//===- Simplex.cpp - MLIR Simplex Class -----------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "mlir/Analysis/Presburger/Simplex.h" #include "mlir/Analysis/Presburger/Fraction.h" #include "mlir/Analysis/Presburger/IntegerRelation.h" #include "mlir/Analysis/Presburger/MPInt.h" #include "mlir/Analysis/Presburger/Matrix.h" #include "mlir/Analysis/Presburger/PresburgerSpace.h" #include "mlir/Analysis/Presburger/Utils.h" #include "mlir/Support/LLVM.h" #include "mlir/Support/LogicalResult.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallBitVector.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include #include #include using namespace mlir; using namespace presburger; using Direction = Simplex::Direction; const int nullIndex = std::numeric_limits::max(); // Return a + scale*b; LLVM_ATTRIBUTE_UNUSED static SmallVector scaleAndAddForAssert(ArrayRef a, const MPInt &scale, ArrayRef b) { assert(a.size() == b.size()); SmallVector res; res.reserve(a.size()); for (unsigned i = 0, e = a.size(); i < e; ++i) res.push_back(a[i] + scale * b[i]); return res; } SimplexBase::SimplexBase(unsigned nVar, bool mustUseBigM) : usingBigM(mustUseBigM), nRedundant(0), nSymbol(0), tableau(0, getNumFixedCols() + nVar), empty(false) { colUnknown.insert(colUnknown.begin(), getNumFixedCols(), nullIndex); for (unsigned i = 0; i < nVar; ++i) { var.emplace_back(Orientation::Column, /*restricted=*/false, /*pos=*/getNumFixedCols() + i); colUnknown.push_back(i); } } SimplexBase::SimplexBase(unsigned nVar, bool mustUseBigM, const llvm::SmallBitVector &isSymbol) : SimplexBase(nVar, mustUseBigM) { assert(isSymbol.size() == nVar && "invalid bitmask!"); // Invariant: nSymbol is the number of symbols that have been marked // already and these occupy the columns // [getNumFixedCols(), getNumFixedCols() + nSymbol). for (unsigned symbolIdx : isSymbol.set_bits()) { var[symbolIdx].isSymbol = true; swapColumns(var[symbolIdx].pos, getNumFixedCols() + nSymbol); ++nSymbol; } } const Simplex::Unknown &SimplexBase::unknownFromIndex(int index) const { assert(index != nullIndex && "nullIndex passed to unknownFromIndex"); return index >= 0 ? var[index] : con[~index]; } const Simplex::Unknown &SimplexBase::unknownFromColumn(unsigned col) const { assert(col < getNumColumns() && "Invalid column"); return unknownFromIndex(colUnknown[col]); } const Simplex::Unknown &SimplexBase::unknownFromRow(unsigned row) const { assert(row < getNumRows() && "Invalid row"); return unknownFromIndex(rowUnknown[row]); } Simplex::Unknown &SimplexBase::unknownFromIndex(int index) { assert(index != nullIndex && "nullIndex passed to unknownFromIndex"); return index >= 0 ? var[index] : con[~index]; } Simplex::Unknown &SimplexBase::unknownFromColumn(unsigned col) { assert(col < getNumColumns() && "Invalid column"); return unknownFromIndex(colUnknown[col]); } Simplex::Unknown &SimplexBase::unknownFromRow(unsigned row) { assert(row < getNumRows() && "Invalid row"); return unknownFromIndex(rowUnknown[row]); } unsigned SimplexBase::addZeroRow(bool makeRestricted) { // Resize the tableau to accommodate the extra row. unsigned newRow = tableau.appendExtraRow(); assert(getNumRows() == getNumRows() && "Inconsistent tableau size"); rowUnknown.push_back(~con.size()); con.emplace_back(Orientation::Row, makeRestricted, newRow); undoLog.push_back(UndoLogEntry::RemoveLastConstraint); tableau(newRow, 0) = 1; return newRow; } /// Add a new row to the tableau corresponding to the given constant term and /// list of coefficients. The coefficients are specified as a vector of /// (variable index, coefficient) pairs. unsigned SimplexBase::addRow(ArrayRef coeffs, bool makeRestricted) { assert(coeffs.size() == var.size() + 1 && "Incorrect number of coefficients!"); assert(var.size() + getNumFixedCols() == getNumColumns() && "inconsistent column count!"); unsigned newRow = addZeroRow(makeRestricted); tableau(newRow, 1) = coeffs.back(); if (usingBigM) { // When the lexicographic pivot rule is used, instead of the variables // // x, y, z ... // // we internally use the variables // // M, M + x, M + y, M + z, ... // // where M is the big M parameter. As such, when the user tries to add // a row ax + by + cz + d, we express it in terms of our internal variables // as -(a + b + c)M + a(M + x) + b(M + y) + c(M + z) + d. // // Symbols don't use the big M parameter since they do not get lex // optimized. MPInt bigMCoeff(0); for (unsigned i = 0; i < coeffs.size() - 1; ++i) if (!var[i].isSymbol) bigMCoeff -= coeffs[i]; // The coefficient to the big M parameter is stored in column 2. tableau(newRow, 2) = bigMCoeff; } // Process each given variable coefficient. for (unsigned i = 0; i < var.size(); ++i) { unsigned pos = var[i].pos; if (coeffs[i] == 0) continue; if (var[i].orientation == Orientation::Column) { // If a variable is in column position at column col, then we just add the // coefficient for that variable (scaled by the common row denominator) to // the corresponding entry in the new row. tableau(newRow, pos) += coeffs[i] * tableau(newRow, 0); continue; } // If the variable is in row position, we need to add that row to the new // row, scaled by the coefficient for the variable, accounting for the two // rows potentially having different denominators. The new denominator is // the lcm of the two. MPInt lcm = presburger::lcm(tableau(newRow, 0), tableau(pos, 0)); MPInt nRowCoeff = lcm / tableau(newRow, 0); MPInt idxRowCoeff = coeffs[i] * (lcm / tableau(pos, 0)); tableau(newRow, 0) = lcm; for (unsigned col = 1, e = getNumColumns(); col < e; ++col) tableau(newRow, col) = nRowCoeff * tableau(newRow, col) + idxRowCoeff * tableau(pos, col); } tableau.normalizeRow(newRow); // Push to undo log along with the index of the new constraint. return con.size() - 1; } namespace { bool signMatchesDirection(const MPInt &elem, Direction direction) { assert(elem != 0 && "elem should not be 0"); return direction == Direction::Up ? elem > 0 : elem < 0; } Direction flippedDirection(Direction direction) { return direction == Direction::Up ? Direction::Down : Simplex::Direction::Up; } } // namespace /// We simply make the tableau consistent while maintaining a lexicopositive /// basis transform, and then return the sample value. If the tableau becomes /// empty, we return empty. /// /// Let the variables be x = (x_1, ... x_n). /// Let the basis unknowns be y = (y_1, ... y_n). /// We have that x = A*y + b for some n x n matrix A and n x 1 column vector b. /// /// As we will show below, A*y is either zero or lexicopositive. /// Adding a lexicopositive vector to b will make it lexicographically /// greater, so A*y + b is always equal to or lexicographically greater than b. /// Thus, since we can attain x = b, that is the lexicographic minimum. /// /// We have that every column in A is lexicopositive, i.e., has at least /// one non-zero element, with the first such element being positive. Since for /// the tableau to be consistent we must have non-negative sample values not /// only for the constraints but also for the variables, we also have x >= 0 and /// y >= 0, by which we mean every element in these vectors is non-negative. /// /// Proof that if every column in A is lexicopositive, and y >= 0, then /// A*y is zero or lexicopositive. Begin by considering A_1, the first row of A. /// If this row is all zeros, then (A*y)_1 = (A_1)*y = 0; proceed to the next /// row. If we run out of rows, A*y is zero and we are done; otherwise, we /// encounter some row A_i that has a non-zero element. Every column is /// lexicopositive and so has some positive element before any negative elements /// occur, so the element in this row for any column, if non-zero, must be /// positive. Consider (A*y)_i = (A_i)*y. All the elements in both vectors are /// non-negative, so if this is non-zero then it must be positive. Then the /// first non-zero element of A*y is positive so A*y is lexicopositive. /// /// Otherwise, if (A_i)*y is zero, then for every column j that had a non-zero /// element in A_i, y_j is zero. Thus these columns have no contribution to A*y /// and we can completely ignore these columns of A. We now continue downwards, /// looking for rows of A that have a non-zero element other than in the ignored /// columns. If we find one, say A_k, once again these elements must be positive /// since they are the first non-zero element in each of these columns, so if /// (A_k)*y is not zero then we have that A*y is lexicopositive and if not we /// add these to the set of ignored columns and continue to the next row. If we /// run out of rows, then A*y is zero and we are done. MaybeOptimum> LexSimplex::findRationalLexMin() { if (restoreRationalConsistency().failed()) { markEmpty(); return OptimumKind::Empty; } return getRationalSample(); } /// Given a row that has a non-integer sample value, add an inequality such /// that this fractional sample value is cut away from the polytope. The added /// inequality will be such that no integer points are removed. i.e., the /// integer lexmin, if it exists, is the same with and without this constraint. /// /// Let the row be /// (c + coeffM*M + a_1*s_1 + ... + a_m*s_m + b_1*y_1 + ... + b_n*y_n)/d, /// where s_1, ... s_m are the symbols and /// y_1, ... y_n are the other basis unknowns. /// /// For this to be an integer, we want /// coeffM*M + a_1*s_1 + ... + a_m*s_m + b_1*y_1 + ... + b_n*y_n = -c (mod d) /// Note that this constraint must always hold, independent of the basis, /// becuse the row unknown's value always equals this expression, even if *we* /// later compute the sample value from a different expression based on a /// different basis. /// /// Let us assume that M has a factor of d in it. Imposing this constraint on M /// does not in any way hinder us from finding a value of M that is big enough. /// Moreover, this function is only called when the symbolic part of the sample, /// a_1*s_1 + ... + a_m*s_m, is known to be an integer. /// /// Also, we can safely reduce the coefficients modulo d, so we have: /// /// (b_1%d)y_1 + ... + (b_n%d)y_n = (-c%d) + k*d