//===- MemRefUtils.cpp - Utilities to support the MemRef dialect ----------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements utilities for the MemRef dialect. // //===----------------------------------------------------------------------===// #include "mlir/Dialect/MemRef/Utils/MemRefUtils.h" #include "mlir/Dialect/Affine/IR/AffineOps.h" #include "mlir/Dialect/Arith/Utils/Utils.h" #include "mlir/Dialect/MemRef/IR/MemRef.h" #include "mlir/Dialect/Vector/IR/VectorOps.h" namespace mlir { namespace memref { bool isStaticShapeAndContiguousRowMajor(MemRefType type) { if (!type.hasStaticShape()) return false; SmallVector strides; int64_t offset; if (failed(getStridesAndOffset(type, strides, offset))) return false; // MemRef is contiguous if outer dimensions are size-1 and inner // dimensions have unit strides. int64_t runningStride = 1; int64_t curDim = strides.size() - 1; // Finds all inner dimensions with unit strides. while (curDim >= 0 && strides[curDim] == runningStride) { runningStride *= type.getDimSize(curDim); --curDim; } // Check if other dimensions are size-1. while (curDim >= 0 && type.getDimSize(curDim) == 1) { --curDim; } // All dims are unit-strided or size-1. return curDim < 0; } std::pair getLinearizedMemRefOffsetAndSize( OpBuilder &builder, Location loc, int srcBits, int dstBits, OpFoldResult offset, ArrayRef sizes, ArrayRef strides, ArrayRef indices) { unsigned sourceRank = sizes.size(); assert(sizes.size() == strides.size() && "expected as many sizes as strides for a memref"); SmallVector indicesVec = llvm::to_vector(indices); if (indices.empty()) indicesVec.resize(sourceRank, builder.getIndexAttr(0)); assert(indicesVec.size() == strides.size() && "expected as many indices as rank of memref"); // Create the affine symbols and values for linearization. SmallVector symbols(2 * sourceRank); bindSymbolsList(builder.getContext(), MutableArrayRef{symbols}); AffineExpr addMulMap = builder.getAffineConstantExpr(0); AffineExpr mulMap = builder.getAffineConstantExpr(1); SmallVector offsetValues(2 * sourceRank); SmallVector sizeValues(sourceRank); for (unsigned i = 0; i < sourceRank; ++i) { unsigned offsetIdx = 2 * i; addMulMap = addMulMap + symbols[offsetIdx] * symbols[offsetIdx + 1]; offsetValues[offsetIdx] = indicesVec[i]; offsetValues[offsetIdx + 1] = strides[i]; mulMap = mulMap * symbols[i]; } // Adjust linearizedIndices, size and offset by the scale factor (dstBits / // srcBits). int64_t scaler = dstBits / srcBits; addMulMap = addMulMap.floorDiv(scaler); mulMap = mulMap.floorDiv(scaler); OpFoldResult linearizedIndices = affine::makeComposedFoldedAffineApply( builder, loc, addMulMap, offsetValues); OpFoldResult linearizedSize = affine::makeComposedFoldedAffineApply(builder, loc, mulMap, sizes); // Adjust baseOffset by the scale factor (dstBits / srcBits). AffineExpr s0; bindSymbols(builder.getContext(), s0); OpFoldResult adjustBaseOffset = affine::makeComposedFoldedAffineApply( builder, loc, s0.floorDiv(scaler), {offset}); return {{adjustBaseOffset, linearizedSize}, linearizedIndices}; } LinearizedMemRefInfo getLinearizedMemRefOffsetAndSize(OpBuilder &builder, Location loc, int srcBits, int dstBits, OpFoldResult offset, ArrayRef sizes) { SmallVector strides(sizes.size()); if (!sizes.empty()) { strides.back() = builder.getIndexAttr(1); AffineExpr s0, s1; bindSymbols(builder.getContext(), s0, s1); for (int index = sizes.size() - 1; index > 0; --index) { strides[index - 1] = affine::makeComposedFoldedAffineApply( builder, loc, s0 * s1, ArrayRef{strides[index], sizes[index]}); } } LinearizedMemRefInfo linearizedMemRefInfo; std::tie(linearizedMemRefInfo, std::ignore) = getLinearizedMemRefOffsetAndSize(builder, loc, srcBits, dstBits, offset, sizes, strides); return linearizedMemRefInfo; } /// Returns true if all the uses of op are not read/load. /// There can be SubviewOp users as long as all its users are also /// StoreOp/transfer_write. If return true it also fills out the uses, if it /// returns false uses is unchanged. static bool resultIsNotRead(Operation *op, std::vector &uses) { std::vector opUses; for (OpOperand &use : op->getUses()) { Operation *useOp = use.getOwner(); if (isa(useOp) || (useOp->getNumResults() == 0 && useOp->getNumRegions() == 0 && !mlir::hasEffect(useOp)) || (isa(useOp) && resultIsNotRead(useOp, opUses))) { opUses.push_back(useOp); continue; } return false; } uses.insert(uses.end(), opUses.begin(), opUses.end()); return true; } void eraseDeadAllocAndStores(RewriterBase &rewriter, Operation *parentOp) { std::vector opToErase; parentOp->walk([&](memref::AllocOp op) { std::vector candidates; if (resultIsNotRead(op, candidates)) { opToErase.insert(opToErase.end(), candidates.begin(), candidates.end()); opToErase.push_back(op.getOperation()); } }); for (Operation *op : opToErase) rewriter.eraseOp(op); } } // namespace memref } // namespace mlir