//===- AffineExpr.cpp - MLIR Affine Expr Classes --------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include #include "AffineExprDetail.h" #include "mlir/IR/AffineExpr.h" #include "mlir/IR/AffineExprVisitor.h" #include "mlir/IR/AffineMap.h" #include "mlir/IR/IntegerSet.h" #include "mlir/Support/MathExtras.h" #include "mlir/Support/TypeID.h" #include "llvm/ADT/STLExtras.h" #include #include using namespace mlir; using namespace mlir::detail; MLIRContext *AffineExpr::getContext() const { return expr->context; } AffineExprKind AffineExpr::getKind() const { return expr->kind; } /// Walk all of the AffineExprs in `e` in postorder. This is a private factory /// method to help handle lambda walk functions. Users should use the regular /// (non-static) `walk` method. template WalkRetTy mlir::AffineExpr::walk(AffineExpr e, function_ref callback) { struct AffineExprWalker : public AffineExprVisitor { function_ref callback; AffineExprWalker(function_ref callback) : callback(callback) {} WalkRetTy visitAffineBinaryOpExpr(AffineBinaryOpExpr expr) { return callback(expr); } WalkRetTy visitConstantExpr(AffineConstantExpr expr) { return callback(expr); } WalkRetTy visitDimExpr(AffineDimExpr expr) { return callback(expr); } WalkRetTy visitSymbolExpr(AffineSymbolExpr expr) { return callback(expr); } }; return AffineExprWalker(callback).walkPostOrder(e); } // Explicitly instantiate for the two supported return types. template void mlir::AffineExpr::walk(AffineExpr e, function_ref callback); template WalkResult mlir::AffineExpr::walk(AffineExpr e, function_ref callback); // Dispatch affine expression construction based on kind. AffineExpr mlir::getAffineBinaryOpExpr(AffineExprKind kind, AffineExpr lhs, AffineExpr rhs) { if (kind == AffineExprKind::Add) return lhs + rhs; if (kind == AffineExprKind::Mul) return lhs * rhs; if (kind == AffineExprKind::FloorDiv) return lhs.floorDiv(rhs); if (kind == AffineExprKind::CeilDiv) return lhs.ceilDiv(rhs); if (kind == AffineExprKind::Mod) return lhs % rhs; llvm_unreachable("unknown binary operation on affine expressions"); } /// This method substitutes any uses of dimensions and symbols (e.g. /// dim#0 with dimReplacements[0]) and returns the modified expression tree. AffineExpr AffineExpr::replaceDimsAndSymbols(ArrayRef dimReplacements, ArrayRef symReplacements) const { switch (getKind()) { case AffineExprKind::Constant: return *this; case AffineExprKind::DimId: { unsigned dimId = llvm::cast(*this).getPosition(); if (dimId >= dimReplacements.size()) return *this; return dimReplacements[dimId]; } case AffineExprKind::SymbolId: { unsigned symId = llvm::cast(*this).getPosition(); if (symId >= symReplacements.size()) return *this; return symReplacements[symId]; } case AffineExprKind::Add: case AffineExprKind::Mul: case AffineExprKind::FloorDiv: case AffineExprKind::CeilDiv: case AffineExprKind::Mod: auto binOp = llvm::cast(*this); auto lhs = binOp.getLHS(), rhs = binOp.getRHS(); auto newLHS = lhs.replaceDimsAndSymbols(dimReplacements, symReplacements); auto newRHS = rhs.replaceDimsAndSymbols(dimReplacements, symReplacements); if (newLHS == lhs && newRHS == rhs) return *this; return getAffineBinaryOpExpr(getKind(), newLHS, newRHS); } llvm_unreachable("Unknown AffineExpr"); } AffineExpr AffineExpr::replaceDims(ArrayRef dimReplacements) const { return replaceDimsAndSymbols(dimReplacements, {}); } AffineExpr AffineExpr::replaceSymbols(ArrayRef symReplacements) const { return replaceDimsAndSymbols({}, symReplacements); } /// Replace dims[offset ... numDims) /// by dims[offset + shift ... shift + numDims). AffineExpr AffineExpr::shiftDims(unsigned numDims, unsigned shift, unsigned offset) const { SmallVector dims; for (unsigned idx = 0; idx < offset; ++idx) dims.push_back(getAffineDimExpr(idx, getContext())); for (unsigned idx = offset; idx < numDims; ++idx) dims.push_back(getAffineDimExpr(idx + shift, getContext())); return replaceDimsAndSymbols(dims, {}); } /// Replace symbols[offset ... numSymbols) /// by symbols[offset + shift ... shift + numSymbols). AffineExpr AffineExpr::shiftSymbols(unsigned numSymbols, unsigned shift, unsigned offset) const { SmallVector symbols; for (unsigned idx = 0; idx < offset; ++idx) symbols.push_back(getAffineSymbolExpr(idx, getContext())); for (unsigned idx = offset; idx < numSymbols; ++idx) symbols.push_back(getAffineSymbolExpr(idx + shift, getContext())); return replaceDimsAndSymbols({}, symbols); } /// Sparse replace method. Return the modified expression tree. AffineExpr AffineExpr::replace(const DenseMap &map) const { auto it = map.find(*this); if (it != map.end()) return it->second; switch (getKind()) { default: return *this; case AffineExprKind::Add: case AffineExprKind::Mul: case AffineExprKind::FloorDiv: case AffineExprKind::CeilDiv: case AffineExprKind::Mod: auto binOp = llvm::cast(*this); auto lhs = binOp.getLHS(), rhs = binOp.getRHS(); auto newLHS = lhs.replace(map); auto newRHS = rhs.replace(map); if (newLHS == lhs && newRHS == rhs) return *this; return getAffineBinaryOpExpr(getKind(), newLHS, newRHS); } llvm_unreachable("Unknown AffineExpr"); } /// Sparse replace method. Return the modified expression tree. AffineExpr AffineExpr::replace(AffineExpr expr, AffineExpr replacement) const { DenseMap map; map.insert(std::make_pair(expr, replacement)); return replace(map); } /// Returns true if this expression is made out of only symbols and /// constants (no dimensional identifiers). bool AffineExpr::isSymbolicOrConstant() const { switch (getKind()) { case AffineExprKind::Constant: return true; case AffineExprKind::DimId: return false; case AffineExprKind::SymbolId: return true; case AffineExprKind::Add: case AffineExprKind::Mul: case AffineExprKind::FloorDiv: case AffineExprKind::CeilDiv: case AffineExprKind::Mod: { auto expr = llvm::cast(*this); return expr.getLHS().isSymbolicOrConstant() && expr.getRHS().isSymbolicOrConstant(); } } llvm_unreachable("Unknown AffineExpr"); } /// Returns true if this is a pure affine expression, i.e., multiplication, /// floordiv, ceildiv, and mod is only allowed w.r.t constants. bool AffineExpr::isPureAffine() const { switch (getKind()) { case AffineExprKind::SymbolId: case AffineExprKind::DimId: case AffineExprKind::Constant: return true; case AffineExprKind::Add: { auto op = llvm::cast(*this); return op.getLHS().isPureAffine() && op.getRHS().isPureAffine(); } case AffineExprKind::Mul: { // TODO: Canonicalize the constants in binary operators to the RHS when // possible, allowing this to merge into the next case. auto op = llvm::cast(*this); return op.getLHS().isPureAffine() && op.getRHS().isPureAffine() && (llvm::isa(op.getLHS()) || llvm::isa(op.getRHS())); } case AffineExprKind::FloorDiv: case AffineExprKind::CeilDiv: case AffineExprKind::Mod: { auto op = llvm::cast(*this); return op.getLHS().isPureAffine() && llvm::isa(op.getRHS()); } } llvm_unreachable("Unknown AffineExpr"); } // Returns the greatest known integral divisor of this affine expression. int64_t AffineExpr::getLargestKnownDivisor() const { AffineBinaryOpExpr binExpr(nullptr); switch (getKind()) { case AffineExprKind::DimId: [[fallthrough]]; case AffineExprKind::SymbolId: return 1; case AffineExprKind::CeilDiv: [[fallthrough]]; case AffineExprKind::FloorDiv: { // If the RHS is a constant and divides the known divisor on the LHS, the // quotient is a known divisor of the expression. binExpr = llvm::cast(*this); auto rhs = llvm::dyn_cast(binExpr.getRHS()); // Leave alone undefined expressions. if (rhs && rhs.getValue() != 0) { int64_t