for some integer `k` /// /// Note that all coefficient modulos here are non-negative. Also, all the /// unknowns are non-negative here as both constraints and variables are /// non-negative in LexSimplexBase. (We used the big M trick to make the /// variables non-negative). Therefore, the LHS here is non-negative. /// Since 0 <= (-c%d) < d, k is the quotient of dividing the LHS by d and /// is therefore non-negative as well. /// /// So we have /// ((b_1%d)y_1 + ... + (b_n%d)y_n - (-c%d))/d >= 0. /// /// The constraint is violated when added (it would be useless otherwise) /// so we immediately try to move it to a column. LogicalResult LexSimplexBase::addCut(unsigned row) { MPInt d = tableau(row, 0); unsigned cutRow = addZeroRow(/*makeRestricted=*/true); tableau(cutRow, 0) = d; tableau(cutRow, 1) = -mod(-tableau(row, 1), d); // -c%d. tableau(cutRow, 2) = 0; for (unsigned col = 3 + nSymbol, e = getNumColumns(); col < e; ++col) tableau(cutRow, col) = mod(tableau(row, col), d); // b_i%d. return moveRowUnknownToColumn(cutRow); } std::optional LexSimplex::maybeGetNonIntegralVarRow() const { for (const Unknown &u : var) { if (u.orientation == Orientation::Column) continue; // If the sample value is of the form (a/d)M + b/d, we need b to be // divisible by d. We assume M contains all possible // factors and is divisible by everything. unsigned row = u.pos; if (tableau(row, 1) % tableau(row, 0) != 0) return row; } return {}; } MaybeOptimum> LexSimplex::findIntegerLexMin() { // We first try to make the tableau consistent. if (restoreRationalConsistency().failed()) return OptimumKind::Empty; // Then, if the sample value is integral, we are done. while (std::optional maybeRow = maybeGetNonIntegralVarRow()) { // Otherwise, for the variable whose row has a non-integral sample value, // we add a cut, a constraint that remove this rational point // while preserving all integer points, thus keeping the lexmin the same. // We then again try to make the tableau with the new constraint // consistent. This continues until the tableau becomes empty, in which // case there is no integer point, or until there are no variables with // non-integral sample values. // // Failure indicates that the tableau became empty, which occurs when the // polytope is integer empty. if (addCut(*maybeRow).failed()) return OptimumKind::Empty; if (restoreRationalConsistency().failed()) return OptimumKind::Empty; } MaybeOptimum> sample = getRationalSample(); assert(!sample.isEmpty() && "If we reached here the sample should exist!"); if (sample.isUnbounded()) return OptimumKind::Unbounded; return llvm::to_vector<8>( llvm::map_range(*sample, std::mem_fn(&Fraction::getAsInteger))); } bool LexSimplex::isSeparateInequality(ArrayRef coeffs) { SimplexRollbackScopeExit scopeExit(*this); addInequality(coeffs); return findIntegerLexMin().isEmpty(); } bool LexSimplex::isRedundantInequality(ArrayRef coeffs) { return isSeparateInequality(getComplementIneq(coeffs)); } SmallVector SymbolicLexSimplex::getSymbolicSampleNumerator(unsigned row) const { SmallVector sample; sample.reserve(nSymbol + 1); for (unsigned col = 3; col < 3 + nSymbol; ++col) sample.push_back(tableau(row, col)); sample.push_back(tableau(row, 1)); return sample; } SmallVector SymbolicLexSimplex::getSymbolicSampleIneq(unsigned row) const { SmallVector sample = getSymbolicSampleNumerator(row); // The inequality is equivalent to the GCD-normalized one. normalizeRange(sample); return sample; } void LexSimplexBase::appendSymbol() { appendVariable(); swapColumns(3 + nSymbol, getNumColumns() - 1); var.back().isSymbol = true; nSymbol++; } static bool isRangeDivisibleBy(ArrayRef range, const MPInt &divisor) { assert(divisor > 0 && "divisor must be positive!"); return llvm::all_of(range, [divisor](const MPInt &x) { return x % divisor == 0; }); } bool SymbolicLexSimplex::isSymbolicSampleIntegral(unsigned row) const { MPInt denom = tableau(row, 0); return tableau(row, 1) % denom == 0 && isRangeDivisibleBy(tableau.getRow(row).slice(3, nSymbol), denom); } /// This proceeds similarly to LexSimplexBase::addCut(). We are given a row that /// has a symbolic sample value with fractional coefficients. /// /// Let the row be /// (c + coeffM*M + sum_i a_i*s_i + sum_j b_j*y_j)/d, /// where s_1, ... s_m are the symbols and /// y_1, ... y_n are the other basis unknowns. /// /// As in LexSimplex::addCut, for this to be an integer, we want /// /// coeffM*M + sum_j b_j*y_j = -c + sum_i (-a_i*s_i) (mod d) /// /// This time, a_1*s_1 + ... + a_m*s_m may not be an integer. We find that /// /// sum_i (b_i%d)y_i = ((-c%d) + sum_i (-a_i%d)s_i)%d + k*d for some integer k /// /// where we take a modulo of the whole symbolic expression on the right to /// bring it into the range [0, d - 1]. Therefore, as in addCut(), /// k is the quotient on dividing the LHS by d, and since LHS >= 0, we have /// k >= 0 as well. If all the a_i are divisible by d, then we can add the /// constraint directly. Otherwise, we realize the modulo of the symbolic /// expression by adding a division variable /// /// q = ((-c%d) + sum_i (-a_i%d)s_i)/d /// /// to the symbol domain, so the equality becomes /// /// sum_i (b_i%d)y_i = (-c%d) + sum_i (-a_i%d)s_i - q*d + k*d for some integer k /// /// So the cut is /// (sum_i (b_i%d)y_i - (-c%d) - sum_i (-a_i%d)s_i + q*d)/d >= 0 /// This constraint is violated when added so we immediately try to move it to a /// column. LogicalResult SymbolicLexSimplex::addSymbolicCut(unsigned row) { MPInt d = tableau(row, 0); if (isRangeDivisibleBy(tableau.getRow(row).slice(3, nSymbol), d)) { // The coefficients of symbols in the symbol numerator are divisible // by the denominator, so we can add the constraint directly, // i.e., ignore the symbols and add a regular cut as in addCut(). return addCut(row); } // Construct the division variable `q = ((-c%d) + sum_i (-a_i%d)s_i)/d`. SmallVector divCoeffs; divCoeffs.reserve(nSymbol + 1); MPInt divDenom = d; for (unsigned col = 3; col < 3 + nSymbol; ++col) divCoeffs.push_back(mod(-tableau(row, col), divDenom)); // (-a_i%d)s_i divCoeffs.push_back(mod(-tableau(row, 1), divDenom)); // -c%d. normalizeDiv(divCoeffs, divDenom); domainSimplex.addDivisionVariable(divCoeffs, divDenom); domainPoly.addLocalFloorDiv(divCoeffs, divDenom); // Update `this` to account for the additional symbol we just added. appendSymbol(); // Add the cut (sum_i (b_i%d)y_i - (-c%d) + sum_i -(-a_i%d)s_i + q*d)/d >= 0. unsigned cutRow = addZeroRow(/*makeRestricted=*/true); tableau(cutRow, 0) = d; tableau(cutRow, 2) = 0; tableau(cutRow, 1) = -mod(-tableau(row, 1), d); // -(-c%d). for (unsigned col = 3; col < 3 + nSymbol - 1; ++col) tableau(cutRow, col) = -mod(-tableau(row, col), d); // -(-a_i%d)s_i. tableau(cutRow, 3 + nSymbol - 1) = d; // q*d. for (unsigned col = 3 + nSymbol, e = getNumColumns(); col < e; ++col) tableau(cutRow, col) = mod(tableau(row, col), d); // (b_i%d)y_i. return moveRowUnknownToColumn(cutRow); } void SymbolicLexSimplex::recordOutput(SymbolicLexOpt &result) const { IntMatrix output(0, domainPoly.getNumVars() + 1); output.reserveRows(result.lexopt.getNumOutputs()); for (const Unknown &u : var) { if (u.isSymbol) continue; if (u.orientation == Orientation::Column) { // M + u has a sample value of zero so u has a sample value of -M, i.e, // unbounded. result.unboundedDomain.unionInPlace(domainPoly); return; } MPInt denom = tableau(u.pos, 0); if (tableau(u.pos, 2) < denom) { // M + u has a sample value of fM + something, where f < 1, so // u = (f - 1)M + something, which has a negative coefficient for M, // and so is unbounded. result.unboundedDomain.unionInPlace(domainPoly); return; } assert(tableau(u.pos, 2) == denom && "Coefficient of M should not be greater than 1!"); SmallVector sample = getSymbolicSampleNumerator(u.pos); for (MPInt &elem : sample) { assert(elem % denom == 0 && "coefficients must be integral!"); elem /= denom; } output.appendExtraRow(sample); } // Store the output in a MultiAffineFunction and add it the result. PresburgerSpace funcSpace = result.lexopt.getSpace(); funcSpace.insertVar(VarKind::Local, 0, domainPoly.getNumLocalVars()); result.lexopt.addPiece( {PresburgerSet(domainPoly), MultiAffineFunction(funcSpace, output, domainPoly.getLocalReprs())}); } std::optional SymbolicLexSimplex::maybeGetAlwaysViolatedRow() { // First look for rows that are clearly violated just from the big M // coefficient, without needing to perform any simplex queries on the domain. for (unsigned row = 0, e = getNumRows(); row < e; ++row) if (tableau(row, 2) < 0) return row; for (unsigned row = 0, e = getNumRows(); row < e; ++row) { if (tableau(row, 2) > 0) continue; if (domainSimplex.isSeparateInequality(getSymbolicSampleIneq(row))) { // Sample numerator always takes negative values in the symbol domain. return row; } } return {}; } std::optional SymbolicLexSimplex::maybeGetNonIntegralVarRow() { for (const Unknown &u : var) { if (u.orientation == Orientation::Column) continue; assert(!u.isSymbol && "Symbol should not be in row orientation!"); if (!isSymbolicSampleIntegral(u.pos)) return u.pos; } return {}; } /// The non-branching pivots are just the ones moving the rows /// that are always violated in the symbol domain. LogicalResult SymbolicLexSimplex::doNonBranchingPivots() { while (std::optional row = maybeGetAlwaysViolatedRow()) if (moveRowUnknownToColumn(*row).failed()) return failure(); return success(); } SymbolicLexOpt SymbolicLexSimplex::computeSymbolicIntegerLexMin() { SymbolicLexOpt result(PresburgerSpace::getRelationSpace( /*numDomain=*/domainPoly.getNumDimVars(), /*numRange=*/var.size() - nSymbol, /*numSymbols=*/domainPoly.getNumSymbolVars())); /// The algorithm is more naturally expressed recursively, but we implement /// it iteratively here to avoid potential issues with stack overflows in the /// compiler. We explicitly maintain the stack frames in a vector. /// /// To "recurse", we store the current "stack frame", i.e., state variables /// that we will need when we "return", into `stack`, increment `level`, and /// `continue`. To "tail recurse", we just `continue`. /// To "return", we decrement `level` and `continue`. /// /// When there is no stack frame for the current `level`, this indicates that /// we have just "recursed" or "tail recursed". When there does exist one, /// this indicates that we have just "returned" from recursing. There is only /// one point at which non-tail calls occur so we always "return" there. unsigned level = 1; struct StackFrame { int splitIndex; unsigned snapshot; unsigned domainSnapshot; IntegerRelation::CountsSnapshot domainPolyCounts; }; SmallVector stack; while (level > 0) { assert(level >= stack.size()); if (level > stack.size()) { if (empty || domainSimplex.findIntegerLexMin().isEmpty()) { // No integer points; return. --level; continue; } if (doNonBranchingPivots().failed()) { // Could not find pivots for violated constraints; return. --level; continue; } SmallVector symbolicSample; unsigned splitRow = 0; for (unsigned e = getNumRows(); splitRow < e; ++splitRow) { if (tableau(splitRow, 2) > 0) continue; assert(tableau(splitRow, 2) == 0 && "Non-branching pivots should have been handled already!"); symbolicSample = getSymbolicSampleIneq(splitRow); if (domainSimplex.isRedundantInequality(symbolicSample)) continue; // It's neither redundant nor separate, so it takes both positive and // negative values, and hence constitutes a row for which we need to // split the domain and separately run each case. assert(!domainSimplex.isSeparateInequality(symbolicSample) && "Non-branching pivots should have been handled already!"); break; } if (splitRow < getNumRows()) { unsigned domainSnapshot = domainSimplex.getSnapshot(); IntegerRelation::CountsSnapshot domainPolyCounts = domainPoly.getCounts(); // First, we consider the part of the domain where the row is not // violated. We don't have to do any pivots for the row in this case, // but we record the additional constraint that defines this part of // the domain. domainSimplex.addInequality(symbolicSample); domainPoly.addInequality(symbolicSample); // Recurse. // // On return, the basis as a set is preserved but not the internal // ordering within rows or columns. Thus, we take note of the index of // the Unknown that caused the split, which may be in a different // row when we come back from recursing. We will need this to recurse // on the other part of the split domain, where the row is violated. // // Note that we have to capture the index above and not a reference to // the Unknown itself, since the array it lives in might get // reallocated. int splitIndex = rowUnknown[splitRow]; unsigned snapshot = getSnapshot(); stack.push_back( {splitIndex, snapshot, domainSnapshot, domainPolyCounts}); ++level; continue; } // The tableau is rationally consistent for the current domain. // Now we look for non-integral sample values and add cuts for them. if (std::optional row = maybeGetNonIntegralVarRow()) { if (addSymbolicCut(*row).failed()) { // No integral points; return. --level; continue; } // Rerun this level with the added cut constraint (tail recurse). continue; } // Record output and return. recordOutput(result); --level; continue; } if (level == stack.size()) { // We have "returned" from "recursing". const StackFrame &frame = stack.back(); domainPoly.truncate(frame.domainPolyCounts); domainSimplex.rollback(frame.domainSnapshot); rollback(frame.snapshot); const Unknown &u = unknownFromIndex(frame.splitIndex); // Drop the frame. We don't need it anymore. stack.pop_back(); // Now we consider the part of the domain where the unknown `splitIndex` // was negative. assert(u.orientation == Orientation::Row && "The split row should have been returned to row orientation!"); SmallVector splitIneq = getComplementIneq(getSymbolicSampleIneq(u.pos)); normalizeRange(splitIneq); if (moveRowUnknownToColumn(u.pos).failed()) { // The unknown can't be made non-negative; return. --level; continue; } // The unknown can be made negative; recurse with the corresponding domain // constraints. domainSimplex.addInequality(splitIneq); domainPoly.addInequality(splitIneq); // We are now taking care of the second half of the domain and we don't // need to do anything else here after returning, so it's a tail recurse. continue; } } return result; } bool LexSimplex::rowIsViolated(unsigned row) const { if (tableau(row, 2) < 0) return true; if (tableau(row, 2) == 0 && tableau(row, 1) < 0) return true; return false; } std::optional LexSimplex::maybeGetViolatedRow() const { for (unsigned row = 0, e = getNumRows(); row < e; ++row) if (rowIsViolated(row)) return row; return {}; } /// We simply look for violated rows and keep trying to move them to column /// orientation, which always succeeds unless the constraints have no solution /// in which case we just give up and return. LogicalResult LexSimplex::restoreRationalConsistency() { if (empty) return failure(); while (std::optional maybeViolatedRow = maybeGetViolatedRow()) if (moveRowUnknownToColumn(*maybeViolatedRow).failed()) return failure(); return success(); } // Move the row unknown to column orientation while preserving lexicopositivity // of the basis transform. The sample value of the row must be non-positive. // // We only consider pivots where the pivot element is positive. Suppose no such // pivot exists, i.e., some violated row has no positive coefficient for any // basis unknown. The row can be represented as (s + c_1*u_1 + ... + c_n*u_n)/d, // where d is the denominator, s is the sample value and the c_i are the basis // coefficients. If s != 0, then since any feasible assignment of the basis // satisfies u_i >= 0 for all i, and we have s < 0 as well as c_i < 0 for all i, // any feasible assignment would violate this row and therefore the constraints // have no solution. // // We can preserve lexicopositivity by picking the pivot column with positive // pivot element that makes the lexicographically smallest change to the sample // point. // // Proof. Let // x = (x_1, ... x_n) be the variables, // z = (z_1, ... z_m) be the constraints, // y = (y_1, ... y_n) be the current basis, and // define w = (x_1, ... x_n, z_1, ... z_m) = B*y + s. // B is basically the simplex tableau of our implementation except that instead // of only describing the transform to get back the non-basis unknowns, it // defines the values of all the unknowns in terms of the basis unknowns. // Similarly, s is the column for the sample value. // // Our goal is to show that each column in B, restricted to the first n // rows, is lexicopositive after the pivot if it is so before. This is // equivalent to saying the columns in the whole matrix are lexicopositive; // there must be some non-zero element in every column in the first n rows since // the n variables cannot be spanned without using all the n basis unknowns. // // Consider a pivot where z_i replaces y_j in the basis. Recall the pivot // transform for the tableau derived for SimplexBase::pivot: // // pivot col other col pivot col other col // pivot row a b -> pivot row 1/a -b/a // other row c d other row c/a d - bc/a // // Similarly, a pivot results in B changing to B' and c to c'; the difference // between the tableau and these matrices B and B' is that there is no special // case for the pivot row, since it continues to represent the same unknown. The // same formula applies for all rows: // // B'.col(j) = B.col(j) / B(i,j) // B'.col(k) = B.col(k) - B(i,k) * B.col(j) / B(i,j) for k != j // and similarly, s' = s - s_i * B.col(j) / B(i,j). // // If s_i == 0, then the sample value remains unchanged. Otherwise, if s_i < 0, // the change in sample value when pivoting with column a is lexicographically // smaller than that when pivoting with column b iff B.col(a) / B(i, a) is // lexicographically smaller than B.col(b) / B(i, b). // // Since B(i, j) > 0, column j remains lexicopositive. // // For the other columns, suppose C.col(k) is not lexicopositive. // This means that for some p, for all t < p, // C(t,k) = 0 => B(t,k) = B(t,j) * B(i,k) / B(i,j) and // C(t,k) < 0 => B(p,k) < B(t,j) * B(i,k) / B(i,j), // which is in contradiction to the fact that B.col(j) / B(i,j) must be // lexicographically smaller than B.col(k) / B(i,k), since it lexicographically // minimizes the change in sample value. LogicalResult LexSimplexBase::moveRowUnknownToColumn(unsigned row) { std::optional maybeColumn; for (unsigned col = 3 + nSymbol, e = getNumColumns(); col < e; ++col) { if (tableau(row, col) <= 0) continue; maybeColumn = !maybeColumn ? col : getLexMinPivotColumn(row, *maybeColumn, col); } if (!maybeColumn) return failure(); pivot(row, *maybeColumn); return success(); } unsigned LexSimplexBase::getLexMinPivotColumn(unsigned row, unsigned colA, unsigned colB) const { // First, let's consider the non-symbolic case. // A pivot causes the following change. (in the diagram the matrix elements // are shown as rationals and there is no common denominator used) // // pivot col big M col const col // pivot row a p b // other row c q d // | // v // // pivot col big M col const col // pivot row 1/a -p/a -b/a // other row c/a q - pc/a d - bc/a // // Let the sample value of the pivot row be s = pM + b before the pivot. Since // the pivot row represents a violated constraint we know that s < 0. // // If the variable is a non-pivot column, its sample value is zero before and // after the pivot. // // If the variable is the pivot column, then its sample value goes from 0 to // (-p/a)M + (-b/a), i.e. 0 to -(pM + b)/a. Thus the change in the sample // value is -s/a. // // If the variable is the pivot row, its sample value goes from s to 0, for a // change of -s. // // If the variable is a non-pivot row, its sample value changes from // qM + d to qM + d + (-pc/a)M + (-bc/a). Thus the change in sample value // is -(pM + b)(c/a) = -sc/a. // // Thus the change in sample value is either 0, -s/a, -s, or -sc/a. Here -s is // fixed for all calls to this function since the row and tableau are fixed. // The callee just wants to compare the return values with the return value of // other invocations of the same function. So the -s is common