//===- CudaRuntimeWrappers.cpp - MLIR CUDA API wrapper library ------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // Implements C wrappers around the CUDA library for easy linking in ORC jit. // Also adds some debugging helpers that are helpful when writing MLIR code to // run on GPUs. // //===----------------------------------------------------------------------===// #include "mlir/ExecutionEngine/CRunnerUtils.h" #include #include "cuda.h" #include "cuda_bf16.h" #include "cuda_fp16.h" #ifdef MLIR_ENABLE_CUDA_CUSPARSE #include "cusparse.h" #ifdef MLIR_ENABLE_CUDA_CUSPARSELT #include "cusparseLt.h" #endif // MLIR_ENABLE_CUDA_CUSPARSELT #endif // MLIR_ENABLE_CUDA_CUSPARSE #ifdef _WIN32 #define MLIR_CUDA_WRAPPERS_EXPORT __declspec(dllexport) #else #define MLIR_CUDA_WRAPPERS_EXPORT __attribute__((visibility("default"))) #endif // _WIN32 #define CUDA_REPORT_IF_ERROR(expr) \ [](CUresult result) { \ if (!result) \ return; \ const char *name = nullptr; \ cuGetErrorName(result, &name); \ if (!name) \ name = ""; \ fprintf(stderr, "'%s' failed with '%s'\n", #expr, name); \ }(expr) #define CUSPARSE_REPORT_IF_ERROR(expr) \ { \ cusparseStatus_t status = (expr); \ if (status != CUSPARSE_STATUS_SUCCESS) { \ fprintf(stderr, "cuSPARSE '%s' failed with '%s'\n", #expr, \ cusparseGetErrorString(status)); \ } \ } thread_local static int32_t defaultDevice = 0; const char *kDebugEnvironmentVariable = "MLIR_CUDA_DEBUG"; /// Helper method that checks environment value for debugging. bool isDebugEnabled() { static bool isInitialized = false; static bool isEnabled = false; if (!isInitialized) isEnabled = getenv(kDebugEnvironmentVariable) != nullptr; return isEnabled; } #define debug_print(fmt, ...) \ do { \ if (isDebugEnabled()) \ fprintf(stderr, "%s:%d:%s(): " fmt, "CudaRuntimeWrappers.cpp", __LINE__, \ __func__, __VA_ARGS__); \ } while (0) // Returns default CUdevice CUdevice getDefaultCuDevice() { CUdevice device; CUDA_REPORT_IF_ERROR(cuDeviceGet(&device, /*ordinal=*/defaultDevice)); return device; } // Make the primary context of the current default device current for the // duration // of the instance and restore the previous context on destruction. class ScopedContext { public: ScopedContext() { // Static reference to CUDA primary context for device ordinal // defaultDevice. static CUcontext context = [] { CUDA_REPORT_IF_ERROR(cuInit(/*flags=*/0)); CUcontext ctx; // Note: this does not affect the current context. CUDA_REPORT_IF_ERROR( cuDevicePrimaryCtxRetain(&ctx, getDefaultCuDevice())); return ctx; }(); CUDA_REPORT_IF_ERROR(cuCtxPushCurrent(context)); } ~ScopedContext() { CUDA_REPORT_IF_ERROR(cuCtxPopCurrent(nullptr)); } }; #ifdef MLIR_ENABLE_CUDA_CUSPARSE // Note that (1) Nvidia confirms the safety to share handle across multiple // instances, and streams. (2) Clients are responsible to call the @mgpu // environment initialization/destruction in a thread-safe manner, e.g., // at the beginning of the program before multi-threads are created. static cusparseHandle_t cusparse_env = nullptr; #ifdef MLIR_ENABLE_CUDA_CUSPARSELT // cusparseLtHandle_t is not a pointer type, so we need an additional flag to // indicate whether it is initialized. static cusparseLtHandle_t cusparseLt_env; static bool cusparseLt_initiated = false; #endif // MLIR_ENABLE_CUDA_CUSPARSELT #endif // MLIR_ENABLE_CUDA_CUSPARSE extern "C" MLIR_CUDA_WRAPPERS_EXPORT CUmodule mgpuModuleLoad(void *data, size_t /*gpuBlobSize*/) { ScopedContext scopedContext; CUmodule module = nullptr; CUDA_REPORT_IF_ERROR(cuModuleLoadData(&module, data)); return module; } extern "C" MLIR_CUDA_WRAPPERS_EXPORT CUmodule mgpuModuleLoadJIT(void *data, int optLevel) { ScopedContext scopedContext; CUmodule module = nullptr; char jitErrorBuffer[4096] = {0}; CUjit_option jitOptions[] = {CU_JIT_ERROR_LOG_BUFFER, CU_JIT_ERROR_LOG_BUFFER_SIZE_BYTES, CU_JIT_OPTIMIZATION_LEVEL}; void *jitOptionsVals[] = {jitErrorBuffer, reinterpret_cast(sizeof(jitErrorBuffer)), reinterpret_cast(optLevel)}; CUresult result = cuModuleLoadDataEx(&module, data, 3, jitOptions, jitOptionsVals); if (result) { fprintf(stderr, "JIT compilation failed with: '%s'\n", jitErrorBuffer); CUDA_REPORT_IF_ERROR(result); } return module; } extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuModuleUnload(CUmodule module) { CUDA_REPORT_IF_ERROR(cuModuleUnload(module)); } extern "C" MLIR_CUDA_WRAPPERS_EXPORT CUfunction mgpuModuleGetFunction(CUmodule module, const char *name) { CUfunction function = nullptr; CUDA_REPORT_IF_ERROR(cuModuleGetFunction(&function, module, name)); return