//===- ModuleBufferization.cpp - Bufferization across Func. Boundaries ----===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // Module Bufferization is an extension of One-Shot Bufferize that // bufferizes function boundaries. It provides `BufferizableOpInterface` // implementations for FuncOp, CallOp and ReturnOp. // // Module Bufferization is run via `runOneShotModuleBufferize(ModuleOp, ...)`. // This function analyzes the given module and determines the order of analysis // and bufferization: Functions that are called are processed before their // respective callers. // // After analyzing a FuncOp, additional information about its bbArgs is // gathered and stored in `FuncAnalysisState`. // // * `aliasingFuncOpBBArgsAnalysis` determines the equivalent/aliasing bbArgs // for // each tensor return value (if any). // * `funcOpBbArgReadWriteAnalysis` determines whether or not a tensor bbArg is // read/written. // // Module Bufferization implements the following calling convention. // // * In the absence of conflicts within a FuncOp, the FuncOp's bbArgs may always // be written to in-place. // * If a tensor operand of a CallOp is read after the CallOp, the operand of // the CallOp must bufferize out-of-place. // // Example: The tensor.insert op bufferizes in-place because it is allowed to // modify the buffer of `%t1` directly. The CallOp in `caller` must bufferize // out-of-place because `%t0` is modified by the callee but read by the // tensor.extract op. The analysis of CallOps decides whether an OpOperand must // bufferize out-of-place based on results of `funcOpBbArgReadWriteAnalysis`. // ``` // func @callee(%t1 : tensor) -> tensor { // %f = ... : f32 // %0 = tensor.insert %f into %t1[...] : tensor // return %0 : tensor // } // // func @caller() -> () { // %t0 = ... : tensor // %1 = call @callee(%t0) : (tensor) -> (tensor) // %2 = tensor.extract %1[...] : tensor // } // ``` // // Note: If a function is external, `funcOpBbArgReadWriteAnalysis` cannot // analyze the function body. In such a case, the CallOp analysis conservatively // assumes that each tensor OpOperand is both read and written. // // TODO: Add FuncOp attributes so that bbArgs of external FuncOps can be marked // as "not reading" and/or "not writing". #include "mlir/Dialect/Bufferization/Transforms/OneShotModuleBufferize.h" #include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h" #include "mlir/Dialect/Bufferization/IR/Bufferization.h" #include "mlir/Dialect/Bufferization/Transforms/Bufferize.h" #include "mlir/Dialect/Bufferization/Transforms/FuncBufferizableOpInterfaceImpl.h" #include "mlir/Dialect/Bufferization/Transforms/OneShotAnalysis.h" #include "mlir/Dialect/Bufferization/Transforms/Transforms.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/Dialect/MemRef/IR/MemRef.h" #include "mlir/IR/Operation.h" using namespace mlir; using namespace mlir::bufferization; using namespace mlir::bufferization::func_ext; /// A mapping of FuncOps to their callers. using FuncCallerMap = DenseMap>; /// Get or create FuncAnalysisState. static FuncAnalysisState & getOrCreateFuncAnalysisState(OneShotAnalysisState &state) { auto *result = state.getExtension(); if (result) return *result; return state.addExtension(); } /// Return the unique ReturnOp that terminates `funcOp`. /// Return nullptr if there is no such unique ReturnOp. static func::ReturnOp getAssumedUniqueReturnOp(func::FuncOp funcOp) { func::ReturnOp returnOp; for (Block &b : funcOp.getBody()) { if (auto candidateOp = dyn_cast(b.getTerminator())) { if (returnOp) return nullptr; returnOp = candidateOp; } } return returnOp; } namespace { /// Annotate IR with the results of the analysis. For testing purposes only. static void annotateEquivalentReturnBbArg(OpOperand &returnVal, BlockArgument bbArg) { const char *kEquivalentArgsAttr = "__equivalent_func_args__"; Operation *op = returnVal.getOwner(); SmallVector equivBbArgs; if (op->hasAttr(kEquivalentArgsAttr)) { auto attr = cast(op->getAttr(kEquivalentArgsAttr)); equivBbArgs = llvm::to_vector<4>(llvm::map_range(attr, [](Attribute a) { return cast(a).getValue().getSExtValue(); })); } else { equivBbArgs.append(op->getNumOperands(), -1); } equivBbArgs[returnVal.getOperandNumber()] = bbArg.getArgNumber(); OpBuilder b(op->getContext()); op->setAttr(kEquivalentArgsAttr, b.getI64ArrayAttr(equivBbArgs)); } /// Store function BlockArguments