//===- Fusion.cpp - Implementation of linalg Fusion -----------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the linalg dialect Fusion pass. // //===----------------------------------------------------------------------===// #include "mlir/Dialect/Affine/IR/AffineOps.h" #include "mlir/Dialect/Arith/IR/Arith.h" #include "mlir/Dialect/Linalg/IR/Linalg.h" #include "mlir/Dialect/Linalg/Passes.h" #include "mlir/Dialect/Linalg/Transforms/Transforms.h" #include "mlir/Dialect/Linalg/Utils/Utils.h" #include "mlir/Dialect/MemRef/IR/MemRef.h" #include "mlir/Dialect/Tensor/IR/Tensor.h" #include "mlir/IR/AffineExpr.h" #include "mlir/IR/AffineMap.h" #include "mlir/IR/Dominance.h" #include "mlir/Support/LLVM.h" #include "mlir/Transforms/GreedyPatternRewriteDriver.h" #include "mlir/Transforms/RegionUtils.h" #include "llvm/ADT/MapVector.h" #include "llvm/ADT/ScopeExit.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include #include #define DEBUG_TYPE "linalg-fusion" using namespace mlir; using namespace mlir::linalg; /// Implements a simple high-level fusion pass on linalg structured operations. /// /// In each block, linalg ops are processed in reverse textual order. /// Given a linalg op `O`, fusion occurs by: /// 1. inspecting the linalg ops that write into the views read by `O`. There /// are 2 cases: /// a) buffer case: use the SSA value of the views and a simple alias /// analysis on subview ops to determine producer-consumer dependences; /// b) tensor case: use SSA use-def chains on extract_slice ops; /// 2. greedily fuse the linalg ops that produce the subview/extract_slice. /// 3. inspect the fused ops and determine whether they have other remaining /// LinalgOp uses. If not, then erase the original producing linalg op. /// /// More advanced use cases, analyses as well as profitability heuristics are /// left for future work. struct ShapeDimension { Value shape; unsigned dimension; }; // Given an `op`, returns the first (`shape`, `dimension`) pair that identifies // the loop range at `loopDepth`. The semantics of the loopToOperandRangesMaps // guarantees at least one such dimension is found. If multiple candidates exist // they must agree by construction (i.e. have the same size) and we just return // the first one. static ShapeDimension getShapeDefiningLoopRange(LinalgOp op, unsigned loopDepth, bool fromSubViewOpOnly = false) { // Iterate over the inputs and outputs in order. // Extract the subranges from the linearized ranges. for (OpOperand &opOperand : op->getOpOperands()) { // The method `getRangeFromOperandShape` requires using SubViewOp or // ExtractSliceOps. If the value isn't defined from there continue. // todo: The method should be adapted to get the values from // `ViewInterface`. The interface needs a `getOrCreateRanges` method which // currently returns a `linalg.range`. The fix here is to move this op to // `std` dialect and add the method to `ViewInterface`. if (fromSubViewOpOnly && !isa_and_nonnull( opOperand.get().getDefiningOp())) continue; AffineMap map = op.getMatchingIndexingMap(&opOperand); LLVM_DEBUG(llvm::dbgs() << "getShapeDefiningLoopRange I/O idx: " << opOperand.getOperandNumber() << "\n"); LLVM_DEBUG(llvm::dbgs() << "getShapeDefiningLoopRange map: " << map << "\n"); SmallVector shapeRanges(map.getNumResults(), nullptr); for (const auto &en : llvm::enumerate(map.getResults())) { auto dimExpr = dyn_cast(en.value()); if (!dimExpr) continue; if (loopDepth == cast(en.value()).getPosition()) { LLVM_DEBUG(llvm::dbgs() << "getShapeDefiningLoopRange loopDepth: " << loopDepth << "\n"); LLVM_DEBUG(llvm::dbgs() << "getShapeDefiningLoopRange shape: " << opOperand.get() << "\n"); return ShapeDimension{opOperand.get(), static_cast(en.index())}; } } } llvm_unreachable("Expect to be able to extract a shape defining loop range"); } static SmallVector getTiledOperands(LinalgOp producer) { return producer->getOperands(); } /// Fuses the producer by cloning the `producer`. The `fusedLoopsAndRanges` /// provides the loop range information for the fused loops. The rest are /// obtained from the producer itself, since they are not tiled + fused. static LinalgOp fuse(OpBuilder &b, LinalgOp producer, const DenseMap &fusedLoopsAndRanges) { SmallVector ivs, tileSizes, sizeBounds; SmallVector loopRanges; Location loc = producer.getLoc(); for (unsigned i = 0, e = producer.getNumLoops(); i < e; ++i) { auto shapeDim = getShapeDefiningLoopRange(producer, i); OpFoldResult dim = createFoldedDimOp(b, loc, shapeDim.shape, shapeDim.dimension); sizeBounds.push_back(dim); auto it = fusedLoopsAndRanges.find(i); if (it != fusedLoopsAndRanges.end()) { ivs.push_back(it->second.offset); tileSizes.push_back(it->second.size); loopRanges.push_back(it->second); LLVM_DEBUG(llvm::dbgs() << "tiled loop#" << i << " with LoopRange " << loopRanges.back() << "\n"); } else { tileSizes.push_back(b.getIndexAttr(0)); loopRanges.push_back(Range{b.getIndexAttr(0), dim, b.getIndexAttr(1)}); LLVM_DEBUG(llvm::dbgs() << "full loop#" << i << " with LoopRange " << loopRanges.back() << "\n"); } } SmallVector clonedShapes; clonedShapes.reserve(producer->getNumOperands()); // Compute subranges for all tensor input/output