for all // comparisons involved and can be ignored, since -s is strictly positive. // // Thus we take away this common factor and just return 0, 1/a, 1, or c/a as // appropriate. This allows us to run the entire algorithm treating M // symbolically, as the pivot to be performed does not depend on the value // of M, so long as the sample value s is negative. Note that this is not // because of any special feature of M; by the same argument, we ignore the // symbols too. The caller ensure that the sample value s is negative for // all possible values of the symbols. auto getSampleChangeCoeffForVar = [this, row](unsigned col, const Unknown &u) -> Fraction { MPInt a = tableau(row, col); if (u.orientation == Orientation::Column) { // Pivot column case. if (u.pos == col) return {1, a}; // Non-pivot column case. return {0, 1}; } // Pivot row case. if (u.pos == row) return {1, 1}; // Non-pivot row case. MPInt c = tableau(u.pos, col); return {c, a}; }; for (const Unknown &u : var) { Fraction changeA = getSampleChangeCoeffForVar(colA, u); Fraction changeB = getSampleChangeCoeffForVar(colB, u); if (changeA < changeB) return colA; if (changeA > changeB) return colB; } // If we reached here, both result in exactly the same changes, so it // doesn't matter which we return. return colA; } /// Find a pivot to change the sample value of the row in the specified /// direction. The returned pivot row will involve `row` if and only if the /// unknown is unbounded in the specified direction. /// /// To increase (resp. decrease) the value of a row, we need to find a live /// column with a non-zero coefficient. If the coefficient is positive, we need /// to increase (decrease) the value of the column, and if the coefficient is /// negative, we need to decrease (increase) the value of the column. Also, /// we cannot decrease the sample value of restricted columns. /// /// If multiple columns are valid, we break ties by considering a lexicographic /// ordering where we prefer unknowns with lower index. std::optional Simplex::findPivot(int row, Direction direction) const { std::optional col; for (unsigned j = 2, e = getNumColumns(); j < e; ++j) { MPInt elem = tableau(row, j); if (elem == 0) continue; if (unknownFromColumn(j).restricted && !signMatchesDirection(elem, direction)) continue; if (!col || colUnknown[j] < colUnknown[*col]) col = j; } if (!col) return {}; Direction newDirection = tableau(row, *col) < 0 ? flippedDirection(direction) : direction; std::optional maybePivotRow = findPivotRow(row, newDirection, *col); return Pivot{maybePivotRow.value_or(row), *col}; } /// Swap the associated unknowns for the row and the column. /// /// First we swap the index associated with the row and column. Then we update /// the unknowns to reflect their new position and orientation. void SimplexBase::swapRowWithCol(unsigned row, unsigned col) { std::swap(rowUnknown[row], colUnknown[col]); Unknown &uCol = unknownFromColumn(col); Unknown &uRow = unknownFromRow(row); uCol.orientation = Orientation::Column; uRow.orientation = Orientation::Row; uCol.pos = col; uRow.pos = row; } void SimplexBase::pivot(Pivot pair) { pivot(pair.row, pair.column); } /// Pivot pivotRow and pivotCol. /// /// Let R be the pivot row unknown and let C be the pivot col unknown. /// Since initially R = a*C + sum b_i * X_i /// (where the sum is over the other column's unknowns, x_i) /// C = (R - (sum b_i * X_i))/a /// /// Let u be some other row unknown. /// u = c*C + sum d_i * X_i /// So u = c*(R - sum b_i * X_i)/a + sum d_i * X_i /// /// This results in the following transform: /// pivot col other col pivot col other col /// pivot row a b -> pivot row 1/a -b/a /// other row c d other row c/a d - bc/a /// /// Taking into account the common denominators p and q: /// /// pivot col other col pivot col other col /// pivot row a/p b/p -> pivot row p/a -b/a /// other row c/q d/q other row cp/aq (da - bc)/aq /// /// The pivot row transform is accomplished be swapping a with the pivot row's /// common denominator and negating the pivot row except for the pivot column /// element. void SimplexBase::pivot(unsigned pivotRow, unsigned pivotCol) { assert(pivotCol >= getNumFixedCols() && "Refusing to pivot invalid column"); assert(!unknownFromColumn(pivotCol).isSymbol); swapRowWithCol(pivotRow, pivotCol); std::swap(tableau(pivotRow, 0), tableau(pivotRow, pivotCol)); // We need to negate the whole pivot row except for the pivot column. if (tableau(pivotRow, 0) < 0) { // If the denominator is negative, we negate the row by simply negating the // denominator. tableau(pivotRow, 0) = -tableau(pivotRow, 0); tableau(pivotRow, pivotCol) = -tableau(pivotRow, pivotCol); } else { for (unsigned col = 1, e = getNumColumns(); col < e; ++col) { if (col == pivotCol) continue; tableau(pivotRow, col) = -tableau(pivotRow, col); } } tableau.normalizeRow(pivotRow); for (unsigned row = 0, numRows = getNumRows(); row < numRows; ++row) { if (row == pivotRow) continue; if (tableau(row, pivotCol) == 0) // Nothing to do. continue; tableau(row, 0) *= tableau(pivotRow, 0); for (unsigned col = 1, numCols = getNumColumns(); col < numCols; ++col) { if (col == pivotCol) continue; // Add rather than subtract because the pivot row has been negated. tableau(row, col) = tableau(row, col) * tableau(pivotRow, 0) + tableau(row, pivotCol) * tableau(pivotRow, col); } tableau(row, pivotCol) *= tableau(pivotRow, pivotCol); tableau.normalizeRow(row); } } /// Perform pivots until the unknown has a non-negative sample value or until /// no more upward pivots can be performed. Return success if we were able to /// bring the row to a non-negative sample value, and failure otherwise. LogicalResult Simplex::restoreRow(Unknown &u) { assert(u.orientation == Orientation::Row && "unknown should be in row position"); while (tableau(u.pos, 1) < 0) { std::optional maybePivot = findPivot(u.pos, Direction::Up); if (!maybePivot) break; pivot(*maybePivot); if (u.orientation == Orientation::Column) return success(); // the unknown is unbounded above. } return success(tableau(u.pos, 1) >= 0); } /// Find a row that can be used to pivot the column in the specified direction. /// This returns an empty optional if and only if the column is unbounded in the /// specified direction (ignoring skipRow, if skipRow is set). /// /// If skipRow is set, this row is not considered, and (if it is restricted) its /// restriction may be violated by the returned pivot. Usually, skipRow is set /// because we don't want to move it to column position unless it is unbounded, /// and we are either trying to increase the value of skipRow or explicitly /// trying to make skipRow negative, so we are not concerned about this. /// /// If the direction is up (resp. down) and a restricted row has a negative /// (positive) coefficient for the column, then this row imposes a bound on how /// much the sample value of the column can change. Such a row with constant /// term c and coefficient f for the column imposes a bound of c/|f| on the /// change in sample value (in the specified direction). (note that c is /// non-negative here since the row is restricted and the tableau is consistent) /// /// We iterate through the rows and pick the row which imposes the most /// stringent bound, since pivoting with a row changes the row's sample value to /// 0 and hence saturates the bound it imposes. We break ties between rows that /// impose the same bound by considering a lexicographic ordering where we /// prefer unknowns with lower index value. std::optional Simplex::findPivotRow(std::optional skipRow, Direction direction, unsigned col) const { std::optional retRow; // Initialize these to zero in order to silence a warning about retElem and // retConst being used uninitialized in the initialization of `diff` below. In // reality, these are always initialized when that line is reached since these // are set whenever retRow is set. MPInt retElem, retConst; for (unsigned row = nRedundant, e = getNumRows(); row < e; ++row) { if (skipRow && row == *skipRow) continue; MPInt elem = tableau(row, col); if (elem == 0) continue; if (!unknownFromRow(row).restricted) continue; if (signMatchesDirection(elem, direction)) continue; MPInt constTerm = tableau(row, 1); if (!retRow) { retRow = row; retElem = elem; retConst = constTerm; continue; } MPInt diff = retConst * elem - constTerm * retElem; if ((diff == 0 && rowUnknown[row] < rowUnknown[*retRow]) || (diff != 0 && !signMatchesDirection(diff, direction))) { retRow = row; retElem = elem; retConst = constTerm; } } return retRow; } bool SimplexBase::isEmpty() const { return empty; } void SimplexBase::swapRows(unsigned i, unsigned j) { if (i == j) return; tableau.swapRows(i, j); std::swap(rowUnknown[i], rowUnknown[j]); unknownFromRow(i).pos = i; unknownFromRow(j).pos = j; } void SimplexBase::swapColumns(unsigned i, unsigned j) { assert(i < getNumColumns() && j < getNumColumns() && "Invalid columns provided!"); if (i == j) return; tableau.swapColumns(i, j); std::swap(colUnknown[i], colUnknown[j]); unknownFromColumn(i).pos = i; unknownFromColumn(j).pos = j; } /// Mark this tableau empty and push an entry to the undo stack. void SimplexBase::markEmpty() { // If the set is already empty, then we shouldn't add another UnmarkEmpty log // entry, since in that case the Simplex will be erroneously marked as // non-empty when rolling back past this point. if (empty) return; undoLog.push_back(UndoLogEntry::UnmarkEmpty); empty = true; } /// Add an inequality to the tableau. If coeffs is c_0, c_1, ... c_n, where n /// is the current number of variables, then the corresponding inequality is /// c_n + c_0*x_0 + c_1*x_1 + ... + c_{n-1}*x_{n-1} >= 0. /// /// We add the inequality and mark it as restricted. We then try to make its /// sample value non-negative. If this is not possible, the tableau has become /// empty and we mark it as such. void Simplex::addInequality(ArrayRef coeffs) { unsigned conIndex = addRow(coeffs, /*makeRestricted=*/true); LogicalResult result = restoreRow(con[conIndex]); if (failed(result)) markEmpty(); } /// Add