j = 0, e = dens.size(); j < e; ++j) dens[j] = abs(dens[j]) - 1; // Note that at this point, the semantics of `dens[j]` changes to mean // a term (\sum_{0 ≤ k ≤ dens[j]} (s+1)^k). The denominator is, as before, // a product of these terms. // Since the -s are taken out, the sign changes if there is an odd number // of such terms. unsigned r = dens.size(); if (dens.size() % 2 == 1) sign = -sign; // Thus the term overall now has the form // sign'_i * (s+1)^numExp / // (s^r * \prod_j (\sum_{0 ≤ k < dens[j]} (s+1)^k)). // This means that // the numerator is a polynomial in s, with coefficients as // quasipolynomials (given by binomial coefficients), and the denominator // is a polynomial in s, with integral coefficients (given by taking the // convolution over all j). // Step (3) We need to find the constant term in the expansion of each // term. Since each term has s^r as a factor in the denominator, we avoid // substituting s = 0 directly; instead, we find the coefficient of s^r in // sign'_i * (s+1)^numExp / (\prod_j (\sum_k (s+1)^k)), // Letting P(s) = (s+1)^numExp and Q(s) = \prod_j (...), // we need to find the coefficient of s^r in P(s)/Q(s), // for which we use the `getCoefficientInRationalFunction()` function. // First, we compute the coefficients of P(s), which are binomial // coefficients. // We only need the first r+1 of these, as higher-order terms do not // contribute to the coefficient of s^r. std::vector numeratorCoefficients = getBinomialCoefficients(numExp, r); // Then we compute the coefficients of each individual term in Q(s), // which are (dens[i]+1) C (k+1) for 0 ≤ k ≤ dens[i]. std::vector> eachTermDenCoefficients; std::vector singleTermDenCoefficients; eachTermDenCoefficients.reserve(r); for (const Fraction &den : dens) { singleTermDenCoefficients = getBinomialCoefficients(den + 1, den + 1); eachTermDenCoefficients.push_back( ArrayRef(singleTermDenCoefficients).slice(1)); } // Now we find the coefficients in Q(s) itself // by taking the convolution of the coefficients // of all the terms. std::vector denominatorCoefficients; denominatorCoefficients = eachTermDenCoefficients[0]; for (unsigned j = 1, e = eachTermDenCoefficients.size(); j < e; ++j) denominatorCoefficients = multiplyPolynomials(denominatorCoefficients, eachTermDenCoefficients[j]); totalTerm = totalTerm + getCoefficientInRationalFunction(r, numeratorCoefficients, denominatorCoefficients) * QuasiPolynomial(numParams, sign); } return totalTerm.simplify(); }