lhsDiv = binExpr.getLHS().getLargestKnownDivisor(); if (lhsDiv % rhs.getValue() == 0) return lhsDiv / rhs.getValue(); } return 1; } case AffineExprKind::Constant: return std::abs(llvm::cast(*this).getValue()); case AffineExprKind::Mul: { binExpr = llvm::cast(*this); return binExpr.getLHS().getLargestKnownDivisor() * binExpr.getRHS().getLargestKnownDivisor(); } case AffineExprKind::Add: [[fallthrough]]; case AffineExprKind::Mod: { binExpr = llvm::cast(*this); return std::gcd((uint64_t)binExpr.getLHS().getLargestKnownDivisor(), (uint64_t)binExpr.getRHS().getLargestKnownDivisor()); } } llvm_unreachable("Unknown AffineExpr"); } bool AffineExpr::isMultipleOf(int64_t factor) const { AffineBinaryOpExpr binExpr(nullptr); uint64_t l, u; switch (getKind()) { case AffineExprKind::SymbolId: [[fallthrough]]; case AffineExprKind::DimId: return factor * factor == 1; case AffineExprKind::Constant: return llvm::cast(*this).getValue() % factor == 0; case AffineExprKind::Mul: { binExpr = llvm::cast(*this); // It's probably not worth optimizing this further (to not traverse the // whole sub-tree under - it that would require a version of isMultipleOf // that on a 'false' return also returns the largest known divisor). return (l = binExpr.getLHS().getLargestKnownDivisor()) % factor == 0 || (u = binExpr.getRHS().getLargestKnownDivisor()) % factor == 0 || (l * u) % factor == 0; } case AffineExprKind::Add: case AffineExprKind::FloorDiv: case AffineExprKind::CeilDiv: case AffineExprKind::Mod: { binExpr = llvm::cast(*this); return std::gcd((uint64_t)binExpr.getLHS().getLargestKnownDivisor(), (uint64_t)binExpr.getRHS().getLargestKnownDivisor()) % factor == 0; } } llvm_unreachable("Unknown AffineExpr"); } bool AffineExpr::isFunctionOfDim(unsigned position) const { if (getKind() == AffineExprKind::DimId) { return *this == mlir::getAffineDimExpr(position, getContext()); } if (auto expr = llvm::dyn_cast(*this)) { return expr.getLHS().isFunctionOfDim(position) || expr.getRHS().isFunctionOfDim(position); } return false; } bool AffineExpr::isFunctionOfSymbol(unsigned position) const { if (getKind() == AffineExprKind::SymbolId) { return *this == mlir::getAffineSymbolExpr(position, getContext()); } if (auto expr = llvm::dyn_cast(*this)) { return expr.getLHS().isFunctionOfSymbol(position) || expr.getRHS().isFunctionOfSymbol(position); } return false; } AffineBinaryOpExpr::AffineBinaryOpExpr(AffineExpr::ImplType *ptr) : AffineExpr(ptr) {} AffineExpr AffineBinaryOpExpr::getLHS() const { return static_cast(expr)->lhs; } AffineExpr AffineBinaryOpExpr::getRHS() const { return static_cast(expr)->rhs; } AffineDimExpr::AffineDimExpr(AffineExpr::ImplType *ptr) : AffineExpr(ptr) {} unsigned AffineDimExpr::getPosition() const { return static_cast(expr)->position; } /// Returns true if the expression is divisible by the given symbol with /// position `symbolPos`. The argument `opKind` specifies here what kind of /// division or mod operation called this division. It helps in implementing the /// commutative property of the floordiv and ceildiv operations. If the argument ///`exprKind` is floordiv and `expr` is also a binary expression of a floordiv /// operation, then the commutative property can be used otherwise, the floordiv /// operation is not divisible. The same argument holds for ceildiv operation. static bool isDivisibleBySymbol(AffineExpr expr, unsigned symbolPos, AffineExprKind opKind) { // The argument `opKind` can either be Modulo, Floordiv or Ceildiv only. assert((opKind == AffineExprKind::Mod || opKind == AffineExprKind::FloorDiv || opKind == AffineExprKind::CeilDiv) && "unexpected opKind"); switch (expr.getKind()) { case AffineExprKind::Constant: return cast(expr).getValue() == 0; case AffineExprKind::DimId: return false; case