an equality to the tableau. If coeffs is c_0, c_1, ... c_n, where n /// is the current number of variables, then the corresponding equality is /// c_n + c_0*x_0 + c_1*x_1 + ... + c_{n-1}*x_{n-1} == 0. /// /// We simply add two opposing inequalities, which force the expression to /// be zero. void SimplexBase::addEquality(ArrayRef coeffs) { addInequality(coeffs); SmallVector negatedCoeffs; for (const MPInt &coeff : coeffs) negatedCoeffs.emplace_back(-coeff); addInequality(negatedCoeffs); } unsigned SimplexBase::getNumVariables() const { return var.size(); } unsigned SimplexBase::getNumConstraints() const { return con.size(); } /// Return a snapshot of the current state. This is just the current size of the /// undo log. unsigned SimplexBase::getSnapshot() const { return undoLog.size(); } unsigned SimplexBase::getSnapshotBasis() { SmallVector basis; for (int index : colUnknown) { if (index != nullIndex) basis.push_back(index); } savedBases.push_back(std::move(basis)); undoLog.emplace_back(UndoLogEntry::RestoreBasis); return undoLog.size() - 1; } void SimplexBase::removeLastConstraintRowOrientation() { assert(con.back().orientation == Orientation::Row); // Move this unknown to the last row and remove the last row from the // tableau. swapRows(con.back().pos, getNumRows() - 1); // It is not strictly necessary to shrink the tableau, but for now we // maintain the invariant that the tableau has exactly getNumRows() // rows. tableau.resizeVertically(getNumRows() - 1); rowUnknown.pop_back(); con.pop_back(); } // This doesn't find a pivot row only if the column has zero // coefficients for every row. // // If the unknown is a constraint, this can't happen, since it was added // initially as a row. Such a row could never have been pivoted to a column. So // a pivot row will always be found if we have a constraint. // // If we have a variable, then the column has zero coefficients for every row // iff no constraints have been added with a non-zero coefficient for this row. std::optional SimplexBase::findAnyPivotRow(unsigned col) { for (unsigned row = nRedundant, e = getNumRows(); row < e; ++row) if (tableau(row, col) != 0) return row; return {}; } // It's not valid to remove the constraint by deleting the column since this // would result in an invalid basis. void Simplex::undoLastConstraint() { if (con.back().orientation == Orientation::Column) { // We try to find any pivot row for this column that preserves tableau // consistency (except possibly the column itself, which is going to be // deallocated anyway). // // If no pivot row is found in either direction, then the unknown is // unbounded in both directions and we are free to perform any pivot at // all. To do this, we just need to find any row with a non-zero // coefficient for the column. findAnyPivotRow will always be able to // find such a row for a constraint. unsigned column = con.back().pos; if (std::optional maybeRow = findPivotRow({}, Direction::Up, column)) { pivot(*maybeRow, column); } else if (std::optional maybeRow = findPivotRow({}, Direction::Down, column)) { pivot(*maybeRow, column); } else { std::optional row = findAnyPivotRow(column); assert(row && "Pivot should always exist for a constraint!"); pivot(*row, column); } } removeLastConstraintRowOrientation(); } // It's not valid to remove the constraint by deleting the column since this // would result in an invalid basis. void LexSimplexBase::undoLastConstraint() { if (con.back().orientation == Orientation::Column) { // When removing the last constraint during a rollback, we just need to find // any pivot at all, i.e., any row with non-zero coefficient for the // column, because when rolling back a lexicographic simplex, we always // end by restoring the exact basis that was present at the time of the // snapshot, so what pivots we perform while undoing doesn't matter as // long as we get the unknown to row orientation and remove it. unsigned column = con.back().pos; std::optional row = findAnyPivotRow(column); assert(row && "Pivot should always exist for a constraint!"); pivot(*row, column); } removeLastConstraintRowOrientation(); } void SimplexBase::undo(UndoLogEntry entry) { if (entry == UndoLogEntry::RemoveLastConstraint) { // Simplex and LexSimplex handle this differently, so we call out to a // virtual function to handle this. undoLastConstraint(); } else if (entry == UndoLogEntry::RemoveLastVariable) { // Whenever we are rolling back the addition of a variable, it is guaranteed // that the variable will be in column position. // // We can see this as follows: any constraint that depends on this variable // was added after this variable was added, so the addition of such // constraints should already have been rolled back by the time we get to // rolling back the addition of the variable. Therefore, no constraint // currently has a component along the variable, so the variable itself must // be part of the basis. assert(var.back().orientation == Orientation::Column && "Variable to be removed must be in column orientation!"); if (var.back().isSymbol) nSymbol--; // Move this variable to the last column and remove the column from the // tableau. swapColumns(var.back().pos, getNumColumns() - 1); tableau.resizeHorizontally(getNumColumns() - 1); var.pop_back(); colUnknown.pop_back(); } else if (entry == UndoLogEntry::UnmarkEmpty) { empty = false; } else if (entry == UndoLogEntry::UnmarkLastRedundant) { nRedundant--; } else if (entry == UndoLogEntry::RestoreBasis) { assert(!savedBases.empty() && "No bases saved!"); SmallVector basis = std::move(savedBases.back()); savedBases.pop_back(); for (int index : basis) { Unknown &u = unknownFromIndex(index); if (u.orientation == Orientation::Column) continue; for (unsigned col = getNumFixedCols(), e = getNumColumns(); col < e; col++) { assert(colUnknown[col] != nullIndex && "Column should not be a fixed column!"); if (llvm::is_contained(basis, colUnknown[col])) continue; if (tableau(u.pos, col) == 0) continue; pivot(u.pos, col); break; } assert(u.orientation == Orientation::Column && "No pivot found!"); } } } /// Rollback to the specified snapshot. /// /// We undo all the log entries until the log size when the snapshot was taken /// is reached. void SimplexBase::rollback(unsigned snapshot) { while (undoLog.size() > snapshot) { undo(undoLog.back()); undoLog.pop_back(); } } /// We add the usual floor division constraints: /// `0 <= coeffs - denom*q <= denom - 1`, where `q` is the new division /// variable. /// /// This constrains the remainder `coeffs - denom*q` to be in the /// range `[0, denom - 1]`, which fixes the integer value of the quotient `q`. void SimplexBase::addDivisionVariable(ArrayRef coeffs, const MPInt &denom) { assert(denom > 0 && "Denominator must be positive!"); appendVariable(); SmallVector ineq(coeffs.begin(), coeffs.end()); MPInt constTerm = ineq.back(); ineq.back() = -denom; ineq.push_back(constTerm); addInequality(ineq); for (MPInt &coeff : ineq) coeff = -coeff; ineq.back() += denom - 1; addInequality(ineq); } void SimplexBase::appendVariable(unsigned count) { if (count == 0) return; var.reserve(var.size() + count); colUnknown.reserve(colUnknown.size() + count); for (unsigned i = 0; i < count; ++i) { var.emplace_back(Orientation::Column, /*restricted=*/false, /*pos=*/getNumColumns() + i); colUnknown.push_back(var.size() - 1); } tableau.resizeHorizontally(getNumColumns() + count); undoLog.insert(undoLog.end(), count, UndoLogEntry::RemoveLastVariable); } /// Add all the constraints from the given IntegerRelation. void SimplexBase::intersectIntegerRelation(const IntegerRelation &rel) { assert(rel.getNumVars() == getNumVariables() && "IntegerRelation must have same dimensionality as simplex"); for (unsigned i = 0, e = rel.getNumInequalities(); i < e; ++i) addInequality(rel.getInequality(i)); for (unsigned i = 0, e = rel.getNumEqualities(); i < e; ++i) addEquality(rel.getEquality(i)); } MaybeOptimum Simplex::computeRowOptimum(Direction direction, unsigned row) { // Keep trying to find a pivot for the row in the specified direction. while (std::optional maybePivot = findPivot(row, direction)) { // If findPivot returns a pivot involving the row itself, then the optimum // is unbounded, so we return std::nullopt. if (maybePivot->row == row) return OptimumKind::Unbounded; pivot(*maybePivot); } // The row has reached its optimal sample value, which we return. // The sample value is the entry in the constant column divided by the common // denominator for this row. return Fraction(tableau(row, 1), tableau(row, 0)); } /// Compute the optimum of the specified expression in the specified direction, /// or std::nullopt if it is unbounded. MaybeOptimum Simplex::computeOptimum(Direction direction, ArrayRef coeffs) { if (empty) return OptimumKind::Empty; SimplexRollbackScopeExit scopeExit(*this); unsigned conIndex = addRow(coeffs); unsigned row = con[conIndex].pos; return computeRowOptimum(direction, row); } MaybeOptimum Simplex::computeOptimum(Direction direction, Unknown &u) { if (empty) return OptimumKind::Empty; if (u.orientation == Orientation::Column) { unsigned column = u.pos; std::optional pivotRow = findPivotRow({}, direction, column); // If no pivot is returned, the constraint is unbounded in the specified // direction. if (!pivotRow) return OptimumKind::Unbounded; pivot(*pivotRow, column); } unsigned row = u.pos; MaybeOptimum optimum = computeRowOptimum(direction, row); if (u.restricted && direction == Direction::Down && (optimum.isUnbounded() || *optimum < Fraction(0, 1))) { if (failed(restoreRow(u))) llvm_unreachable("Could not restore row!"); } return optimum; } bool Simplex::isBoundedAlongConstraint(unsigned constraintIndex) { assert(!empty && "It is not meaningful to ask whether a direction is bounded " "in an empty set."); // The constraint's perpendicular is already bounded below, since it is a // constraint. If it is also bounded above, we can return true. return computeOptimum(Direction::Up, con[constraintIndex]).isBounded(); } /// Redundant constraints are those that are in row orientation