function; } // The wrapper uses intptr_t instead of CUDA's unsigned int to match // the type of MLIR's index type. This avoids the need for casts in the // generated MLIR code. extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuLaunchKernel(CUfunction function, intptr_t gridX, intptr_t gridY, intptr_t gridZ, intptr_t blockX, intptr_t blockY, intptr_t blockZ, int32_t smem, CUstream stream, void **params, void **extra, size_t /*paramsCount*/) { ScopedContext scopedContext; if (smem > 0) { // Avoid checking driver as it's more expensive than if statement int32_t maxShmem = 0; CUdevice device = getDefaultCuDevice(); CUDA_REPORT_IF_ERROR(cuDeviceGet(&device, /*ordinal=*/defaultDevice)); CUDA_REPORT_IF_ERROR(cuDeviceGetAttribute( &maxShmem, CU_DEVICE_ATTRIBUTE_MAX_SHARED_MEMORY_PER_BLOCK_OPTIN, device)); if (maxShmem < smem) { fprintf(stderr, "Requested shared memory (%dkb) is larger than maximum allowed " "shared memory (%dkb) for this device\n", smem, maxShmem); } CUDA_REPORT_IF_ERROR(cuFuncSetAttribute( function, CU_FUNC_ATTRIBUTE_MAX_DYNAMIC_SHARED_SIZE_BYTES, smem)); } debug_print("Launching kernel, grid=%ld,%ld,%ld, " "threads: %ld, %ld, %ld, " "smem: %dkb\n", gridX, gridY, gridZ, blockX, blockY, blockZ, smem); CUDA_REPORT_IF_ERROR(cuLaunchKernel(function, gridX, gridY, gridZ, blockX, blockY, blockZ, smem, stream, params, extra)); } extern "C" MLIR_CUDA_WRAPPERS_EXPORT CUstream mgpuStreamCreate() { ScopedContext scopedContext; CUstream stream = nullptr; CUDA_REPORT_IF_ERROR(cuStreamCreate(&stream, CU_STREAM_NON_BLOCKING)); return stream; } extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuStreamDestroy(CUstream stream) { CUDA_REPORT_IF_ERROR(cuStreamDestroy(stream)); } extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuStreamSynchronize(CUstream stream) { CUDA_REPORT_IF_ERROR(cuStreamSynchronize(stream)); } extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuStreamWaitEvent(CUstream stream, CUevent event) { CUDA_REPORT_IF_ERROR(cuStreamWaitEvent(stream, event, /*flags=*/0)); } extern "C" MLIR_CUDA_WRAPPERS_EXPORT CUevent mgpuEventCreate() { ScopedContext scopedContext; CUevent event = nullptr; CUDA_REPORT_IF_ERROR(cuEventCreate(&event, CU_EVENT_DISABLE_TIMING)); return event; } extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuEventDestroy(CUevent event) { CUDA_REPORT_IF_ERROR(cuEventDestroy(event)); } extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuEventSynchronize(CUevent event) { CUDA_REPORT_IF_ERROR(cuEventSynchronize(event)); } extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuEventRecord(CUevent event, CUstream stream) { CUDA_REPORT_IF_ERROR(cuEventRecord(event, stream)); } extern "C" MLIR_CUDA_WRAPPERS_EXPORT void * mgpuMemAlloc(uint64_t sizeBytes, CUstream /*stream*/, bool /*isHostShared*/) { ScopedContext scopedContext; CUdeviceptr ptr = 0; if (sizeBytes != 0) CUDA_REPORT_IF_ERROR(cuMemAlloc(&ptr, sizeBytes)); return reinterpret_cast(ptr); } extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuMemFree(void *ptr, CUstream /*stream*/) { CUDA_REPORT_IF_ERROR(cuMemFree(reinterpret_cast(ptr))); } extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuMemcpy(void *dst, void *src, size_t sizeBytes, CUstream stream) { CUDA_REPORT_IF_ERROR(cuMemcpyAsync(reinterpret_cast(dst), reinterpret_cast(src), sizeBytes, stream)); } extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuMemset32(void *dst, unsigned int value, size_t count, CUstream stream) { CUDA_REPORT_IF_ERROR(cuMemsetD32Async(reinterpret_cast(dst), value, count, stream)); } extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuMemset16(void *dst, unsigned short value, size_t count, CUstream stream) { CUDA_REPORT_IF_ERROR(cuMemsetD16Async(reinterpret_cast(dst), value, count, stream)); } /// /// Helper functions for writing mlir example code /// // Allows to register byte array with the CUDA runtime. Helpful until we have // transfer functions implemented. extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuMemHostRegister(void *ptr, uint64_t sizeBytes) { ScopedContext scopedContext; CUDA_REPORT_IF_ERROR(cuMemHostRegister(ptr, sizeBytes, /*flags=*/0)); } /// Registers a memref with the CUDA runtime. `descriptor` is a pointer to a /// ranked memref descriptor struct of rank `rank`. Helpful until we have /// transfer functions implemented. extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuMemHostRegisterMemRef(int64_t rank, StridedMemRefType *descriptor, int64_t elementSizeBytes) { // Only densely packed tensors are currently