that are equivalent to/aliasing a returned /// value in FuncAnalysisState. static LogicalResult aliasingFuncOpBBArgsAnalysis(FuncOp funcOp, OneShotAnalysisState &state, FuncAnalysisState &funcState) { if (funcOp.getBody().empty()) { // No function body available. Conservatively assume that every tensor // return value may alias with any tensor bbArg. FunctionType type = funcOp.getFunctionType(); for (const auto &inputIt : llvm::enumerate(type.getInputs())) { if (!isa(inputIt.value())) continue; for (const auto &resultIt : llvm::enumerate(type.getResults())) { if (!isa(resultIt.value())) continue; int64_t returnIdx = resultIt.index(); int64_t bbArgIdx = inputIt.index(); funcState.aliasingReturnVals[funcOp][bbArgIdx].push_back(returnIdx); } } return success(); } // Support only single return-terminated block in the function. func::ReturnOp returnOp = getAssumedUniqueReturnOp(funcOp); assert(returnOp && "expected func with single return op"); for (OpOperand &returnVal : returnOp->getOpOperands()) if (isa(returnVal.get().getType())) for (BlockArgument bbArg : funcOp.getArguments()) if (isa(bbArg.getType())) { int64_t returnIdx = returnVal.getOperandNumber(); int64_t bbArgIdx = bbArg.getArgNumber(); if (state.areEquivalentBufferizedValues(returnVal.get(), bbArg)) { funcState.equivalentFuncArgs[funcOp][returnIdx] = bbArgIdx; if (state.getOptions().testAnalysisOnly) annotateEquivalentReturnBbArg(returnVal, bbArg); } if (state.areAliasingBufferizedValues(returnVal.get(), bbArg)) funcState.aliasingReturnVals[funcOp][bbArgIdx].push_back(returnIdx); } return success(); } static void annotateFuncArgAccess(func::FuncOp funcOp, int64_t idx, bool isRead, bool isWritten) { OpBuilder b(funcOp.getContext()); Attribute accessType; if (isRead && isWritten) { accessType = b.getStringAttr("read-write"); } else if (isRead) { accessType = b.getStringAttr("read"); } else if (isWritten) { accessType = b.getStringAttr("write"); } else { accessType = b.getStringAttr("none"); } funcOp.setArgAttr(idx, BufferizationDialect::kBufferAccessAttrName, accessType); } /// Determine which FuncOp bbArgs are read and which are written. When run on a /// function with unknown ops, we conservatively assume that such ops bufferize /// to a read + write. static LogicalResult funcOpBbArgReadWriteAnalysis(FuncOp funcOp, OneShotAnalysisState &state, FuncAnalysisState &funcState) { for (int64_t idx = 0, e = funcOp.getFunctionType().getNumInputs(); idx < e; ++idx) { // Skip non-tensor arguments. if (!isa(funcOp.getFunctionType().getInput(idx))) continue; bool isRead; bool isWritten; if (auto accessAttr = funcOp.getArgAttrOfType( idx, BufferizationDialect::kBufferAccessAttrName)) { // Buffer access behavior is specified on the function. Skip the analysis. StringRef str = accessAttr.getValue(); isRead = str == "read" || str == "read-write"; isWritten = str == "write" || str == "read-write"; } else if (funcOp.getBody().empty()) { // If the function has no body, conservatively assume that all args are // read + written. isRead = true; isWritten = true; } else { // Analyze the body of the function. BlockArgument bbArg = funcOp.getArgument(idx); isRead = state.isValueRead(bbArg); isWritten = state.isValueWritten(bbArg); } if (state.getOptions().testAnalysisOnly) annotateFuncArgAccess(funcOp, idx, isRead, isWritten); if (isRead) funcState.readBbArgs[funcOp].insert(idx); if (isWritten) funcState.writtenBbArgs[funcOp].insert(idx); } return success(); } } // namespace /// Remove bufferization attributes on FuncOp arguments. static void removeBufferizationAttributes(BlockArgument bbArg) { auto funcOp = cast(bbArg.getOwner()->getParentOp()); funcOp.removeArgAttr(bbArg.getArgNumber(), BufferizationDialect::kBufferLayoutAttrName); funcOp.removeArgAttr(bbArg.getArgNumber(), BufferizationDialect::kWritableAttrName); } /// Return the func::FuncOp called by `callOp`. static func::FuncOp getCalledFunction(func::CallOp callOp) { SymbolRefAttr sym = llvm::dyn_cast_if_present(callOp.getCallableForCallee()); if (!sym) return nullptr; return dyn_cast_or_null( SymbolTable::lookupNearestSymbolFrom(callOp, sym)); } /// Gather equivalence info of CallOps. /// Note: This only adds new equivalence info if the called function was already /// analyzed. // TODO: This does not handle cyclic function call graphs etc. static void equivalenceAnalysis(func::FuncOp funcOp, OneShotAnalysisState &state, FuncAnalysisState &funcState) { funcOp->walk([&](func::CallOp callOp) { func::FuncOp calledFunction = getCalledFunction(callOp); assert(calledFunction && "could not retrieved called func::FuncOp"); // No equivalence info available for the called function. if (!funcState.equivalentFuncArgs.count(calledFunction)) return WalkResult::skip(); for (auto it : funcState.equivalentFuncArgs[calledFunction]) { int64_t returnIdx = it.first; int64_t bbargIdx = it.second; if (!state.isInPlace(callOp->getOpOperand(bbargIdx))) continue; Value returnVal = callOp.getResult(returnIdx); Value argVal = callOp->getOperand(bbargIdx); state.unionEquivalenceClasses(returnVal, argVal); } return WalkResult::advance(); }); } /// Return "true" if the given function signature has tensor semantics. static bool hasTensorSignature(func::FuncOp funcOp) { auto isaTensor = [](Type t) { return isa(t); }; return llvm::any_of(funcOp.getFunctionType().getInputs(), isaTensor) || llvm::any_of(funcOp.getFunctionType().getResults(), isaTensor); } /// Store all functions of the `moduleOp` in `orderedFuncOps`, sorted by /// callee-caller order (i.e. callees without callers first). /// Store the map of FuncOp to all its callers in `callerMap`. /// Return `failure()` if a cycle of calls is detected or if we are unable to /// retrieve the called FuncOp from any func::CallOp. static LogicalResult getFuncOpsOrderedByCalls(ModuleOp moduleOp, SmallVectorImpl &orderedFuncOps, FuncCallerMap &callerMap) { // For each FuncOp, the set of functions called by it (i.e. the union of // symbols of all nested func::CallOp). DenseMap> calledBy; // For each FuncOp, the number of func::CallOp it contains. DenseMap numberCallOpsContainedInFuncOp; WalkResult res = moduleOp.walk([&](func::FuncOp funcOp) -> WalkResult { if (!funcOp.getBody().empty()) { func::ReturnOp returnOp = getAssumedUniqueReturnOp(funcOp); if (!returnOp) return funcOp->emitError() << "cannot bufferize a FuncOp with tensors and " "without a unique ReturnOp"; } // Collect function calls and populate the caller map. numberCallOpsContainedInFuncOp[funcOp] = 0; return funcOp.walk([&](func::CallOp callOp) -> WalkResult { func::FuncOp calledFunction = getCalledFunction(callOp); assert(calledFunction && "could not retrieved called func::FuncOp"); // If the called function does not have any tensors in its signature, then // it is not necessary to bufferize the callee before the caller. if (!hasTensorSignature(calledFunction)) return WalkResult::skip(); callerMap[calledFunction].insert(callOp); if (calledBy[calledFunction].insert(funcOp).second) { numberCallOpsContainedInFuncOp[funcOp]++; } return WalkResult::advance(); }); }); if (res.wasInterrupted()) return failure(); // Iteratively remove function operations that do not call any of the // functions remaining in the callCounter map and add them to the worklist. while (!numberCallOpsContainedInFuncOp.empty()) { auto it = llvm::find_if(numberCallOpsContainedInFuncOp, [](auto entry) { return entry.getSecond() == 0; }); if (it == numberCallOpsContainedInFuncOp.end()) return moduleOp.emitOpError( "expected callgraph to be free of circular dependencies."); orderedFuncOps.push_back(it->getFirst()); for (auto callee : calledBy[it->getFirst()]) numberCallOpsContainedInFuncOp[callee]--; numberCallOpsContainedInFuncOp.erase(it); } return success(); } /// Fold return values that are memref casts and update function return types. /// /// During FuncOp bufferization, the exact type of the returned memrefs (if any) /// is not known yet. Therefore, the bufferization uses memref types with the /// most generic layout map as function return types. After bufferizing the /// entire function body, a more concise memref type can potentially be used for /// the return type of the function. static void foldMemRefCasts(func::FuncOp funcOp) { if (funcOp.getBody().empty()) return; func::ReturnOp returnOp = getAssumedUniqueReturnOp(funcOp); SmallVector resultTypes; for (OpOperand &operand : returnOp->getOpOperands()) { if (auto castOp = operand.get().getDefiningOp()) { operand.set(castOp.getSource()); resultTypes.push_back(castOp.getSource().getType()); } else { resultTypes.push_back(operand.get().getType()); } } auto newFuncType = FunctionType::get( funcOp.getContext(), funcOp.getFunctionType().getInputs(), resultTypes); funcOp.setType(newFuncType); } LogicalResult