and lie in /// rows 0 to nRedundant - 1. bool Simplex::isMarkedRedundant(unsigned constraintIndex) const { const Unknown &u = con[constraintIndex]; return u.orientation == Orientation::Row && u.pos < nRedundant; } /// Mark the specified row redundant. /// /// This is done by moving the unknown to the end of the block of redundant /// rows (namely, to row nRedundant) and incrementing nRedundant to /// accomodate the new redundant row. void Simplex::markRowRedundant(Unknown &u) { assert(u.orientation == Orientation::Row && "Unknown should be in row position!"); assert(u.pos >= nRedundant && "Unknown is already marked redundant!"); swapRows(u.pos, nRedundant); ++nRedundant; undoLog.emplace_back(UndoLogEntry::UnmarkLastRedundant); } /// Find a subset of constraints that is redundant and mark them redundant. void Simplex::detectRedundant(unsigned offset, unsigned count) { assert(offset + count <= con.size() && "invalid range!"); // It is not meaningful to talk about redundancy for empty sets. if (empty) return; // Iterate through the constraints and check for each one if it can attain // negative sample values. If it can, it's not redundant. Otherwise, it is. // We mark redundant constraints redundant. // // Constraints that get marked redundant in one iteration are not respected // when checking constraints in later iterations. This prevents, for example, // two identical constraints both being marked redundant since each is // redundant given the other one. In this example, only the first of the // constraints that is processed will get marked redundant, as it should be. for (unsigned i = 0; i < count; ++i) { Unknown &u = con[offset + i]; if (u.orientation == Orientation::Column) { unsigned column = u.pos; std::optional pivotRow = findPivotRow({}, Direction::Down, column); // If no downward pivot is returned, the constraint is unbounded below // and hence not redundant. if (!pivotRow) continue; pivot(*pivotRow, column); } unsigned row = u.pos; MaybeOptimum minimum = computeRowOptimum(Direction::Down, row); if (minimum.isUnbounded() || *minimum < Fraction(0, 1)) { // Constraint is unbounded below or can attain negative sample values and // hence is not redundant. if (failed(restoreRow(u))) llvm_unreachable("Could not restore non-redundant row!"); continue; } markRowRedundant(u); } } bool Simplex::isUnbounded() { if (empty) return false; SmallVector dir(var.size() + 1); for (unsigned i = 0; i < var.size(); ++i) { dir[i] = 1; if (computeOptimum(Direction::Up, dir).isUnbounded()) return true; if (computeOptimum(Direction::Down, dir).isUnbounded()) return true; dir[i] = 0; } return false; } /// Make a tableau to represent a pair of points in the original tableau. /// /// The product constraints and variables are stored as: first A's, then B's. /// /// The product tableau has row layout: /// A's redundant rows, B's redundant rows, A's other rows, B's other rows. /// /// It has column layout: /// denominator, constant, A's columns, B's columns. Simplex Simplex::makeProduct(const Simplex &a, const Simplex &b) { unsigned numVar = a.getNumVariables() + b.getNumVariables(); unsigned numCon = a.getNumConstraints() + b.getNumConstraints(); Simplex result(numVar); result.tableau.reserveRows(numCon); result.empty = a.empty || b.empty; auto concat = [](ArrayRef v, ArrayRef w) { SmallVector result; result.reserve(v.size() + w.size()); result.insert(result.end(), v.begin(), v.end()); result.insert(result.end(), w.begin(), w.end()); return result; }; result.con = concat(a.con, b.con); result.var = concat(a.var, b.var); auto indexFromBIndex = [&](int index) { return index >= 0 ? a.getNumVariables() + index : ~(a.getNumConstraints() + ~index); }; result.colUnknown.assign(2, nullIndex); for (unsigned i = 2, e = a.getNumColumns(); i < e; ++i) { result.colUnknown.push_back(a.colUnknown[i]); result.unknownFromIndex(result.colUnknown.back()).pos = result.colUnknown.size() - 1; } for (unsigned i = 2, e = b.getNumColumns(); i < e; ++i) { result.colUnknown.push_back(indexFromBIndex(b.colUnknown[i])); result.unknownFromIndex(result.colUnknown.back()).pos = result.colUnknown.size() - 1; } auto appendRowFromA = [&](unsigned row) { unsigned resultRow = result.tableau.appendExtraRow(); for (unsigned col = 0, e = a.getNumColumns(); col < e; ++col) result.tableau(resultRow, col) = a.tableau(row, col); result.rowUnknown.push_back(a.rowUnknown[row]); result.unknownFromIndex(result.rowUnknown.back()).pos = result.rowUnknown.size() - 1; }; // Also fixes the corresponding entry in rowUnknown and var/con (as the case // may be). auto appendRowFromB = [&](unsigned row) { unsigned resultRow = result.tableau.appendExtraRow(); result.tableau(resultRow, 0) = b.tableau(row, 0); result.tableau(resultRow, 1) = b.tableau(row, 1); unsigned offset = a.getNumColumns() - 2; for (unsigned col = 2, e = b.getNumColumns(); col < e; ++col) result.tableau(resultRow, offset + col) = b.tableau(row, col); result.rowUnknown.push_back(indexFromBIndex(b.rowUnknown[row])); result.unknownFromIndex(result.rowUnknown.back()).pos = result.rowUnknown.size() - 1; }; result.nRedundant = a.nRedundant + b.nRedundant; for (unsigned row = 0; row < a.nRedundant; ++row) appendRowFromA(row); for (unsigned row = 0; row < b.nRedundant; ++row) appendRowFromB(row); for (unsigned row = a.nRedundant, e = a.getNumRows(); row < e; ++row) appendRowFromA(row); for (unsigned row = b.nRedundant, e = b.getNumRows(); row < e; ++row) appendRowFromB(row); return result; } std::optional> Simplex::getRationalSample() const { if (empty) return {}; SmallVector sample; sample.reserve(var.size()); // Push the sample value for each variable into the vector. for (const Unknown &u : var) { if (u.orientation == Orientation::Column) { // If the variable is in column position, its sample value is zero. sample.emplace_back(0, 1); } else { // If the variable is in row position, its sample value is the // entry in the constant column divided by the denominator. MPInt denom = tableau(u.pos, 0); sample.emplace_back(tableau(u.pos, 1), denom); } } return sample; } void LexSimplexBase::addInequality(ArrayRef coeffs) { addRow(coeffs, /*makeRestricted=*/true); } MaybeOptimum> LexSimplex::getRationalSample() const { if (empty) return OptimumKind::Empty; SmallVector sample; sample.reserve(var.size()); // Push the sample value for each variable into the vector. for (const Unknown &u : var) { // When the big M parameter is being used, each variable x is represented // as M + x, so its sample value is finite if and only if it is of the // form 1*M + c. If the coefficient of M is not one then the sample value // is infinite, and we return an empty optional. if (u.orientation == Orientation::Column) { // If the variable is in column position, the sample value of M + x is // zero, so x = -M which is unbounded. return OptimumKind::Unbounded; } // If the variable is in row position, its sample value is the // entry in the constant column divided by the denominator. MPInt denom = tableau(u.pos, 0); if (usingBigM) if (tableau(u.pos, 2) != denom) return OptimumKind::Unbounded; sample.emplace_back(tableau(u.pos, 1), denom); } return sample; } std::optional> Simplex::getSamplePointIfIntegral() const { // If the tableau is empty, no sample point exists. if (empty) return {}; // The value will always exist since the Simplex is non-empty. SmallVector rationalSample = *getRationalSample(); SmallVector integerSample; integerSample.reserve(var.size()); for (const Fraction &coord : rationalSample) { // If the sample is non-integral, return std::nullopt. if (coord.num % coord.den != 0) return {}; integerSample.push_back(coord.num / coord.den); } return integerSample; } /// Given a simplex for a polytope, construct a new simplex whose variables are /// identified with a pair of points (x, y) in the original polytope. Supports /// some operations needed for generalized basis reduction. In what follows, /// dotProduct(x, y) = x_1 * y_1 + x_2 * y_2 + ... x_n * y_n where n is the /// dimension of the original polytope. /// /// This supports adding equality constraints dotProduct(dir, x - y) == 0. It /// also supports rolling back this addition, by maintaining a snapshot stack /// that contains a snapshot of the Simplex's state for each equality, just /// before that equality was added. class presburger::GBRSimplex { using Orientation = Simplex::Orientation; public: GBRSimplex(const Simplex &originalSimplex) : simplex(Simplex::makeProduct(originalSimplex, originalSimplex)), simplexConstraintOffset(simplex.getNumConstraints()) {} /// Add an equality dotProduct(dir, x - y) == 0. /// First pushes a snapshot for the current simplex state to the stack so /// that this can be rolled back later. void addEqualityForDirection(ArrayRef dir) { assert(llvm::any_of(dir, [](const MPInt &x) { return x != 0; }) && "Direction passed is the zero vector!"); snapshotStack.push_back(simplex.getSnapshot()); simplex.addEquality(getCoeffsForDirection(dir)); } /// Compute max(dotProduct(dir, x - y)). Fraction computeWidth(ArrayRef dir) { MaybeOptimum maybeWidth = simplex.computeOptimum(Direction::Up, getCoeffsForDirection(dir)); assert(maybeWidth.isBounded() && "Width should be bounded!"); return *maybeWidth; } /// Compute max(dotProduct(dir, x - y)) and save the dual variables for only /// the direction equalities to `dual`. Fraction computeWidthAndDuals(ArrayRef dir, SmallVectorImpl &dual, MPInt &dualDenom) { // We can't just call into computeWidth or computeOptimum since we need to // access the state of the tableau after computing the optimum, and these // functions rollback the insertion of the objective function into the // tableau before returning. We instead add a row for the objective function // ourselves, call into computeOptimum, compute the duals from the tableau // state, and finally rollback the addition of the row before returning. SimplexRollbackScopeExit scopeExit(simplex); unsigned conIndex = simplex.addRow(getCoeffsForDirection(dir)); unsigned row = simplex.con[conIndex].pos; MaybeOptimum maybeWidth = simplex.computeRowOptimum(Simplex::Direction::Up, row); assert(maybeWidth.isBounded() && "Width should be bounded!"); dualDenom = simplex.tableau(row, 0); dual.clear(); // The increment is i += 2 because equalities are added as two inequalities, // one positive and one negative. Each iteration processes one equality. for (unsigned i = simplexConstraintOffset; i < conIndex; i += 2) { // The dual variable for an inequality in column orientation is the // negative of its coefficient at the objective row. If the inequality is // in row orientation, the corresponding dual variable is zero. // // We want the dual for the original equality, which corresponds to two // inequalities: a positive inequality, which has the same coefficients as // the equality, and a negative equality, which has negated coefficients. // // Note that at most one of these inequalities can be in column // orientation because the column unknowns should form a basis and hence // must be linearly independent. If the positive inequality is in column // position, its dual is the dual corresponding to the equality. If the // negative inequality is in column position, the negation of its dual is // the dual corresponding to the equality. If neither is in column // position, then that means that this equality is redundant, and its dual // is zero. // // Note that it is NOT valid to perform pivots during the computation of // the duals. This entire dual computation must be performed on the same // tableau configuration. assert(!