supported. int64_t *denseStrides = (int64_t *)alloca(rank * sizeof(int64_t)); int64_t *sizes = descriptor->sizes; for (int64_t i = rank - 1, runningStride = 1; i >= 0; i--) { denseStrides[i] = runningStride; runningStride *= sizes[i]; } uint64_t sizeBytes = sizes[0] * denseStrides[0] * elementSizeBytes; int64_t *strides = &sizes[rank]; (void)strides; for (unsigned i = 0; i < rank; ++i) assert(strides[i] == denseStrides[i] && "Mismatch in computed dense strides"); auto *ptr = descriptor->data + descriptor->offset * elementSizeBytes; mgpuMemHostRegister(ptr, sizeBytes); } // Allows to unregister byte array with the CUDA runtime. extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuMemHostUnregister(void *ptr) { ScopedContext scopedContext; CUDA_REPORT_IF_ERROR(cuMemHostUnregister(ptr)); } /// Unregisters a memref with the CUDA runtime. `descriptor` is a pointer to a /// ranked memref descriptor struct of rank `rank` extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuMemHostUnregisterMemRef(int64_t rank, StridedMemRefType *descriptor, int64_t elementSizeBytes) { auto *ptr = descriptor->data + descriptor->offset * elementSizeBytes; mgpuMemHostUnregister(ptr); } extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuSetDefaultDevice(int32_t device) { defaultDevice = device; } /// /// Runtime methods using CUDA 12.0+ driver /// #if (CUDA_VERSION >= 12000) extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuLaunchClusterKernel( CUfunction function, intptr_t clusterX, intptr_t clusterY, intptr_t clusterZ, intptr_t gridX, intptr_t gridY, intptr_t gridZ, intptr_t blockX, intptr_t blockY, intptr_t blockZ, int32_t smem, CUstream stream, void **params, void **extra, size_t /*paramsCount*/) { ScopedContext scopedContext; if (smem > 0) { // Avoid checking driver as it's more expensive than if statement int32_t maxShmem = 0; CUdevice device = getDefaultCuDevice(); CUDA_REPORT_IF_ERROR(cuDeviceGet(&device, /*ordinal=*/defaultDevice)); CUDA_REPORT_IF_ERROR(cuDeviceGetAttribute( &maxShmem, CU_DEVICE_ATTRIBUTE_MAX_SHARED_MEMORY_PER_BLOCK_OPTIN, device)); if (maxShmem < smem) { fprintf(stderr, "Requested shared memory (%dkb) is larger than maximum allowed " "shared memory (%dkb) for this device\n", smem, maxShmem); } CUDA_REPORT_IF_ERROR(cuFuncSetAttribute( function, CU_FUNC_ATTRIBUTE_MAX_DYNAMIC_SHARED_SIZE_BYTES, smem)); } CUlaunchConfig config; config.gridDimX = gridX; config.gridDimY = gridY; config.gridDimZ = gridZ; config.blockDimX = blockX; config.blockDimY = blockY; config.blockDimZ = blockZ; config.sharedMemBytes = smem; config.hStream = stream; CUlaunchAttribute launchAttr[2]; launchAttr[0].id = CU_LAUNCH_ATTRIBUTE_CLUSTER_DIMENSION; launchAttr[0].value.clusterDim.x = clusterX; launchAttr[0].value.clusterDim.y = clusterY; launchAttr[0].value.clusterDim.z = clusterZ; launchAttr[1].id = CU_LAUNCH_ATTRIBUTE_CLUSTER_SCHEDULING_POLICY_PREFERENCE; launchAttr[1].value.clusterSchedulingPolicyPreference = CU_CLUSTER_SCHEDULING_POLICY_SPREAD; config.numAttrs = 2; config.attrs = launchAttr; debug_print("Launching kernel," "cluster: %ld, %ld, %ld, " "grid=%ld,%ld,%ld, " "threads: %ld, %ld, %ld, " "smem: %dkb\n", clusterX, clusterY, clusterZ, gridX, gridY, gridZ, blockX, blockY, blockZ, smem); CUDA_REPORT_IF_ERROR(cuLaunchKernelEx(&config, function, params, extra)); } extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuTensorMapEncodeTiled( CUtensorMap *tensorMap, // Tensor map object CUtensorMapDataType tensorDataType, // Tensor data type cuuint32_t tensorRank, // Dimensionality of tensor void *globalAddress, // Starting address const cuuint64_t *globalDim, // Tensor size (number of elements) const cuuint64_t *globalStrides, // Stride size (in bytes) const cuuint32_t *boxDim, // Traversal box (number of elments) const cuuint32_t *elementStrides, // Traversal stride CUtensorMapInterleave interleave, // Type of interleaved layout CUtensorMapSwizzle swizzle, // Bank swizzling pattern CUtensorMapL2promotion l2Promotion, // L2 promotion size CUtensorMapFloatOOBfill oobFill // Padding zfill or NaN fill ) { ScopedContext scopedContext; CUDA_REPORT_IF_ERROR(cuTensorMapEncodeTiled( tensorMap, tensorDataType, tensorRank, globalAddress, globalDim, globalStrides, boxDim, elementStrides, interleave, swizzle, l2Promotion, oobFill)); debug_print("Created TMA descriptor\n Addr: %p\n" "data type : %d\n" "rank : %d\n" "globalDim[5]: %zu, %zu, %zu, %zu, %zu\n" "globalStrides[5]: %zu, %zu, %zu, %zu, %zu\n" "boxDim[5]: %u, %u, %u, %u, %u\n" "elementStrides[5]: %u, %u, %u, %u, %u\n" "interleave: %u \n" "swizzle: %u \n" "l2Promotion: %u \n" "oobFill: %u \n", (void *)&tensorMap, tensorDataType, tensorRank, globalDim[0], globalDim[1], globalDim[2], globalDim[3], globalDim[4], globalStrides[0], globalStrides[1], globalStrides[2], globalStrides[3], globalStrides[4], boxDim[0], boxDim[1], boxDim[2], boxDim[3], boxDim[4], elementStrides[0], elementStrides[1], elementStrides[2], elementStrides[3], elementStrides[4], interleave, swizzle, l2Promotion, oobFill); } namespace { template void mgpuGetMemRefDataAndShape(void *raw_descriptor, char **addr, uint64_t *globalDim) { auto descriptor = reinterpret_cast *>(raw_descriptor); *addr = descriptor->data; for (int i = 0; i < rank; ++i) { globalDim[i] = static_cast(descriptor->sizes[rank - i - 1]); } } } // namespace extern "C" MLIR_CUDA_WRAPPERS_EXPORT void *mgpuTensorMapEncodeTiledMemref( int64_t tensorRank, // Dimensionality of tensor void *ranked_descriptor, // Ranked MemRef descriptor const CUtensorMapDataType tensorDataType, // Stride size (in bytes) CUtensorMapInterleave interleave, // Type of interleaved layout CUtensorMapSwizzle swizzle, // Bank swizzling pattern CUtensorMapL2promotion l2Promotion, // L2 promotion size CUtensorMapFloatOOBfill oobFill, // Padding zfill or NaN fill int64_t *inputBoxDims // Tensor size (number of elements) ) { CUtensorMap tensorMap; uint32_t boxDim[5] = {1, 1, 1, 1, 1}, elementStrides[5] = {1, 1, 1, 1, 1}; uint64_t globalDim[5] = {1, 1, 1, 1, 1}, globalStrides[5] = {0}; uint32_t tensorRank32 = uint32_t(tensorRank); char *globalAddress = nullptr; switch (tensorRank) { case 1: mgpuGetMemRefDataAndShape<1>(ranked_descriptor, &globalAddress, globalDim); break; case 2: mgpuGetMemRefDataAndShape<2>(ranked_descriptor, &globalAddress, globalDim); break; case 3: mgpuGetMemRefDataAndShape<3>(ranked_descriptor, &globalAddress, globalDim); break; case 4: mgpuGetMemRefDataAndShape<4>(ranked_descriptor, &globalAddress, globalDim); break; case 5: mgpuGetMemRefDataAndShape<5>(ranked_descriptor, &globalAddress, globalDim); break; default: fprintf( stderr, "'mgpuTensorMapEncodeTiledMemref' failed with 'rank is too high'\n"); return NULL; } static const int elementSizeInBytes[] = {1, 2, 4, 4, 8, 8, 2, 4, 8, 2, 4, 4, 4}; for (int64_t r = 0; r < tensorRank; ++r) { elementStrides[r] = uint32_t(1); boxDim[r] = static_cast(inputBoxDims[tensorRank - r - 1]); } globalStrides[0] = globalDim[0] * elementSizeInBytes[tensorDataType]; for (int r = 1; r < tensorRank - 1; r++) globalStrides[r] = globalStrides[r - 1] * globalDim[r]; ScopedContext scopedContext; mgpuTensorMapEncodeTiled(&tensorMap, tensorDataType, tensorRank32, globalAddress, globalDim, globalStrides, boxDim, elementStrides, interleave, swizzle, l2Promotion, oobFill); // Copy created tensor map to device CUdeviceptr dTensorMap; CUDA_REPORT_IF_ERROR(cuMemAlloc(&dTensorMap, sizeof(CUtensorMap))); CUDA_REPORT_IF_ERROR(cuMemcpy(dTensorMap, reinterpret_cast(&tensorMap), sizeof(CUtensorMap))); return reinterpret_cast(dTensorMap); } #endif #ifdef MLIR_ENABLE_CUDA_CUSPARSE /// /// Wrapper methods for the cuSparse library. /// // Some macro magic to get float/double alpha and beta on host. // TODO: add support to passing alpha and beta as arguments #define ALPHABETA(dtp, alpha, beta) \ __nv_bfloat16(alpha##16bf) = 1.0f; \ __nv_bfloat16(beta##16bf) = 1.0f; \ __half(alpha##16f) = 1.0f; \ __half(beta##16f) = 1.0f; \ float(alpha##f) = 1.0f; \ float(beta##f) = 1.0f; \ double(alpha##d) = 1.0; \ double(beta##d) = 1.0; \ const void *(alpha##p) = nullptr; \ const void *(beta##p) = nullptr; \ if (dtp == CUDA_R_16BF || dtp == CUDA_C_16BF) { \ (alpha##p) = reinterpret_cast(&(alpha##16bf)); \ (beta##p) = reinterpret_cast(&(beta##16bf)); \ } else if (dtp == CUDA_R_16F || dtp == CUDA_C_16F) { \ (alpha##p) = reinterpret_cast(&(alpha##16f)); \ (beta##p) = reinterpret_cast(&(beta##16f)); \ } else if (dtp == CUDA_R_32F || dtp == CUDA_C_32F) { \ (alpha##p) = reinterpret_cast(&(alpha##f)); \ (beta##p) = reinterpret_cast(&(beta##f)); \ } else { \ (alpha##p) = reinterpret_cast(&(alpha##d)); \ (beta##p) = reinterpret_cast(&(beta##d)); \ } extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuCreateSparseEnv() { // ScopedContext is for cuda initialization. ScopedContext scopedContext; assert(!cusparse_env && "client called mgpuCreateSparseEnv() twice"); CUSPARSE_REPORT_IF_ERROR(cusparseCreate(&cusparse_env)); } extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuDestroySparseEnv() { assert(cusparse_env && "client did not call