//===- Loops.cpp - conversion from Linalg named and generic ops to loops --===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "mlir/Dialect/Linalg/Passes.h" #include "mlir/Dialect/Affine/IR/AffineOps.h" #include "mlir/Dialect/Arith/IR/Arith.h" #include "mlir/Dialect/Arith/Utils/Utils.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/Dialect/Linalg/IR/Linalg.h" #include "mlir/Dialect/Linalg/Transforms/Transforms.h" #include "mlir/Dialect/Linalg/Utils/Utils.h" #include "mlir/Dialect/SCF/Transforms/Transforms.h" #include "mlir/Dialect/SCF/Utils/AffineCanonicalizationUtils.h" #include "mlir/IR/AffineExpr.h" #include "mlir/IR/AffineMap.h" #include "mlir/IR/IRMapping.h" #include "mlir/Support/LLVM.h" #include "mlir/Transforms/DialectConversion.h" #include "mlir/Transforms/FoldUtils.h" #include "mlir/Transforms/GreedyPatternRewriteDriver.h" #include "llvm/ADT/TypeSwitch.h" namespace mlir { #define GEN_PASS_DEF_LINALGLOWERTOAFFINELOOPS #define GEN_PASS_DEF_LINALGLOWERTOLOOPS #define GEN_PASS_DEF_LINALGLOWERTOPARALLELLOOPS #include "mlir/Dialect/Linalg/Passes.h.inc" } // namespace mlir using namespace mlir; using namespace mlir::linalg; static SmallVector makeCanonicalAffineApplies(OpBuilder &b, Location loc, AffineMap map, ArrayRef vals) { if (map.isEmpty()) return {}; assert(map.getNumInputs() == vals.size()); SmallVector res; res.reserve(map.getNumResults()); auto dims = map.getNumDims(); for (auto e : map.getResults()) { auto exprMap = AffineMap::get(dims, map.getNumSymbols(), e); SmallVector operands(vals.begin(), vals.end()); affine::canonicalizeMapAndOperands(&exprMap, &operands); res.push_back(b.create(loc, exprMap, operands)); } return res; } template static void inlineRegionAndEmitStore(OpBuilder &b, Location loc, OpType op, ArrayRef indexedValues, ArrayRef> indexing, ArrayRef outputBuffers) { auto &block = op->getRegion(0).front(); IRMapping map; map.map(block.getArguments(), indexedValues); for (auto &op : block.without_terminator()) { auto *newOp = b.clone(op, map); map.map(op.getResults(), newOp->getResults()); } Operation *terminator = block.getTerminator(); for (OpOperand &operand : terminator->getOpOperands()) { Value toStore = map.lookupOrDefault(operand.get()); b.create(loc, toStore, outputBuffers[operand.getOperandNumber()], indexing[operand.getOperandNumber()]); } } // Returns a pair that contains input indices and output indices of a // SingleInputPoolingOp `op`. struct InputAndOutputIndices { SmallVector inputs; SmallVector outputs; }; template static InputAndOutputIndices getInputAndOutputIndices(OpBuilder &b, Location loc, ArrayRef allIvs, SingleInputPoolingOp op) { auto mapsRange = op.getIndexingMapsArray(); auto maps = llvm::to_vector<8>( llvm::map_range(mapsRange, [](AffineMapAttr a) { return a.getValue(); })); return InputAndOutputIndices{ makeCanonicalAffineApplies(b, loc, maps[0], allIvs), makeCanonicalAffineApplies(b, loc, maps[2], allIvs)}; } /// Emits the MLIR for the scalar part of the generic op by: /// 1. Emitting load ops for each input and output view in order. This is /// achieved by applying the appropriate input or output map to the /// enclosing induction variables. /// 2. Emitting a call to `op.fun()` that takes as arguments the scalars /// from point 1. above. /// 3. Emitting store ops to store the results of 2. to the output /// views. /// /// An example output may resemble: /// /// ``` /// scf.for %i = %c0 to %0 step %c1 { /// scf.for %j = %c0 to %1 step %c1 { /// scf.for %k = %c0 to %4 step %c1 { /// %11 = load %arg0[%i, %j] : /// memref /// %12 = load %arg1[%i, %j, %k] : /// memref /// %13 = load %arg2[%i, %k, %j] : /// memref /// %14:2 = call @foo(%11, %12, %13) : (f32, f32, f32) -> (f32, f32) /// store %14#0, %arg1[%i, %j, %k] : /// memref /// store %14#1, %arg2[%i, %k, %j] : /// memref /// } /// } /// } /// ``` template static void emitScalarImplementation(OpBuilder &b, Location loc, ArrayRef allIvs, LinalgOp linalgOp) { assert(linalgOp.hasPureBufferSemantics() && "expected linalg op with buffer semantics"); SmallVector indexedValues; indexedValues.reserve(linalgOp->getNumOperands()); auto