//===--- Float16bits.cpp - supports 2-byte floats ------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements f16 and bf16 to support the compilation and execution // of programs using these types. // //===----------------------------------------------------------------------===// #include "mlir/ExecutionEngine/Float16bits.h" #ifdef MLIR_FLOAT16_DEFINE_FUNCTIONS // We are building this library #include #include namespace { // Union used to make the int/float aliasing explicit so we can access the raw // bits. union Float32Bits { uint32_t u; float f; }; const uint32_t kF32MantiBits = 23; const uint32_t kF32HalfMantiBitDiff = 13; const uint32_t kF32HalfBitDiff = 16; const Float32Bits kF32Magic = {113 << kF32MantiBits}; const uint32_t kF32HalfExpAdjust = (127 - 15) << kF32MantiBits; // Constructs the 16 bit representation for a half precision value from a float // value. This implementation is adapted from Eigen. uint16_t float2half(float floatValue) { const Float32Bits inf = {255 << kF32MantiBits}; const Float32Bits f16max = {(127 + 16) << kF32MantiBits}; const Float32Bits denormMagic = {((127 - 15) + (kF32MantiBits - 10) + 1) << kF32MantiBits}; uint32_t signMask = 0x80000000u; uint16_t halfValue = static_cast(0x0u); Float32Bits f; f.f = floatValue; uint32_t sign = f.u & signMask; f.u ^= sign; if (f.u >= f16max.u) { const uint32_t halfQnan = 0x7e00; const uint32_t halfInf = 0x7c00; // Inf or NaN (all exponent bits set). halfValue = (f.u > inf.u) ? halfQnan : halfInf; // NaN->qNaN and Inf->Inf } else { // (De)normalized number or zero. if (f.u < kF32Magic.u) { // The resulting FP16 is subnormal or zero. // // Use a magic value to align our 10 mantissa bits at the bottom of the // float. As long as FP addition is round-to-nearest-even this works. f.f += denormMagic.f; halfValue = static_cast(f.u - denormMagic.u); } else { uint32_t mantOdd = (f.u >> kF32HalfMantiBitDiff) & 1; // Resulting mantissa is odd. // Update exponent, rounding bias part 1. The following expressions are // equivalent to `f.u += ((unsigned int)(15 - 127) << kF32MantiBits) + // 0xfff`, but without arithmetic overflow. f.u += 0xc8000fffU; // Rounding bias part 2. f.u += mantOdd; halfValue = static_cast(f.u >> kF32HalfMantiBitDiff); } } halfValue |= static_cast(sign >> kF32HalfBitDiff); return halfValue; } // Converts the 16 bit representation of a half precision value to a float // value. This implementation is adapted from Eigen. float half2float(uint16_t halfValue) { const uint32_t shiftedExp = 0x7c00 << kF32HalfMantiBitDiff; // Exponent mask after shift. // Initialize the float representation with the exponent/mantissa bits. Float32Bits f = { static_cast((halfValue & 0x7fff) << kF32HalfMantiBitDiff)}; const uint32_t exp = shiftedExp & f.u; f.u += kF32HalfExpAdjust; // Adjust the exponent // Handle exponent special cases. if (exp == shiftedExp) { // Inf/NaN f.u += kF32HalfExpAdjust; } else if (exp == 0) { // Zero/Denormal? f.u += 1 << kF32MantiBits; f.f -= kF32Magic.f; } f.u |= (halfValue & 0x8000) << kF32HalfBitDiff; // Sign bit. return f.f; } const uint32_t kF32BfMantiBitDiff = 16; // Constructs the 16 bit representation for a bfloat value from a float value. // This implementation is adapted from Eigen. uint16_t float2bfloat(float floatValue) { if (std::isnan(floatValue)) return std::signbit(floatValue) ? 0xFFC0 : 0x7FC0; Float32Bits floatBits; floatBits.f = floatValue; uint16_t bfloatBits; // Least significant bit of resulting bfloat. uint32_t lsb = (floatBits.u >> kF32BfMantiBitDiff) & 1; uint32_t roundingBias = 0x7fff + lsb; floatBits.u += roundingBias; bfloatBits = static_cast(floatBits.u >> kF32BfMantiBitDiff); return bfloatBits; } // Converts the 16 bit representation of a bfloat value to a float value. This // implementation is adapted from Eigen. float bfloat2float(uint16_t bfloatBits) { Float32Bits floatBits; floatBits.u = static_cast(bfloatBits) << kF32BfMantiBitDiff; return floatBits.f; } } // namespace f16::f16(float f) : bits(float2half(f)) {} bf16::bf16(float f) : bits(float2bfloat(f)) {} std::ostream &operator<<(std::ostream &os, const f16 &f) { os << half2float(f.bits); return os; } std::ostream &operator<<(std::ostream &os, const bf16 &d) { os << bfloat2float(d.bits); return os; } bool operator==(const f16 &f1, const f16 &f2) { return f1.bits == f2.bits; } bool operator==(const bf16 &f1, const bf16 &f2) { return f1.bits == f2.bits; } // Mark these symbols as weak so they don't conflict when compiler-rt also // defines them. #define ATTR_WEAK #ifdef __has_attribute #if __has_attribute(weak) && !defined(__MINGW32__) && !defined(__CYGWIN__) && \ !defined(_WIN32) #undef ATTR_WEAK #define ATTR_WEAK __attribute__((__weak__)) #endif #endif #if defined(__x86_64__) // On x86 bfloat16 is passed in SSE registers. Since both float and __bf16 // are passed in the same register we can use the wider type and careful casting // to conform to x86_64 psABI. This only works with the assumption that we're // dealing with little-endian values passed in wider registers. // Ideally this would directly use __bf16, but that type isn't supported by all // compilers. using BF16ABIType = float; #else // Default to uint16_t if we have nothing else. using BF16ABIType = uint16_t; #endif // Provide a float->bfloat conversion routine in case the runtime doesn't have // one. extern "C" BF16ABIType ATTR_WEAK __truncsfbf2(float f) { uint16_t bf = float2bfloat(f); // The output can be a float type, bitcast it from uint16_t. BF16ABIType ret = 0; std::memcpy(&ret, &bf, sizeof(bf)); return ret; } // Provide a double->bfloat conversion routine in case the runtime doesn't have // one. extern "C" BF16ABIType ATTR_WEAK __truncdfbf2(double d) { // This does a double rounding step, but it's precise enough for our use // cases. return __truncsfbf2(static_cast(d)); } // Provide these to the CRunner with the local float16 knowledge. extern "C" void printF16(uint16_t bits) { f16 f; std::memcpy(&f, &bits, sizeof(f16)); std::cout << f; } extern "C" void printBF16(uint16_t bits) { bf16 f; std::memcpy(&f, &bits, sizeof(bf16)); std::cout << f; } #endif // MLIR_FLOAT16_DEFINE_FUNCTIONS