mlir::bufferization::analyzeModuleOp(ModuleOp moduleOp, OneShotAnalysisState &state, BufferizationStatistics *statistics) { assert(state.getOptions().bufferizeFunctionBoundaries && "expected that function boundary bufferization is activated"); FuncAnalysisState &funcState = getOrCreateFuncAnalysisState(state); // A list of functions in the order in which they are analyzed + bufferized. SmallVector orderedFuncOps; // A mapping of FuncOps to their callers. FuncCallerMap callerMap; if (failed(getFuncOpsOrderedByCalls(moduleOp, orderedFuncOps, callerMap))) return failure(); // Analyze ops. for (func::FuncOp funcOp : orderedFuncOps) { if (!state.getOptions().isOpAllowed(funcOp)) continue; // Now analyzing function. funcState.startFunctionAnalysis(funcOp); // Gather equivalence info for CallOps. equivalenceAnalysis(funcOp, state, funcState); // Analyze funcOp. if (failed(analyzeOp(funcOp, state, statistics))) return failure(); // Run some extra function analyses. if (failed(aliasingFuncOpBBArgsAnalysis(funcOp, state, funcState)) || failed(funcOpBbArgReadWriteAnalysis(funcOp, state, funcState))) return failure(); // Mark op as fully analyzed. funcState.analyzedFuncOps[funcOp] = FuncOpAnalysisState::Analyzed; } return success(); } void mlir::bufferization::removeBufferizationAttributesInModule( ModuleOp moduleOp) { moduleOp.walk([&](func::FuncOp op) { for (BlockArgument bbArg : op.getArguments()) removeBufferizationAttributes(bbArg); }); } LogicalResult mlir::bufferization::bufferizeModuleOp( ModuleOp moduleOp, const OneShotBufferizationOptions &options, BufferizationStatistics *statistics) { assert(options.bufferizeFunctionBoundaries && "expected that function boundary bufferization is activated"); IRRewriter rewriter(moduleOp.getContext()); // A list of functions in the order in which they are analyzed + bufferized. SmallVector orderedFuncOps; // A mapping of FuncOps to their callers. FuncCallerMap callerMap; if (failed(getFuncOpsOrderedByCalls(moduleOp, orderedFuncOps, callerMap))) return failure(); // Bufferize functions. for (func::FuncOp funcOp : orderedFuncOps) { // Note: It would be good to apply cleanups here but we cannot as aliasInfo // would be invalidated. if (llvm::is_contained(options.noAnalysisFuncFilter, funcOp.getSymName())) { // This function was not analyzed and RaW conflicts were not resolved. // Buffer copies must be inserted before every write. OneShotBufferizationOptions updatedOptions = options; updatedOptions.copyBeforeWrite = true; if (failed(bufferizeOp(funcOp, updatedOptions, statistics))) return failure(); } else { if (failed(bufferizeOp(funcOp, options, statistics))) return failure(); } // Change buffer return types to more precise layout maps. if (options.inferFunctionResultLayout) foldMemRefCasts(funcOp); } // Bufferize all other ops. for (Operation &op : moduleOp.getOps()) { // Functions were already bufferized. if (isa(&op)) continue; if (failed(bufferizeOp(&op, options, statistics))) return failure(); } // Post-pass cleanup of function argument attributes. removeBufferizationAttributesInModule(moduleOp); return success(); } LogicalResult mlir::bufferization::runOneShotModuleBufferize( ModuleOp moduleOp, const OneShotBufferizationOptions &options, BufferizationStatistics *statistics) { assert(options.bufferizeFunctionBoundaries && "expected that function boundary bufferization is activated"); assert(!(options.copyBeforeWrite && options.testAnalysisOnly) && "invalid combination of bufferization flags"); if (!options.copyBeforeWrite) { if (options.noAnalysisFuncFilter.empty()) { if (failed(insertTensorCopies(moduleOp, options, statistics))) return failure(); } else { // FuncOps whose names are specified in options.noAnalysisFuncFilter will // not be analyzed. Ops in these FuncOps will not be analyzed as well. OpFilter::Entry::FilterFn analysisFilterFn = [=](Operation *op) { auto func = dyn_cast(op); if (!func) func = op->getParentOfType(); if (func) return llvm::is_contained(options.noAnalysisFuncFilter, func.getSymName()); return false; }; OneShotBufferizationOptions updatedOptions(options); updatedOptions.opFilter.denyOperation(analysisFilterFn); if (failed(insertTensorCopies(moduleOp, updatedOptions, statistics))) return failure(); } } if (options.testAnalysisOnly) return success(); if (failed(bufferizeModuleOp(moduleOp, options, statistics))) return failure(); return success(); }