allIvsPlusDims = SmallVector(allIvs.begin(), allIvs.end()); // TODO: Avoid the loads if the corresponding argument of the // region has no uses. // 1.a. Emit load from input operand or for scalars access the operand itself. for (OpOperand *inputOperand : linalgOp.getDpsInputOperands()) { if (linalgOp.isScalar(inputOperand)) { indexedValues.push_back(inputOperand->get()); continue; } auto indexing = makeCanonicalAffineApplies( b, loc, linalgOp.getMatchingIndexingMap(inputOperand), allIvsPlusDims); indexedValues.push_back( b.create(loc, inputOperand->get(), indexing)); } // 1.b. Emit load from output views. for (OpOperand &outputOperand : linalgOp.getDpsInitsMutable()) { SmallVector indexing = makeCanonicalAffineApplies( b, loc, linalgOp.getMatchingIndexingMap(&outputOperand), allIvsPlusDims); indexedValues.push_back( b.create(loc, outputOperand.get(), indexing)); } // TODO: When a region inliner exists, use it. // 2. Inline region, currently only works for a single basic block. // 3. Emit store. SmallVector, 8> indexing; SmallVector outputBuffers; for (OpOperand &outputOperand : linalgOp.getDpsInitsMutable()) { if (!isa(outputOperand.get().getType())) continue; indexing.push_back(makeCanonicalAffineApplies( b, loc, linalgOp.getMatchingIndexingMap(&outputOperand), allIvsPlusDims)); outputBuffers.push_back(outputOperand.get()); } inlineRegionAndEmitStore(b, loc, linalgOp, indexedValues, indexing, outputBuffers); } /// Replace the index operations in the body of the loop nest by the matching /// induction variables. static void replaceIndexOpsByInductionVariables(RewriterBase &rewriter, LinalgOp linalgOp, ArrayRef loopOps) { // Extract the induction variables of the loop nest from outer to inner. SmallVector allIvs; for (Operation *loopOp : loopOps) { llvm::TypeSwitch(loopOp) .Case([&](scf::ParallelOp parallelOp) { allIvs.append(parallelOp.getInductionVars().begin(), parallelOp.getInductionVars().end()); }) .Case([&](scf::ForOp forOp) { allIvs.push_back(forOp.getInductionVar()); }) .Case([&](affine::AffineForOp affineForOp) { allIvs.push_back(affineForOp.getInductionVar()); }) .Default([&](Operation *op) { assert(false && "unexpected op"); }); } assert(linalgOp.getNumLoops() == allIvs.size() && "expected the number of loops and induction variables to match"); // Replace the index operations in the body of the innermost loop op. if (!loopOps.empty()) { auto loopOp = cast(loopOps.back()); for (Region *r : loopOp.getLoopRegions()) for (IndexOp indexOp : llvm::make_early_inc_range(r->getOps())) rewriter.replaceOp(indexOp, allIvs[indexOp.getDim()]); } } template static FailureOr linalgOpToLoopsImpl(RewriterBase &rewriter, LinalgOp linalgOp) { using LoadOpTy = std::conditional_t::value, affine::AffineLoadOp, memref::LoadOp>; using StoreOpTy = std::conditional_t::value, affine::AffineStoreOp, memref::StoreOp>; // The flattened loopToOperandRangesMaps is expected to be an invertible // permutation map (which is asserted in the inverse calculation). assert(linalgOp.hasPureBufferSemantics() && "expected linalg op with buffer semantics"); auto loopRanges = linalgOp.createLoopRanges(rewriter, linalgOp.getLoc()); auto iteratorTypes = linalgOp.getIteratorTypesArray(); SmallVector allIvs; GenerateLoopNest::doit( rewriter, linalgOp.getLoc(), loopRanges, linalgOp, iteratorTypes, [&](OpBuilder &b, Location loc, ValueRange ivs, ValueRange operandValuesToUse) -> scf::ValueVector { assert(operandValuesToUse == linalgOp->getOperands() && "expect operands are captured and not passed by loop argument"); allIvs.append(ivs.begin(), ivs.end()); emitScalarImplementation(b, loc, allIvs, linalgOp); return scf::ValueVector{}; }); // Number of loop ops might be different from the number of ivs since some // loops like affine.parallel and scf.parallel have multiple ivs. SetVector loopSet; for (Value iv : allIvs) { if (!iv) return failure(); // The induction variable is a block argument of the entry block of the // loop operation. BlockArgument ivVal = dyn_cast(iv); if (!ivVal) return