AffineExprKind::SymbolId: return (cast(expr).getPosition() == symbolPos); // Checks divisibility by the given symbol for both operands. case AffineExprKind::Add: { AffineBinaryOpExpr binaryExpr = cast(expr); return isDivisibleBySymbol(binaryExpr.getLHS(), symbolPos, opKind) && isDivisibleBySymbol(binaryExpr.getRHS(), symbolPos, opKind); } // Checks divisibility by the given symbol for both operands. Consider the // expression `(((s1*s0) floordiv w) mod ((s1 * s2) floordiv p)) floordiv s1`, // this is a division by s1 and both the operands of modulo are divisible by // s1 but it is not divisible by s1 always. The third argument is // `AffineExprKind::Mod` for this reason. case AffineExprKind::Mod: { AffineBinaryOpExpr binaryExpr = cast(expr); return isDivisibleBySymbol(binaryExpr.getLHS(), symbolPos, AffineExprKind::Mod) && isDivisibleBySymbol(binaryExpr.getRHS(), symbolPos, AffineExprKind::Mod); } // Checks if any of the operand divisible by the given symbol. case AffineExprKind::Mul: { AffineBinaryOpExpr binaryExpr = cast(expr); return isDivisibleBySymbol(binaryExpr.getLHS(), symbolPos, opKind) || isDivisibleBySymbol(binaryExpr.getRHS(), symbolPos, opKind); } // Floordiv and ceildiv are divisible by the given symbol when the first // operand is divisible, and the affine expression kind of the argument expr // is same as the argument `opKind`. This can be inferred from commutative // property of floordiv and ceildiv operations and are as follow: // (exp1 floordiv exp2) floordiv exp3 = (exp1 floordiv exp3) floordiv exp2 // (exp1 ceildiv exp2) ceildiv exp3 = (exp1 ceildiv exp3) ceildiv expr2 // It will fail if operations are not same. For example: // (exps1 ceildiv exp2) floordiv exp3 can not be simplified. case AffineExprKind::FloorDiv: case AffineExprKind::CeilDiv: { AffineBinaryOpExpr binaryExpr = cast(expr); if (opKind != expr.getKind()) return false; return isDivisibleBySymbol(binaryExpr.getLHS(), symbolPos, expr.getKind()); } } llvm_unreachable("Unknown AffineExpr"); } /// Divides the given expression by the given symbol at position `symbolPos`. It /// considers the divisibility condition is checked before calling itself. A /// null expression is returned whenever the divisibility condition fails. static AffineExpr symbolicDivide(AffineExpr expr, unsigned symbolPos, AffineExprKind opKind) { // THe argument `opKind` can either be Modulo, Floordiv or Ceildiv only. assert((opKind == AffineExprKind::Mod || opKind == AffineExprKind::FloorDiv || opKind == AffineExprKind::CeilDiv) && "unexpected opKind"); switch (expr.getKind()) { case AffineExprKind::Constant: if (cast(expr).getValue() != 0) return nullptr; return getAffineConstantExpr(0, expr.getContext()); case AffineExprKind::DimId: return nullptr; case AffineExprKind::SymbolId: return getAffineConstantExpr(1, expr.getContext()); // Dividing both operands by the given symbol. case AffineExprKind::Add: { AffineBinaryOpExpr binaryExpr = cast(expr); return getAffineBinaryOpExpr( expr.getKind(), symbolicDivide(binaryExpr.getLHS(), symbolPos, opKind), symbolicDivide(binaryExpr.getRHS(), symbolPos, opKind)); } // Dividing both operands by the given symbol. case AffineExprKind::Mod: { AffineBinaryOpExpr binaryExpr = cast(expr); return getAffineBinaryOpExpr( expr.getKind(), symbolicDivide(binaryExpr.getLHS(), symbolPos, expr.getKind()), symbolicDivide(binaryExpr.getRHS(), symbolPos, expr.getKind())); } // Dividing any of the operand by the given symbol. case AffineExprKind::Mul: { AffineBinaryOpExpr binaryExpr = cast(expr); if (!isDivisibleBySymbol(binaryExpr.getLHS(), symbolPos, opKind)) return binaryExpr.getLHS() * symbolicDivide(binaryExpr.getRHS(), symbolPos, opKind); return symbolicDivide(binaryExpr.getLHS(), symbolPos, opKind) * binaryExpr.getRHS(); } // Dividing