mgpuCreateSparseEnv()"); CUSPARSE_REPORT_IF_ERROR(cusparseDestroy(cusparse_env)); cusparse_env = nullptr; } extern "C" MLIR_CUDA_WRAPPERS_EXPORT void * mgpuCreateDnVec(intptr_t size, void *values, int32_t dtp, CUstream /*stream*/) { cusparseDnVecDescr_t vec = nullptr; auto dTp = static_cast(dtp); CUSPARSE_REPORT_IF_ERROR(cusparseCreateDnVec(&vec, size, values, dTp)) return reinterpret_cast(vec); } extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuDestroyDnVec(void *v, CUstream /*stream*/) { cusparseDnVecDescr_t vec = reinterpret_cast(v); CUSPARSE_REPORT_IF_ERROR(cusparseDestroyDnVec(vec)) } extern "C" MLIR_CUDA_WRAPPERS_EXPORT void * mgpuCreateDnMat(intptr_t rows, intptr_t cols, void *values, int32_t dtp, CUstream /*stream*/) { cusparseDnMatDescr_t mat = nullptr; auto dTp = static_cast(dtp); CUSPARSE_REPORT_IF_ERROR(cusparseCreateDnMat(&mat, rows, cols, /*ld=*/cols, values, dTp, CUSPARSE_ORDER_ROW)) return reinterpret_cast(mat); } extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuDestroyDnMat(void *m, CUstream /*stream*/) { cusparseDnMatDescr_t mat = reinterpret_cast(m); CUSPARSE_REPORT_IF_ERROR(cusparseDestroyDnMat(mat)) } extern "C" MLIR_CUDA_WRAPPERS_EXPORT void * mgpuCreateCoo(intptr_t rows, intptr_t cols, intptr_t nnz, void *rowIdxs, void *colIdxs, void *values, int32_t itp, int32_t dtp, CUstream /*stream*/) { cusparseSpMatDescr_t mat = nullptr; auto iTp = static_cast(itp); auto dTp = static_cast(dtp); CUSPARSE_REPORT_IF_ERROR(cusparseCreateCoo(&mat, rows, cols, nnz, rowIdxs, colIdxs, values, iTp, CUSPARSE_INDEX_BASE_ZERO, dTp)) return reinterpret_cast(mat); } #ifdef CUSPARSE_COO_AOS // deprecated in cuSPARSE 11.2 extern "C" MLIR_CUDA_WRAPPERS_EXPORT void * mgpuCreateCooAoS(intptr_t rows, intptr_t cols, intptr_t nnz, void *idxs, void *values, int32_t itp, int32_t dtp, CUstream /*stream*/) { cusparseSpMatDescr_t mat = nullptr; auto iTp = static_cast(itp); auto dTp = static_cast(dtp); CUSPARSE_REPORT_IF_ERROR(cusparseCreateCooAoS( &mat, rows, cols, nnz, idxs, values, iTp, CUSPARSE_INDEX_BASE_ZERO, dTp)) return reinterpret_cast(mat); } #endif // CUSPARSE_COO_AOS extern "C" MLIR_CUDA_WRAPPERS_EXPORT void * mgpuCreateCsr(intptr_t rows, intptr_t cols, intptr_t nnz, void *rowPos, void *colIdxs, void *values, int32_t ptp, int32_t itp, int32_t dtp, CUstream /*stream*/) { cusparseSpMatDescr_t mat = nullptr; auto pTp = static_cast(ptp); auto iTp = static_cast(itp); auto dTp = static_cast(dtp); CUSPARSE_REPORT_IF_ERROR(cusparseCreateCsr(&mat, rows, cols, nnz, rowPos, colIdxs, values, pTp, iTp, CUSPARSE_INDEX_BASE_ZERO, dTp)) return reinterpret_cast(mat); } extern "C" MLIR_CUDA_WRAPPERS_EXPORT void * mgpuCreateCsc(intptr_t rows, intptr_t cols, intptr_t nnz, void *colPos, void *rowIdxs, void *values, int32_t ptp, int32_t itp, int32_t dtp, CUstream /*stream*/) { cusparseSpMatDescr_t mat = nullptr; auto pTp = static_cast(ptp); auto iTp = static_cast(itp); auto dTp = static_cast(dtp); CUSPARSE_REPORT_IF_ERROR(cusparseCreateCsc(&mat, rows, cols, nnz, colPos, rowIdxs, values, pTp, iTp, CUSPARSE_INDEX_BASE_ZERO, dTp)) return reinterpret_cast(mat); } extern "C" MLIR_CUDA_WRAPPERS_EXPORT void * mgpuCreateBsr(intptr_t brows, intptr_t bcols, intptr_t bnnz, intptr_t rBsz, intptr_t cBsz, void *rowPos, void *colIdxs, void *values, int32_t ptp, int32_t itp, int32_t dtp, CUstream /*stream*/) { cusparseSpMatDescr_t mat = nullptr; #if CUSPARSE_VERSION >= 12100 auto pTp = static_cast(ptp); auto iTp = static_cast(itp); auto dTp = static_cast(dtp); CUSPARSE_REPORT_IF_ERROR(cusparseCreateBsr( &mat, brows, bcols, bnnz, rBsz, cBsz, rowPos, colIdxs, values, pTp, iTp, CUSPARSE_INDEX_BASE_ZERO, dTp, CUSPARSE_ORDER_ROW)) #endif return reinterpret_cast(mat); } extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuDestroySpMat(void *m, CUstream /*stream*/) { cusparseSpMatDescr_t mat = reinterpret_cast(m); CUSPARSE_REPORT_IF_ERROR(cusparseDestroySpMat(mat)) } extern "C" MLIR_CUDA_WRAPPERS_EXPORT intptr_t mgpuSpMVBufferSize( int32_t ma, void *a, void *x, void *y, int32_t ctp, CUstream /*stream*/) { assert(cusparse_env && "client did not call mgpuCreateSparseEnv()"); cusparseOperation_t modeA = static_cast(ma); cusparseSpMatDescr_t matA = reinterpret_cast(a); cusparseDnVecDescr_t vecX = reinterpret_cast(x); cusparseDnVecDescr_t vecY = reinterpret_cast(y); cudaDataType_t cTp = static_cast(ctp); ALPHABETA(cTp, alpha, beta) size_t bufferSize = 0; CUSPARSE_REPORT_IF_ERROR(cusparseSpMV_bufferSize( cusparse_env, modeA, alphap, matA, vecX, betap, vecY, cTp, CUSPARSE_SPMV_ALG_DEFAULT, &bufferSize)) return