operands. clonedShapes.append(makeTiledShapes( b, loc, producer, getTiledOperands(producer), ivs, tileSizes, sizeBounds, /**omitPartialTileCheck=*/false)); // Take result types from the tiled init operands. MutableOperandRange producerDpsInits = producer.getDpsInitsMutable(); SmallVector resultTypes; resultTypes.reserve(producer->getNumResults()); int64_t firstInitOperandIdx = static_cast(producerDpsInits).getBeginOperandIndex(); for (int64_t i = 0, e = producer->getNumResults(); i < e; ++i) { resultTypes.push_back(clonedShapes[firstInitOperandIdx + i].getType()); } // Clone the producer with new operands and result types. LinalgOp clonedOp = clone(b, producer, resultTypes, clonedShapes); // Shift all IndexOp results by the tile offset. SmallVector allIvs = llvm::to_vector( llvm::map_range(loopRanges, [&](Range range) { return range.offset; })); offsetIndices(b, clonedOp, allIvs); return clonedOp; } /// Get the loop range for a dimension `dim` based on the `shapedOperand`. It is /// expected to be defined by a subview op or an extract_slice op. static Range getRangeFromOperandShape(OpBuilder &b, Location loc, Value shapedOperand, unsigned dim) { Operation *shapeProducingOp = shapedOperand.getDefiningOp(); if (auto subViewOp = dyn_cast(shapeProducingOp)) return subViewOp.getOrCreateRanges(b, loc)[dim]; if (auto sliceOp = dyn_cast(shapeProducingOp)) return sliceOp.getOrCreateRanges(b, loc)[dim]; llvm_unreachable("SubviewOp or ExtractSliceOp expected"); } /// Fuses the producer into the loop immediately enclosing the consumer. /// This is achieved by "recomputing" the producer at the time it /// is needed just before the consumer. static LinalgOp fuse(OpBuilder &b, LinalgOp producerOp, AffineMap producerMap, OpOperand &consumerOpOperand) { LLVM_DEBUG(llvm::dbgs() << "Producer map: " << producerMap << "\n"); DenseMap fusedLoopsAndRanges; Value shapedOperand = consumerOpOperand.get(); for (const auto &en : llvm::enumerate(producerMap.getResults())) { unsigned posInProducerLoop = cast(en.value()).getPosition(); fusedLoopsAndRanges[posInProducerLoop] = getRangeFromOperandShape( b, consumerOpOperand.getOwner()->getLoc(), shapedOperand, en.index()); } return fuse(b, producerOp, fusedLoopsAndRanges); } /// Walk back use-def chain through scf::For yields. /// Sets `producer` and `outputIndex` if it finds a producer LinalgOp // TODO(ravishankarm, ntv): This can be moved into the dependence graphs // dependence tracking since the dependence tracking is similar to what is done // w.r.t to buffers. static void getProducerOfTensor(Value tensor, OpResult &opResult) { if (!isa(tensor.getType())) return; while (true) { LLVM_DEBUG(llvm::dbgs() << "\ngetProducerOfTensor: " << tensor); if (auto linalgOp = tensor.getDefiningOp()) { opResult = cast(tensor); return; } if (auto sliceOp = tensor.getDefiningOp()) { tensor = sliceOp.getSource(); continue; } if (auto blockArg = dyn_cast(tensor)) { if (auto forOp = blockArg.getDefiningOp()) { tensor = forOp.getInitArgs()[blockArg.getArgNumber()]; continue; } } return; } } FailureOr mlir::linalg::fuseProducerOfTensor(OpBuilder &b, OpOperand &consumerOpOperand) { Value inputTensor = consumerOpOperand.get(); OpResult producerOpResult; getProducerOfTensor(inputTensor, producerOpResult); if (!producerOpResult) { LLVM_DEBUG(llvm::dbgs() << "\nUnable to find producer"); return failure(); } return fuseProducerOfTensor(b, producerOpResult, consumerOpOperand); } FailureOr mlir::linalg::fuseProducerOfTensor(OpBuilder &b, OpResult producerOpResult, OpOperand &consumerOpOperand) { auto producerOp = dyn_cast(producerOpResult.getOwner()); if (!producerOp) return failure(); LinalgOp consumerOp = dyn_cast(consumerOpOperand.getOwner()); if (!consumerOp) return failure(); Value inputTensor = consumerOpOperand.get(); // Must be an extract_slice op to guarantee there are loops we can fuse into. auto sliceOp = inputTensor.getDefiningOp(); if (!sliceOp) { LLVM_DEBUG(llvm::dbgs() << "\nNot fusable, not an extract_slice op: " << inputTensor); return failure(); } // If producer is already in the same block as consumer, we are done. if (consumerOpOperand.get().getParentBlock() == producerOpResult.getParentBlock()) return failure(); // Insert fused `producer` just before `consumer`. OpBuilder::InsertionGuard g(b); b.setInsertionPoint(consumerOp); LLVM_DEBUG(llvm::dbgs() << "Fuse into consumer: " << *consumerOp << "\n"); OpOperand *opOperand = producerOp.getDpsInitOperand(producerOpResult.getResultNumber()); LinalgOp fusedProducer = fuse(b, producerOp, producerOp.getMatchingIndexingMap(opOperand), consumerOpOperand); // Replace use. // Canonicalizations are not guaranteed to have happened before constructing // `fusedProducer`. In the tensor case this can result in temporary type // mismatches. Insert a `tensor.cast` op to propagate the transformation // invariant that types are compatible. Value def = fusedProducer->getResult(producerOpResult.getResultNumber()); Type consumerType = consumerOpOperand.get().getType(); if (consumerType != def.getType()) def = b.create(fusedProducer.getLoc(), consumerType, def); consumerOpOperand.set(def); return FusionInfo{cast(producerOpResult.getOwner()), fusedProducer}; }