first operand only by the given symbol. case AffineExprKind::FloorDiv: case AffineExprKind::CeilDiv: { AffineBinaryOpExpr binaryExpr = cast(expr); return getAffineBinaryOpExpr( expr.getKind(), symbolicDivide(binaryExpr.getLHS(), symbolPos, expr.getKind()), binaryExpr.getRHS()); } } llvm_unreachable("Unknown AffineExpr"); } /// Populate `result` with all summand operands of given (potentially nested) /// addition. If the given expression is not an addition, just populate the /// expression itself. /// Example: Add(Add(7, 8), Mul(9, 10)) will return [7, 8, Mul(9, 10)]. static void getSummandExprs(AffineExpr expr, SmallVector &result) { auto addExpr = dyn_cast(expr); if (!addExpr || addExpr.getKind() != AffineExprKind::Add) { result.push_back(expr); return; } getSummandExprs(addExpr.getLHS(), result); getSummandExprs(addExpr.getRHS(), result); } /// Return "true" if `candidate` is a negated expression, i.e., Mul(-1, expr). /// If so, also return the non-negated expression via `expr`. static bool isNegatedAffineExpr(AffineExpr candidate, AffineExpr &expr) { auto mulExpr = dyn_cast(candidate); if (!mulExpr || mulExpr.getKind() != AffineExprKind::Mul) return false; if (auto lhs = dyn_cast(mulExpr.getLHS())) { if (lhs.getValue() == -1) { expr = mulExpr.getRHS(); return true; } } if (auto rhs = dyn_cast(mulExpr.getRHS())) { if (rhs.getValue() == -1) { expr = mulExpr.getLHS(); return true; } } return false; } /// Return "true" if `lhs` % `rhs` is guaranteed to evaluate to zero based on /// the fact that `lhs` contains another modulo expression that ensures that /// `lhs` is divisible by `rhs`. This is a common pattern in the resulting IR /// after loop peeling. /// /// Example: lhs = ub - ub % step /// rhs = step /// => (ub - ub % step) % step is guaranteed to evaluate to 0. static bool isModOfModSubtraction(AffineExpr lhs, AffineExpr rhs, unsigned numDims, unsigned numSymbols) { // TODO: Try to unify this function with `getBoundForAffineExpr`. // Collect all summands in lhs. SmallVector summands; getSummandExprs(lhs, summands); // Look for Mul(-1, Mod(x, rhs)) among the summands. If x matches the // remaining summands, then lhs % rhs is guaranteed to evaluate to 0. for (int64_t i = 0, e = summands.size(); i < e; ++i) { AffineExpr current = summands[i]; AffineExpr beforeNegation; if (!isNegatedAffineExpr(current, beforeNegation)) continue; AffineBinaryOpExpr innerMod = dyn_cast(beforeNegation); if (!innerMod || innerMod.getKind() != AffineExprKind::Mod) continue; if (innerMod.getRHS() != rhs) continue; // Sum all remaining summands and subtract x. If that expression can be // simplified to zero, then the remaining summands and x are equal. AffineExpr diff = getAffineConstantExpr(0, lhs.getContext()); for (int64_t j = 0; j < e; ++j) if (i != j) diff = diff + summands[j]; diff = diff - innerMod.getLHS(); diff = simplifyAffineExpr(diff, numDims, numSymbols); auto constExpr = dyn_cast(diff); if (constExpr && constExpr.getValue() == 0) return true; } return false; } /// Simplify a semi-affine expression by handling modulo, floordiv, or ceildiv /// operations when the second operand simplifies to a symbol and the first /// operand is divisible by that symbol. It can be applied to any semi-affine /// expression. Returned expression can either be a semi-affine or pure affine /// expression. static AffineExpr simplifySemiAffine(AffineExpr expr, unsigned numDims, unsigned numSymbols) { switch (expr.getKind()) { case AffineExprKind::Constant: case AffineExprKind::DimId: case AffineExprKind::SymbolId: return expr; case AffineExprKind::Add: case AffineExprKind::Mul: { AffineBinaryOpExpr binaryExpr = cast(expr); return