(simplex.con[i].orientation == Orientation::Column && simplex.con[i + 1].orientation == Orientation::Column) && "Both inequalities for the equality cannot be in column " "orientation!"); if (simplex.con[i].orientation == Orientation::Column) dual.push_back(-simplex.tableau(row, simplex.con[i].pos)); else if (simplex.con[i + 1].orientation == Orientation::Column) dual.push_back(simplex.tableau(row, simplex.con[i + 1].pos)); else dual.emplace_back(0); } return *maybeWidth; } /// Remove the last equality that was added through addEqualityForDirection. /// /// We do this by rolling back to the snapshot at the top of the stack, which /// should be a snapshot taken just before the last equality was added. void removeLastEquality() { assert(!snapshotStack.empty() && "Snapshot stack is empty!"); simplex.rollback(snapshotStack.back()); snapshotStack.pop_back(); } private: /// Returns coefficients of the expression 'dot_product(dir, x - y)', /// i.e., dir_1 * x_1 + dir_2 * x_2 + ... + dir_n * x_n /// - dir_1 * y_1 - dir_2 * y_2 - ... - dir_n * y_n, /// where n is the dimension of the original polytope. SmallVector getCoeffsForDirection(ArrayRef dir) { assert(2 * dir.size() == simplex.getNumVariables() && "Direction vector has wrong dimensionality"); SmallVector coeffs(dir.begin(), dir.end()); coeffs.reserve(2 * dir.size()); for (const MPInt &coeff : dir) coeffs.push_back(-coeff); coeffs.emplace_back(0); // constant term return coeffs; } Simplex simplex; /// The first index of the equality constraints, the index immediately after /// the last constraint in the initial product simplex. unsigned simplexConstraintOffset; /// A stack of snapshots, used for rolling back. SmallVector snapshotStack; }; /// Reduce the basis to try and find a direction in which the polytope is /// "thin". This only works for bounded polytopes. /// /// This is an implementation of the algorithm described in the paper /// "An Implementation of Generalized Basis Reduction for Integer Programming" /// by W. Cook, T. Rutherford, H. E. Scarf, D. Shallcross. /// /// Let b_{level}, b_{level + 1}, ... b_n be the current basis. /// Let width_i(v) = max where x and y are points in the original /// polytope such that = 0 is satisfied for all level <= j < i. /// /// In every iteration, we first replace b_{i+1} with b_{i+1} + u*b_i, where u /// is the integer such that width_i(b_{i+1} + u*b_i) is minimized. Let dual_i /// be the dual variable associated with the constraint = 0 when /// computing width_{i+1}(b_{i+1}). It can be shown that dual_i is the /// minimizing value of u, if it were allowed to be fractional. Due to /// convexity, the minimizing integer value is either floor(dual_i) or /// ceil(dual_i), so we just need to check which of these gives a lower /// width_{i+1} value. If dual_i turned out to be an integer, then u = dual_i. /// /// Now if width_i(b_{i+1}) < 0.75 * width_i(b_i), we swap b_i and (the new) /// b_{i + 1} and decrement i (unless i = level, in which case we stay at the /// same i). Otherwise, we increment i. /// /// We keep f values and duals cached and invalidate them when necessary. /// Whenever possible, we use them instead of recomputing them. We implement the /// algorithm as follows. /// /// In an iteration at i we need to compute: /// a) width_i(b_{i + 1}) /// b) width_i(b_i) /// c) the integer u that minimizes width_i(b_{i + 1} + u*b_i) /// /// If width_i(b_i) is not already cached, we compute it. /// /// If the duals are not already cached, we compute width_{i+1}(b_{i+1}) and /// store the duals from this computation. /// /// We call updateBasisWithUAndGetFCandidate, which finds the minimizing value /// of u as explained before, caches the duals from this computation, sets /// b_{i+1} to b_{i+1} + u*b_i, and returns the new value of width_i(b_{i+1}). /// /// Now if width_i(b_{i+1}) < 0.75 * width_i(b_i), we swap b_i and b_{i+1} and /// decrement i, resulting in the basis /// ... b_{i - 1}, b_{i + 1} + u*b_i, b_i, b_{i+2}, ... /// with corresponding f values /// ... width_{i-1}(b_{i-1}), width_i(b_{i+1} + u*b_i), width_{i+1}(b_i), ... /// The values up to i - 1 remain unchanged. We have just gotten the middle /// value from updateBasisWithUAndGetFCandidate, so we can update that in the /// cache. The value at width_{i+1}(b_i) is unknown, so we evict this value from /// the cache. The iteration after decrementing needs exactly the duals from the /// computation of width_i(b_{i + 1} + u*b_i), so we keep these in the cache. /// /// When incrementing i, no cached f values get invalidated. However, the cached /// duals do get invalidated as the duals for the higher levels are different. void Simplex::reduceBasis(IntMatrix &basis, unsigned level) { const Fraction epsilon(3, 4); if (level == basis.getNumRows() - 1) return; GBRSimplex gbrSimplex(*this); SmallVector width; SmallVector dual; MPInt dualDenom; // Finds the value of u that minimizes width_i(b_{i+1} + u*b_i), caches the // duals from this computation, sets b_{i+1} to b_{i+1} + u*b_i, and returns // the new value of width_i(b_{i+1}). // // If dual_i is not an integer, the minimizing value must be either // floor(dual_i) or ceil(dual_i). We compute the expression for both and // choose the minimizing value. // // If dual_i is an integer, we don't need to perform these computations. We // know that in this case, // a) u = dual_i. // b) one can show that dual_j for j < i are the same duals we would have // gotten from computing width_i(b_{i + 1} + u*b_i), so the correct duals // are the ones already in the cache. // c) width_i(b_{i+1} + u*b_i) = min_{alpha} width_i(b_{i+1} + alpha * b_i), // which // one can show is equal to width_{i+1}(b_{i+1}). The latter value must // be in the cache, so we get it from there and return it. auto updateBasisWithUAndGetFCandidate = [&](unsigned i) -> Fraction { assert(i < level + dual.size() && "dual_i is not known!"); MPInt u = floorDiv(dual[i - level], dualDenom); basis.addToRow(i, i + 1, u); if (dual[i - level] % dualDenom != 0) { SmallVector candidateDual[2]; MPInt candidateDualDenom[2]; Fraction widthI[2]; // Initially u is floor(dual) and basis reflects this. widthI[0] = gbrSimplex.computeWidthAndDuals( basis.getRow(i + 1), candidateDual[0], candidateDualDenom[0]); // Now try ceil(dual), i.e. floor(dual) + 1. ++u; basis.addToRow(i, i + 1, 1); widthI[1] = gbrSimplex.computeWidthAndDuals( basis.getRow(i + 1), candidateDual[1], candidateDualDenom[1]); unsigned j = widthI[0] < widthI[1] ? 0 : 1; if (j == 0) // Subtract 1 to go from u = ceil(dual) back to floor(dual). basis.addToRow(i, i + 1, -1); // width_i(b{i+1} + u*b_i) should be minimized at our value of u. // We assert that this holds by checking that the values of width_i at // u - 1 and u + 1 are greater than or equal to the value at u. If the // width is lesser at either of the adjacent values, then our computed // value of u is clearly not the minimizer. Otherwise by convexity the // computed value of u is really the minimizer. // Check the value at u - 1. assert(gbrSimplex.computeWidth(scaleAndAddForAssert( basis.getRow(i + 1), MPInt(-1), basis.getRow(i))) >= widthI[j] && "Computed u value does not minimize the width!"); // Check the value at u + 1. assert(gbrSimplex.computeWidth(scaleAndAddForAssert( basis.getRow(i + 1), MPInt(+1), basis.getRow(i))) >= widthI[j] && "Computed u value does not minimize the width!"); dual = std::move(candidateDual[j]); dualDenom = candidateDualDenom[j]; return widthI[j]; } assert(i + 1 - level < width.size() && "width_{i+1} wasn't saved"); // f_i(b_{i+1} + dual*b_i) == width_{i+1}(b_{i+1}) when `dual` minimizes the // LHS. (note: the basis has already been updated, so b_{i+1} + dual*b_i in // the above expression is equal to basis.getRow(i+1) below.) assert(gbrSimplex.computeWidth(basis.getRow(i + 1)) == width[i + 1 - level]); return width[i + 1 - level]; }; // In the ith iteration of the loop, gbrSimplex has constraints for directions // from `level` to i - 1. unsigned i = level; while (i < basis.getNumRows() - 1) { if (i >= level + width.size()) { // We don't even know the value of f_i(b_i), so let's find that first. // We have to do this first since later we assume that width already // contains values up to and including i. assert((i == 0 || i - 1 < level + width.size()) && "We are at level i but we don't know the value of width_{i-1}"); // We don't actually use these duals at all, but it doesn't matter // because this case should only occur when i is level, and there are no // duals in that case anyway. assert(i == level && "This case