bufferSize; } extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuSpMV(int32_t ma, void *a, void *x, void *y, int32_t ctp, void *buf, CUstream /*stream*/) { assert(cusparse_env && "client did not call mgpuCreateSparseEnv()"); cusparseOperation_t modeA = static_cast(ma); cusparseSpMatDescr_t matA = reinterpret_cast(a); cusparseDnVecDescr_t vecX = reinterpret_cast(x); cusparseDnVecDescr_t vecY = reinterpret_cast(y); cudaDataType_t cTp = static_cast(ctp); ALPHABETA(cTp, alpha, beta) CUSPARSE_REPORT_IF_ERROR(cusparseSpMV(cusparse_env, modeA, alphap, matA, vecX, betap, vecY, cTp, CUSPARSE_SPMV_ALG_DEFAULT, buf)) } extern "C" MLIR_CUDA_WRAPPERS_EXPORT intptr_t mgpuSpMMBufferSize(int32_t ma, int32_t mb, void *a, void *b, void *c, int32_t ctp, CUstream /*stream*/) { assert(cusparse_env && "client did not call mgpuCreateSparseEnv()"); cusparseOperation_t modeA = static_cast(ma); cusparseOperation_t modeB = static_cast(mb); cusparseSpMatDescr_t matA = reinterpret_cast(a); cusparseDnMatDescr_t matB = reinterpret_cast(b); cusparseDnMatDescr_t matC = reinterpret_cast(c); cudaDataType_t cTp = static_cast(ctp); ALPHABETA(cTp, alpha, beta) size_t bufferSize = 0; CUSPARSE_REPORT_IF_ERROR(cusparseSpMM_bufferSize( cusparse_env, modeA, modeB, alphap, matA, matB, betap, matC, cTp, CUSPARSE_SPMM_ALG_DEFAULT, &bufferSize)) return bufferSize; } extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuSpMM(int32_t ma, int32_t mb, void *a, void *b, void *c, int32_t ctp, void *buf, CUstream /*stream*/) { assert(cusparse_env && "client did not call mgpuCreateSparseEnv()"); cusparseOperation_t modeA = static_cast(ma); cusparseOperation_t modeB = static_cast(mb); cusparseSpMatDescr_t matA = reinterpret_cast(a); cusparseDnMatDescr_t matB = reinterpret_cast(b); cusparseDnMatDescr_t matC = reinterpret_cast(c); cudaDataType_t cTp = static_cast(ctp); ALPHABETA(cTp, alpha, beta) CUSPARSE_REPORT_IF_ERROR(cusparseSpMM(cusparse_env, modeA, modeB, alphap, matA, matB, betap, matC, cTp, CUSPARSE_SPMM_ALG_DEFAULT, buf)) } extern "C" MLIR_CUDA_WRAPPERS_EXPORT intptr_t mgpuSDDMMBufferSize(int32_t ma, int32_t mb, void *a, void *b, void *c, int32_t ctp, CUstream /*stream*/) { assert(cusparse_env && "client did not call mgpuCreateSparseEnv()"); cusparseOperation_t modeA = static_cast(ma); cusparseOperation_t modeB = static_cast(mb); cusparseDnMatDescr_t matA = reinterpret_cast(a); cusparseDnMatDescr_t matB = reinterpret_cast(b); cusparseSpMatDescr_t matC = reinterpret_cast(c); auto cTp = static_cast(ctp); ALPHABETA(cTp, alpha, beta) size_t bufferSize = 0; CUSPARSE_REPORT_IF_ERROR(cusparseSDDMM_bufferSize( cusparse_env, modeA, modeB, alphap, matA, matB, betap, matC, cTp, CUSPARSE_SDDMM_ALG_DEFAULT, &bufferSize)) return bufferSize; } extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuSDDMM(int32_t ma, int32_t mb, void *a, void *b, void *c, int32_t ctp, void *buf, CUstream /*stream*/) { assert(cusparse_env && "client did not call mgpuCreateSparseEnv()"); cusparseOperation_t modeA = static_cast(ma); cusparseOperation_t modeB = static_cast(mb); cusparseDnMatDescr_t matA = reinterpret_cast(a); cusparseDnMatDescr_t matB = reinterpret_cast(b); cusparseSpMatDescr_t matC = reinterpret_cast(c); auto cTp = static_cast(ctp); ALPHABETA(cTp, alpha, beta) CUSPARSE_REPORT_IF_ERROR(cusparseSDDMM(cusparse_env, modeA, modeB, alphap, matA, matB, betap, matC, cTp, CUSPARSE_SDDMM_ALG_DEFAULT, buf)) } extern "C" MLIR_CUDA_WRAPPERS_EXPORT void * mgpuSpGEMMCreateDescr(CUstream /*stream*/) { cusparseSpGEMMDescr_t spgemmDesc = nullptr; CUSPARSE_REPORT_IF_ERROR(cusparseSpGEMM_createDescr(&spgemmDesc)) return reinterpret_cast(spgemmDesc); } extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuSpGEMMDestroyDescr(void *s, CUstream /*stream*/) { cusparseSpGEMMDescr_t spgemmDesc = reinterpret_cast(s); CUSPARSE_REPORT_IF_ERROR(cusparseSpGEMM_destroyDescr(spgemmDesc)) } extern "C" MLIR_CUDA_WRAPPERS_EXPORT intptr_t mgpuSpGEMMWorkEstimation( void *s, int32_t ma, int32_t mb, void *a, void *b, void *c, int32_t ctp, intptr_t bs, void *buf, CUstream /*stream*/) { cusparseSpGEMMDescr_t spgemmDesc = reinterpret_cast(s); cusparseOperation_t modeA = static_cast(ma); cusparseOperation_t modeB = static_cast(mb); cusparseSpMatDescr_t matA = reinterpret_cast(a); cusparseSpMatDescr_t matB = reinterpret_cast(b); cusparseSpMatDescr_t matC = reinterpret_cast(c); auto cTp = static_cast(ctp); ALPHABETA(cTp, alpha, beta) size_t newBufferSize = bs; CUSPARSE_REPORT_IF_ERROR(cusparseSpGEMM_workEstimation( cusparse_env, modeA, modeB, alphap, matA, matB, betap, matC, cTp, CUSPARSE_SPGEMM_DEFAULT, spgemmDesc, &newBufferSize, buf)) return