failure(); loopSet.insert(ivVal.getOwner()->getParentOp()); } LinalgLoops loops(loopSet.begin(), loopSet.end()); // Replace all index operations in the loop body. replaceIndexOpsByInductionVariables(rewriter, linalgOp, loops); return loops; } namespace { template class LinalgRewritePattern : public RewritePattern { public: LinalgRewritePattern(MLIRContext *context) : RewritePattern(MatchAnyOpTypeTag(), /*benefit=*/1, context) {} LogicalResult matchAndRewrite(Operation *op, PatternRewriter &rewriter) const override { auto linalgOp = dyn_cast(op); if (!isa(op) || !linalgOp.hasPureBufferSemantics()) { return rewriter.notifyMatchFailure( op, "expected linalg op with buffer semantics"); } if (failed(linalgOpToLoopsImpl(rewriter, linalgOp))) return failure(); rewriter.eraseOp(op); return success(); } }; /// Local folding pattern for AffineApplyOp that we can apply greedily. /// This replaces AffineApplyOp by the proper value in cases where the /// associated map is trivial. /// A trivial map here is defined as a map with a single result and either: /// 1. Zero operand + returns a single AffineConstantExpr /// 2. One operand + returns a single AffineDimExpr /// 3. One operand + returns a single AffineSymbolExpr // /// In the first case, the AffineApplyOp is replaced by a new constant. In the /// other cases, it is replaced by its unique operand. struct FoldAffineOp : public RewritePattern { FoldAffineOp(MLIRContext *context) : RewritePattern(affine::AffineApplyOp::getOperationName(), 0, context) {} LogicalResult matchAndRewrite(Operation *op, PatternRewriter &rewriter) const override { auto affineApplyOp = cast(op); auto map = affineApplyOp.getAffineMap(); if (map.getNumResults() != 1 || map.getNumInputs() > 1) return failure(); AffineExpr expr = map.getResult(0); if (map.getNumInputs() == 0) { if (auto val = dyn_cast(expr)) { rewriter.replaceOpWithNewOp(op, val.getValue()); return success(); } return failure(); } if (dyn_cast(expr) || dyn_cast(expr)) { rewriter.replaceOp(op, op->getOperand(0)); return success(); } return failure(); } }; template static void lowerLinalgToLoopsImpl(Operation *enclosingOp) { MLIRContext *context = enclosingOp->getContext(); RewritePatternSet patterns(context); patterns.add>(context); memref::DimOp::getCanonicalizationPatterns(patterns, context); tensor::DimOp::getCanonicalizationPatterns(patterns, context); affine::AffineApplyOp::getCanonicalizationPatterns(patterns, context); patterns.add(context); // Just apply the patterns greedily. (void)applyPatternsAndFoldGreedily(enclosingOp, std::move(patterns)); } struct LowerToAffineLoops : public impl::LinalgLowerToAffineLoopsBase { void getDependentDialects(DialectRegistry ®istry) const override { registry.insert(); } void runOnOperation() override { lowerLinalgToLoopsImpl(getOperation()); } }; struct LowerToLoops : public impl::LinalgLowerToLoopsBase { void getDependentDialects(DialectRegistry ®istry) const override { registry.insert(); } void runOnOperation() override { lowerLinalgToLoopsImpl(getOperation()); } }; struct LowerToParallelLoops : public impl::LinalgLowerToParallelLoopsBase { void runOnOperation() override { lowerLinalgToLoopsImpl(getOperation()); } }; } // namespace std::unique_ptr mlir::createConvertLinalgToLoopsPass() { return std::make_unique(); } std::unique_ptr mlir::createConvertLinalgToParallelLoopsPass() { return std::make_unique(); } std::unique_ptr mlir::createConvertLinalgToAffineLoopsPass() { return std::make_unique(); } /// Emits a loop nest of `affine.for` with the proper body for `linalgOp`. FailureOr mlir::linalg::linalgOpToAffineLoops(RewriterBase &rewriter, LinalgOp linalgOp) { return linalgOpToLoopsImpl(rewriter, linalgOp); } /// Emits a loop nest of `scf.for` with the proper body for `linalgOp`. FailureOr mlir::linalg::linalgOpToLoops(RewriterBase &rewriter, LinalgOp linalgOp) { return linalgOpToLoopsImpl(rewriter, linalgOp); } /// Emits a loop nest of `scf.parallel` with the proper body for `linalgOp`. FailureOr mlir::linalg::linalgOpToParallelLoops(RewriterBase &rewriter, LinalgOp linalgOp) { return linalgOpToLoopsImpl(rewriter, linalgOp); }