getAffineBinaryOpExpr( expr.getKind(), simplifySemiAffine(binaryExpr.getLHS(), numDims, numSymbols), simplifySemiAffine(binaryExpr.getRHS(), numDims, numSymbols)); } // Check if the simplification of the second operand is a symbol, and the // first operand is divisible by it. If the operation is a modulo, a constant // zero expression is returned. In the case of floordiv and ceildiv, the // symbol from the simplification of the second operand divides the first // operand. Otherwise, simplification is not possible. case AffineExprKind::FloorDiv: case AffineExprKind::CeilDiv: case AffineExprKind::Mod: { AffineBinaryOpExpr binaryExpr = cast(expr); AffineExpr sLHS = simplifySemiAffine(binaryExpr.getLHS(), numDims, numSymbols); AffineExpr sRHS = simplifySemiAffine(binaryExpr.getRHS(), numDims, numSymbols); if (isModOfModSubtraction(sLHS, sRHS, numDims, numSymbols)) return getAffineConstantExpr(0, expr.getContext()); AffineSymbolExpr symbolExpr = dyn_cast( simplifySemiAffine(binaryExpr.getRHS(), numDims, numSymbols)); if (!symbolExpr) return getAffineBinaryOpExpr(expr.getKind(), sLHS, sRHS); unsigned symbolPos = symbolExpr.getPosition(); if (!isDivisibleBySymbol(binaryExpr.getLHS(), symbolPos, expr.getKind())) return getAffineBinaryOpExpr(expr.getKind(), sLHS, sRHS); if (expr.getKind() == AffineExprKind::Mod) return getAffineConstantExpr(0, expr.getContext()); return symbolicDivide(sLHS, symbolPos, expr.getKind()); } } llvm_unreachable("Unknown AffineExpr"); } static AffineExpr getAffineDimOrSymbol(AffineExprKind kind, unsigned position, MLIRContext *context) { auto assignCtx = [context](AffineDimExprStorage *storage) { storage->context = context; }; StorageUniquer &uniquer = context->getAffineUniquer(); return uniquer.get( assignCtx, static_cast(kind), position); } AffineExpr mlir::getAffineDimExpr(unsigned position, MLIRContext *context) { return getAffineDimOrSymbol(AffineExprKind::DimId, position, context); } AffineSymbolExpr::AffineSymbolExpr(AffineExpr::ImplType *ptr) : AffineExpr(ptr) {} unsigned AffineSymbolExpr::getPosition() const { return static_cast(expr)->position; } AffineExpr mlir::getAffineSymbolExpr(unsigned position, MLIRContext *context) { return getAffineDimOrSymbol(AffineExprKind::SymbolId, position, context); } AffineConstantExpr::AffineConstantExpr(AffineExpr::ImplType *ptr) : AffineExpr(ptr) {} int64_t AffineConstantExpr::getValue() const { return static_cast(expr)->constant; } bool AffineExpr::operator==(int64_t v) const { return *this == getAffineConstantExpr(v, getContext()); } AffineExpr mlir::getAffineConstantExpr(int64_t constant, MLIRContext *context) { auto assignCtx = [context](AffineConstantExprStorage *storage) { storage->context = context; }; StorageUniquer &uniquer = context->getAffineUniquer(); return uniquer.get(assignCtx, constant); } SmallVector mlir::getAffineConstantExprs(ArrayRef constants, MLIRContext *context) { return llvm::to_vector(llvm::map_range(constants, [&](int64_t constant) { return getAffineConstantExpr(constant, context); })); } /// Simplify add expression. Return nullptr if it can't be simplified. static AffineExpr simplifyAdd(AffineExpr lhs, AffineExpr rhs) { auto lhsConst = dyn_cast(lhs); auto rhsConst = dyn_cast(rhs); // Fold if both LHS, RHS are a constant. if (lhsConst && rhsConst) return getAffineConstantExpr(lhsConst.getValue() + rhsConst.getValue(), lhs.getContext()); // Canonicalize so that only the RHS is a constant. (4 + d0 becomes d0 + 4). // If only one of them is a symbolic expressions, make it the RHS. if (isa(lhs) || (lhs.isSymbolicOrConstant() && !rhs.isSymbolicOrConstant())) { return rhs + lhs; } // At this point, if there was a constant, it would be on the right. // Addition with a zero is a noop, return the other input. if (rhsConst) { if (rhsConst.getValue() == 0) return lhs; } // Fold successive additions