should only occur when i == level"); width.push_back( gbrSimplex.computeWidthAndDuals(basis.getRow(i), dual, dualDenom)); } if (i >= level + dual.size()) { assert(i + 1 >= level + width.size() && "We don't know dual_i but we know width_{i+1}"); // We don't know dual for our level, so let's find it. gbrSimplex.addEqualityForDirection(basis.getRow(i)); width.push_back(gbrSimplex.computeWidthAndDuals(basis.getRow(i + 1), dual, dualDenom)); gbrSimplex.removeLastEquality(); } // This variable stores width_i(b_{i+1} + u*b_i). Fraction widthICandidate = updateBasisWithUAndGetFCandidate(i); if (widthICandidate < epsilon * width[i - level]) { basis.swapRows(i, i + 1); width[i - level] = widthICandidate; // The values of width_{i+1}(b_{i+1}) and higher may change after the // swap, so we remove the cached values here. width.resize(i - level + 1); if (i == level) { dual.clear(); continue; } gbrSimplex.removeLastEquality(); i--; continue; } // Invalidate duals since the higher level needs to recompute its own duals. dual.clear(); gbrSimplex.addEqualityForDirection(basis.getRow(i)); i++; } } /// Search for an integer sample point using a branch and bound algorithm. /// /// Each row in the basis matrix is a vector, and the set of basis vectors /// should span the space. Initially this is the identity matrix, /// i.e., the basis vectors are just the variables. /// /// In every level, a value is assigned to the level-th basis vector, as /// follows. Compute the minimum and maximum rational values of this direction. /// If only one integer point lies in this range, constrain the variable to /// have this value and recurse to the next variable. /// /// If the range has multiple values, perform generalized basis reduction via /// reduceBasis and then compute the bounds again. Now we try constraining /// this direction in the first value in this range and "recurse" to the next /// level. If we fail to find a sample, we try assigning the direction the next /// value in this range, and so on. /// /// If no integer sample is found from any of the assignments, or if the range /// contains no integer value, then of course the polytope is empty for the /// current assignment of the values in previous levels, so we return to /// the previous level. /// /// If we reach the last level where all the variables have been assigned values /// already, then we simply return the current sample point if it is integral, /// and go back to the previous level otherwise. /// /// To avoid potentially arbitrarily large recursion depths leading to stack /// overflows, this algorithm is implemented iteratively. std::optional> Simplex::findIntegerSample() { if (empty) return {}; unsigned nDims = var.size(); IntMatrix basis = IntMatrix::identity(nDims); unsigned level = 0; // The snapshot just before constraining a direction to a value at each level. SmallVector snapshotStack; // The maximum value in the range of the direction for each level. SmallVector upperBoundStack; // The next value to try constraining the basis vector to at each level. SmallVector nextValueStack; snapshotStack.reserve(basis.getNumRows()); upperBoundStack.reserve(basis.getNumRows()); nextValueStack.reserve(basis.getNumRows()); while (level != -1u) { if (level == basis.getNumRows()) { // We've assigned values to all variables. Return if we have a sample, // or go back up to the previous level otherwise. if (auto maybeSample = getSamplePointIfIntegral()) return maybeSample; level--; continue; } if (level >= upperBoundStack.size()) { // We haven't populated the stack values for this level yet, so we have // just come down a level ("recursed"). Find the lower and upper bounds. // If there is more than one integer point in the range, perform // generalized basis reduction. SmallVector basisCoeffs = llvm::to_vector<8>(basis.getRow(level)); basisCoeffs.emplace_back(0); auto [minRoundedUp, maxRoundedDown] = computeIntegerBounds(basisCoeffs); // We don't have any integer values in the range. // Pop the stack and return up a level. if (minRoundedUp.isEmpty() || maxRoundedDown.isEmpty()) { assert((minRoundedUp.isEmpty() && maxRoundedDown.isEmpty()) && "If one bound is empty, both should be."); snapshotStack.pop_back(); nextValueStack.pop_back(); upperBoundStack.pop_back(); level--; continue; } // We already checked the empty case above. assert((minRoundedUp.isBounded() && maxRoundedDown.isBounded()) && "Polyhedron should be bounded!"); // Heuristic: if the sample point is integral at this point, just return // it. if (auto maybeSample = getSamplePointIfIntegral()) return *maybeSample; if (*minRoundedUp < *maxRoundedDown) { reduceBasis(basis, level); basisCoeffs = llvm::to_vector<8>(basis.getRow(level)); basisCoeffs.emplace_back(0); std::tie(minRoundedUp, maxRoundedDown) = computeIntegerBounds(basisCoeffs); } snapshotStack.push_back(getSnapshot()); // The smallest value in the range is the next value to try. // The values in the optionals are guaranteed to exist since we know the // polytope is bounded. nextValueStack.push_back(*minRoundedUp); upperBoundStack.push_back(*maxRoundedDown); } assert((snapshotStack.size() - 1 == level && nextValueStack.size() - 1 == level && upperBoundStack.size() - 1 == level) && "Mismatched variable stack sizes!"); // Whether we "recursed" or "returned" from a lower level, we rollback // to the snapshot of the starting state at this level. (in the "recursed" // case this has no effect) rollback(snapshotStack.back()); MPInt nextValue = nextValueStack.back(); ++nextValueStack.back(); if (nextValue > upperBoundStack.back()) { // We have exhausted the range and found no solution. Pop the stack and // return up a level. snapshotStack.pop_back(); nextValueStack.pop_back(); upperBoundStack.pop_back(); level--; continue; } // Try the next value in the range and "recurse" into the next level. SmallVector basisCoeffs(basis.getRow(level).begin(), basis.getRow(level).end()); basisCoeffs.push_back(-nextValue); addEquality(basisCoeffs); level++; } return {}; } /// Compute the minimum and maximum integer values the expression can take. We /// compute each separately. std::pair, MaybeOptimum> Simplex::computeIntegerBounds(ArrayRef coeffs) { MaybeOptimum minRoundedUp( computeOptimum(Simplex::Direction::Down, coeffs).map(ceil)); MaybeOptimum maxRoundedDown( computeOptimum(Simplex::Direction::Up, coeffs).map(floor)); return {minRoundedUp, maxRoundedDown}; } void SimplexBase::print(raw_ostream &os) const { os << "rows = " << getNumRows() << ", columns = " << getNumColumns() << "\n"; if (empty) os << "Simplex marked empty!\n"; os << "var: "; for (unsigned i = 0; i < var.size(); ++i) { if (i > 0) os << ", "; var[i].print(os); } os << "\ncon: "; for (unsigned i = 0; i < con.size(); ++i) { if (i > 0) os << ", "; con[i].print(os); } os << '\n'; for (unsigned row = 0, e = getNumRows(); row < e; ++row) { if (row > 0) os << ", "; os << "r" << row << ": " << rowUnknown[row]; } os << '\n'; os << "c0: denom, c1: const"; for (unsigned col = 2, e = getNumColumns(); col < e; ++col) os << ", c" << col << ": " << colUnknown[col]; os << '\n'; for (unsigned row = 0, numRows = getNumRows(); row < numRows; ++row) { for (unsigned col = 0, numCols = getNumColumns(); col < numCols; ++col) os << tableau(row, col) << '\t'; os << '\n'; } os << '\n'; } void SimplexBase::dump() const { print(llvm::errs()); } bool Simplex::isRationalSubsetOf(const IntegerRelation &rel) { if (isEmpty()) return true; for (unsigned i = 0, e = rel.getNumInequalities(); i < e; ++i) if (findIneqType(rel.getInequality(i)) != IneqType::Redundant) return false; for (unsigned i = 0, e = rel.getNumEqualities(); i < e; ++i) if (!isRedundantEquality(rel.getEquality(i))) return false; return true; } /// Returns the type of the inequality with coefficients `coeffs`. /// Possible types are: /// Redundant The inequality is satisfied by all points in the polytope /// Cut The inequality is satisfied by some points, but not by others /// Separate The inequality is not satisfied by any point /// /// Internally, this computes the minimum and the maximum the inequality with /// coefficients `coeffs` can take. If the minimum is >= 0, the inequality holds /// for all points in the polytope, so it is redundant. If the minimum is <= 0 /// and the maximum is >= 0, the points in between the minimum and the /// inequality do not satisfy it, the points in between the inequality and the /// maximum satisfy it. Hence, it is a cut inequality. If both are < 0, no /// points of the polytope satisfy the inequality, which means it is a separate /// inequality. Simplex::IneqType Simplex::findIneqType(ArrayRef coeffs) { MaybeOptimum minimum = computeOptimum(Direction::Down, coeffs); if (minimum.isBounded() && *minimum >= Fraction(0, 1)) { return IneqType::Redundant; } MaybeOptimum maximum = computeOptimum(Direction::Up, coeffs); if ((!minimum.isBounded() || *minimum <= Fraction(0, 1)) && (!maximum.isBounded() || *maximum >= Fraction(0, 1))) { return IneqType::Cut; } return IneqType::Separate; } /// Checks whether the type of the inequality with coefficients `coeffs` /// is Redundant. bool Simplex::isRedundantInequality(ArrayRef coeffs) { assert(!empty && "It is not meaningful to ask about redundancy in an empty set!"); return findIneqType(coeffs) == IneqType::Redundant; } /// Check whether the equality given by `coeffs == 0` is redundant given /// the existing constraints. This is redundant when `coeffs` is already /// always zero under the existing constraints. `coeffs` is always zero /// when the minimum and maximum value that `coeffs` can take are both zero. bool Simplex::isRedundantEquality(ArrayRef coeffs) { assert(!empty && "It is not meaningful to ask about redundancy in an empty set!"); MaybeOptimum minimum = computeOptimum(Direction::Down, coeffs); MaybeOptimum maximum = computeOptimum(Direction::Up, coeffs); assert((!minimum.isEmpty() && !maximum.isEmpty()) && "Optima should be non-empty for a non-empty set"); return minimum.isBounded() && maximum.isBounded() && *maximum == Fraction(0, 1) && *minimum == Fraction(0, 1); }