newBufferSize; } extern "C" MLIR_CUDA_WRAPPERS_EXPORT intptr_t mgpuSpGEMMCompute(void *s, int32_t ma, int32_t mb, void *a, void *b, void *c, int32_t ctp, intptr_t bsz2, void *buf2, CUstream /*stream*/) { cusparseSpGEMMDescr_t spgemmDesc = reinterpret_cast(s); cusparseOperation_t modeA = static_cast(ma); cusparseOperation_t modeB = static_cast(mb); cusparseSpMatDescr_t matA = reinterpret_cast(a); cusparseSpMatDescr_t matB = reinterpret_cast(b); cusparseSpMatDescr_t matC = reinterpret_cast(c); auto cTp = static_cast(ctp); ALPHABETA(cTp, alpha, beta) size_t newBufferSize2 = bsz2; CUSPARSE_REPORT_IF_ERROR(cusparseSpGEMM_compute( cusparse_env, modeA, modeB, alphap, matA, matB, betap, matC, cTp, CUSPARSE_SPGEMM_DEFAULT, spgemmDesc, &newBufferSize2, buf2)) return newBufferSize2; } extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuSpGEMMCopy(void *s, int32_t ma, int32_t mb, void *a, void *b, void *c, int32_t ctp, CUstream /*stream*/) { cusparseSpGEMMDescr_t spgemmDesc = reinterpret_cast(s); cusparseOperation_t modeA = static_cast(ma); cusparseOperation_t modeB = static_cast(mb); cusparseSpMatDescr_t matA = reinterpret_cast(a); cusparseSpMatDescr_t matB = reinterpret_cast(b); cusparseSpMatDescr_t matC = reinterpret_cast(c); auto cTp = static_cast(ctp); ALPHABETA(cTp, alpha, beta) CUSPARSE_REPORT_IF_ERROR( cusparseSpGEMM_copy(cusparse_env, modeA, modeB, alphap, matA, matB, betap, matC, cTp, CUSPARSE_SPGEMM_DEFAULT, spgemmDesc)) } extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuSpMatGetSize(void *m, void *r, void *c, void *n, CUstream /*stream*/) { cusparseConstSpMatDescr_t matDescr = reinterpret_cast(m); int64_t *rows = reinterpret_cast(r); int64_t *cols = reinterpret_cast(c); int64_t *nnz = reinterpret_cast(n); CUSPARSE_REPORT_IF_ERROR(cusparseSpMatGetSize(matDescr, rows, cols, nnz)); } extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuSetCsrPointers(void *m, void *p, void *c, void *v, CUstream /*stream*/) { cusparseSpMatDescr_t matDescr = reinterpret_cast(m); CUSPARSE_REPORT_IF_ERROR(cusparseCsrSetPointers(matDescr, p, c, v)); } #ifdef MLIR_ENABLE_CUDA_CUSPARSELT /// /// Wrapper methods for the cuSparseLt library. /// struct cusparseLtSpMatHandleAndData { cusparseLtMatDescriptor_t mat; // TODO: the following three are associated with the SpMM operator rather than // the sparse matrix. Create workspace buffers and pass them to the SpMM // execution. cusparseLtMatmulAlgSelection_t alg_sel; cusparseLtMatmulPlan_t plan; cusparseLtMatmulDescriptor_t matmul; void *values{nullptr}; }; struct cusparseLtDnMatHandleAndData { cusparseLtMatDescriptor_t mat; void *values{nullptr}; }; static_assert(sizeof(cusparseLtHandle_t) == 11024, "Unexpected cusparseLt handle size"); static_assert(sizeof(cusparseLtSpMatHandleAndData) == 44104, "Unexpected cusparseLt sparse matrix handle size"); static_assert(sizeof(cusparseLtDnMatHandleAndData) == 11032, "Unexpected cusparseLt dense matrix handle size"); extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuCreateSparseLtEnv() { // ScopedContext is for cuda initialization. ScopedContext scopedContext; assert(!cusparseLt_initiated && "client called mgpuCreateSparseLtEnv() twice"); // Note that cuSparseLt still uses cusparseStatus_t. CUSPARSE_REPORT_IF_ERROR(cusparseLtInit(&cusparseLt_env)); cusparseLt_initiated = true; } extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuDestroySparseLtEnv() { assert(cusparseLt_initiated && "client did not call mgpuCreateSparseLtEnv()"); CUSPARSE_REPORT_IF_ERROR(cusparseLtDestroy(&cusparseLt_env)); cusparseLt_initiated = false; } extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuCreateCuSparseLtDnMat(void *dh, intptr_t rows, intptr_t cols, void *values, int32_t dtp, CUstream /*stream*/) { assert(cusparseLt_initiated && "client did not call mgpuCreateSparseLtEnv()"); auto dnmat_handle = reinterpret_cast(dh); dnmat_handle->values = values; auto dTp = static_cast(dtp); // Assume row-major when deciding lda. const uint32_t alignment = 16; CUSPARSE_REPORT_IF_ERROR(cusparseLtDenseDescriptorInit( &cusparseLt_env, &(dnmat_handle->mat), rows, cols, /*lda=*/cols, alignment, dTp, CUSPARSE_ORDER_ROW)) } extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuDestroyCuSparseLtDnMat(void *dh, CUstream /*stream*/) { auto dnmat_handle = reinterpret_cast(dh); CUSPARSE_REPORT_IF_ERROR(cusparseLtMatDescriptorDestroy(&(dnmat_handle->mat))) } extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuCusparseLtCreate2To4SpMat(void *sh, intptr_t rows, intptr_t cols, void *values, int32_t dtp, CUstream /*stream*/) { assert(cusparseLt_initiated && "client did not call mgpuCreateSparseLtEnv()"); auto spmat_handle = reinterpret_cast(sh); spmat_handle->values = values; auto dTp = static_cast(dtp); // Assume row-major when deciding lda. const uint32_t alignment = 16; CUSPARSE_REPORT_IF_ERROR(cusparseLtStructuredDescriptorInit( &cusparseLt_env, &(spmat_handle->mat), rows, cols, /*ld=*/cols, alignment, dTp, CUSPARSE_ORDER_ROW, CUSPARSELT_SPARSITY_50_PERCENT)) } extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuDestroyCuSparseLtSpMat(void *sh, CUstream /*stream*/) { auto spmat_handle = reinterpret_cast(sh); CUSPARSE_REPORT_IF_ERROR(cusparseLtMatDescriptorDestroy(&(spmat_handle->mat))) } // Several things are being done in this stage, algorithm selection, planning, // and returning workspace and compressed matrices data buffer sizes. // The parameter prune_flag is used to indicate whether pruning and pruning // check will happen 0 means not prune or prune check, 1 means prune, 2 means // prune & prune check extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuCuSparseLtSpMMBufferSize(void *bs, int32_t ma, int32_t mb, void *a, void *b, void *c, int32_t ctp, int32_t prune_flag, CUstream stream) { assert(cusparseLt_initiated && "client did not call mgpuCreateSparseLtEnv()"); // TODO: support more advanced settings, e.g., the input right operand is a // sparse matrix assuming matA is the sparse matrix auto matA = reinterpret_cast(a); auto matB = reinterpret_cast(b); auto matC = reinterpret_cast(c); auto workspace_size = reinterpret_cast(bs); auto compressed_size = &(reinterpret_cast(bs)[1]); auto compressed_buffer_size = &(reinterpret_cast(bs)[2]); auto cTp = static_cast(ctp); cusparseOperation_t modeA = static_cast(ma); cusparseOperation_t modeB = static_cast(mb); CUSPARSE_REPORT_IF_ERROR(cusparseLtMatmulDescriptorInit( &cusparseLt_env, &(matA->matmul), modeA, modeB, &(matA->mat), &(matB->mat), &(matC->mat), &(matC->mat), cTp)) CUSPARSE_REPORT_IF_ERROR(cusparseLtMatmulAlgSelectionInit( &cusparseLt_env, &(matA->alg_sel), &(matA->matmul), CUSPARSELT_MATMUL_ALG_DEFAULT)) int alg = 0; CUSPARSE_REPORT_IF_ERROR(cusparseLtMatmulAlgSetAttribute( &cusparseLt_env, &(matA->alg_sel), CUSPARSELT_MATMUL_ALG_CONFIG_ID, &alg, sizeof(alg))) CUSPARSE_REPORT_IF_ERROR(cusparseLtMatmulPlanInit( &cusparseLt_env, &(matA->plan), &(matA->matmul), &(matA->alg_sel))) // Pruning step (in-place). if (prune_flag > 0) CUSPARSE_REPORT_IF_ERROR(cusparseLtSpMMAPrune( &cusparseLt_env, &(matA->matmul), matA->values, matA->values, CUSPARSELT_PRUNE_SPMMA_STRIP, stream)) // Check structure of A. // Note that this adds a synchronization on the stream. // TODO: Do we want that? if (prune_flag == 2) { int *dvalid = (int *)mgpuMemAlloc(sizeof(int), stream, false); CUSPARSE_REPORT_IF_ERROR(cusparseLtSpMMAPruneCheck( &cusparseLt_env, &(matA->matmul), matA->values, dvalid, stream)) int valid = 0; mgpuMemcpy(&valid, dvalid, sizeof(int), stream); mgpuStreamSynchronize(stream); mgpuMemFree(dvalid, stream); if (valid != 0) fprintf(stderr, "CUPARSE-LT: sparse matrix is not 2:4; computed results " "will be invalid\n"); } CUSPARSE_REPORT_IF_ERROR(cusparseLtMatmulGetWorkspace( &cusparseLt_env, &(matA->plan), workspace_size)) CUSPARSE_REPORT_IF_ERROR(cusparseLtSpMMACompressedSize( &cusparseLt_env, &(matA->plan), compressed_size, compressed_buffer_size)) } extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuCuSparseLtSpMM(void *a, void *b, void *c, void *d_workspace, void *dA_compressed, void *dA_compressedBuffer, CUstream stream) { assert(cusparseLt_initiated && "client did not call mgpuCreateSparseLtEnv()"); auto matA = reinterpret_cast(a); auto matB = reinterpret_cast(b); auto matC = reinterpret_cast(c); ALPHABETA(CUDA_R_32F, alpha, beta) CUSPARSE_REPORT_IF_ERROR( cusparseLtSpMMACompress(&cusparseLt_env, &(matA->plan), (matA->values), dA_compressed, dA_compressedBuffer, stream)) // TODO: add support to multi-stream execution // Perform the matrix multiplication. D = A*B+C using C==D for now CUSPARSE_REPORT_IF_ERROR( cusparseLtMatmul(&cusparseLt_env, &(matA->plan), alphap, dA_compressed, matB->values, betap, matC->values, /*dD*/ matC->values, d_workspace, nullptr, 0)) CUSPARSE_REPORT_IF_ERROR(cusparseLtMatDescriptorDestroy(&(matA->mat))) // destroy the plan associated with the sparse matrix CUSPARSE_REPORT_IF_ERROR(cusparseLtMatmulPlanDestroy(&(matA->plan))) } #endif // MLIR_ENABLE_CUDA_CUSPARSELT #endif // MLIR_ENABLE_CUDA_CUSPARSE