like (d0 + 2) + 3 into d0 + 5. auto lBin = dyn_cast(lhs); if (lBin && rhsConst && lBin.getKind() == AffineExprKind::Add) { if (auto lrhs = dyn_cast(lBin.getRHS())) return lBin.getLHS() + (lrhs.getValue() + rhsConst.getValue()); } // Detect "c1 * expr + c_2 * expr" as "(c1 + c2) * expr". // c1 is rRhsConst, c2 is rLhsConst; firstExpr, secondExpr are their // respective multiplicands. std::optional rLhsConst, rRhsConst; AffineExpr firstExpr, secondExpr; AffineConstantExpr rLhsConstExpr; auto lBinOpExpr = dyn_cast(lhs); if (lBinOpExpr && lBinOpExpr.getKind() == AffineExprKind::Mul && (rLhsConstExpr = dyn_cast(lBinOpExpr.getRHS()))) { rLhsConst = rLhsConstExpr.getValue(); firstExpr = lBinOpExpr.getLHS(); } else { rLhsConst = 1; firstExpr = lhs; } auto rBinOpExpr = dyn_cast(rhs); AffineConstantExpr rRhsConstExpr; if (rBinOpExpr && rBinOpExpr.getKind() == AffineExprKind::Mul && (rRhsConstExpr = dyn_cast(rBinOpExpr.getRHS()))) { rRhsConst = rRhsConstExpr.getValue(); secondExpr = rBinOpExpr.getLHS(); } else { rRhsConst = 1; secondExpr = rhs; } if (rLhsConst && rRhsConst && firstExpr == secondExpr) return getAffineBinaryOpExpr( AffineExprKind::Mul, firstExpr, getAffineConstantExpr(*rLhsConst + *rRhsConst, lhs.getContext())); // When doing successive additions, bring constant to the right: turn (d0 + 2) // + d1 into (d0 + d1) + 2. if (lBin && lBin.getKind() == AffineExprKind::Add) { if (auto lrhs = dyn_cast(lBin.getRHS())) { return lBin.getLHS() + rhs + lrhs; } } // Detect and transform "expr - q * (expr floordiv q)" to "expr mod q", where // q may be a constant or symbolic expression. This leads to a much more // efficient form when 'c' is a power of two, and in general a more compact // and readable form. // Process '(expr floordiv c) * (-c)'. if (!rBinOpExpr) return nullptr; auto lrhs = rBinOpExpr.getLHS(); auto rrhs = rBinOpExpr.getRHS(); AffineExpr llrhs, rlrhs; // Check if lrhsBinOpExpr is of the form (expr floordiv q) * q, where q is a // symbolic expression. auto lrhsBinOpExpr = dyn_cast(lrhs); // Check rrhsConstOpExpr = -1. auto rrhsConstOpExpr = dyn_cast(rrhs); if (rrhsConstOpExpr && rrhsConstOpExpr.getValue() == -1 && lrhsBinOpExpr && lrhsBinOpExpr.getKind() == AffineExprKind::Mul) { // Check llrhs = expr floordiv q. llrhs = lrhsBinOpExpr.getLHS(); // Check rlrhs = q. rlrhs = lrhsBinOpExpr.getRHS(); auto llrhsBinOpExpr = dyn_cast(llrhs); if (!llrhsBinOpExpr || llrhsBinOpExpr.getKind() != AffineExprKind::FloorDiv) return nullptr; if (llrhsBinOpExpr.getRHS() == rlrhs && lhs == llrhsBinOpExpr.getLHS()) return lhs % rlrhs; } // Process lrhs, which is 'expr floordiv c'. AffineBinaryOpExpr lrBinOpExpr = dyn_cast(lrhs); if (!lrBinOpExpr || lrBinOpExpr.getKind() != AffineExprKind::FloorDiv) return nullptr; llrhs = lrBinOpExpr.getLHS(); rlrhs = lrBinOpExpr.getRHS(); if (lhs == llrhs && rlrhs == -rrhs) { return lhs % rlrhs; } return nullptr; } AffineExpr AffineExpr::operator+(int64_t v) const { return *this + getAffineConstantExpr(v, getContext()); } AffineExpr AffineExpr::operator+(AffineExpr other) const { if (auto simplified = simplifyAdd(*this, other)) return simplified; StorageUniquer &uniquer = getContext()->getAffineUniquer(); return uniquer.get( /*initFn=*/{}, static_cast(AffineExprKind::Add), *this, other); } /// Simplify a multiply expression. Return nullptr if it can't be simplified. static AffineExpr simplifyMul(AffineExpr lhs, AffineExpr rhs) { auto lhsConst = dyn_cast(lhs); auto rhsConst = dyn_cast(rhs); if (lhsConst && rhsConst) return getAffineConstantExpr(lhsConst.getValue() * rhsConst.getValue(), lhs.getContext()); assert(lhs.isSymbolicOrConstant() || rhs.isSymbolicOrConstant()); // Canonicalize the mul expression so that the constant/symbolic term is the // RHS. If both the lhs and rhs are symbolic, swap them if the lhs is a // constant. (Note that a constant is trivially symbolic). if (!rhs.isSymbolicOrConstant() || isa(lhs)) { // At least one of them has to be symbolic. return rhs * lhs; } // At this point, if there was a constant, it would be on the right. // Multiplication with a one is a noop, return the other input. if (rhsConst) { if (rhsConst.getValue() == 1) return lhs; // Multiplication with zero. if (rhsConst.getValue() == 0) return rhsConst; } // Fold successive multiplications: eg: (d0 * 2) * 3 into d0 * 6. auto lBin = dyn_cast(lhs); if (lBin && rhsConst && lBin.getKind() == AffineExprKind::Mul) { if (auto lrhs = dyn_cast(lBin.getRHS())) return lBin.getLHS() * (lrhs.getValue() * rhsConst.getValue()); } // When doing successive multiplication, bring constant to the right: turn (d0 // * 2) * d1 into (d0 * d1) * 2. if (lBin && lBin.getKind() == AffineExprKind::Mul) { if (auto lrhs = dyn_cast(lBin.getRHS())) { return (lBin.getLHS() * rhs) * lrhs; } } return nullptr; } AffineExpr AffineExpr::operator*(int64_t v) const { return *this * getAffineConstantExpr(v, getContext()); } AffineExpr AffineExpr::operator*(AffineExpr other) const { if (auto simplified = simplifyMul(*this, other)) return simplified; StorageUniquer &uniquer = getContext()->getAffineUniquer(); return uniquer.get( /*initFn=*/{}, static_cast(AffineExprKind::Mul), *this, other); } // Unary minus, delegate to operator*. AffineExpr AffineExpr::operator-() const { return *this * getAffineConstantExpr(-1, getContext()); } // Delegate to operator+. AffineExpr AffineExpr::operator-(int64_t v) const { return *this + (-v); } AffineExpr AffineExpr::operator-(AffineExpr other) const { return *this + (-other); } static AffineExpr simplifyFloorDiv(AffineExpr lhs, AffineExpr rhs) { auto lhsConst = dyn_cast(lhs); auto rhsConst = dyn_cast(rhs); // mlir floordiv by zero or negative numbers is undefined and preserved as is. if (!rhsConst || rhsConst.getValue() < 1) return nullptr; if (lhsConst) return getAffineConstantExpr( floorDiv(lhsConst.getValue(), rhsConst.getValue()), lhs.getContext()); // Fold floordiv of a multiply with a constant that is a multiple of the // divisor. Eg: (i * 128) floordiv 64 = i * 2. if (rhsConst == 1) return lhs; // Simplify (expr * const) floordiv divConst when expr is known to be a // multiple of divConst. auto lBin = dyn_cast(lhs); if (lBin && lBin.getKind() == AffineExprKind::Mul) { if (auto lrhs = dyn_cast(lBin.getRHS())) { // rhsConst is known to be a positive constant. if (lrhs.getValue() % rhsConst.getValue() == 0) return lBin.getLHS() * (lrhs.getValue() / rhsConst.getValue()); } } // Simplify (expr1 + expr2) floordiv divConst when either expr1 or expr2 is // known to be a multiple of divConst. if (lBin && lBin.getKind() == AffineExprKind::Add) { int64_t llhsDiv = lBin.getLHS().getLargestKnownDivisor(); int64_t lrhsDiv = lBin.getRHS().getLargestKnownDivisor(); // rhsConst is known to be a positive constant. if (llhsDiv % rhsConst.getValue() == 0 || lrhsDiv % rhsConst.getValue() == 0) return lBin.getLHS().floorDiv(rhsConst.getValue()) + lBin.getRHS().floorDiv(rhsConst.getValue()); } return nullptr; } AffineExpr AffineExpr::floorDiv(uint64_t v) const { return floorDiv(getAffineConstantExpr(v, getContext())); } AffineExpr AffineExpr::floorDiv(AffineExpr other) const { if (auto simplified = simplifyFloorDiv(*this, other)) return simplified; StorageUniquer &uniquer = getContext()->getAffineUniquer(); return uniquer.get( /*initFn=*/{}, static_cast(AffineExprKind::FloorDiv), *this, other); } static AffineExpr simplifyCeilDiv(AffineExpr lhs, AffineExpr rhs) { auto lhsConst = dyn_cast(lhs); auto rhsConst = dyn_cast(rhs); if (!rhsConst || rhsConst.getValue() < 1) return nullptr; if (lhsConst) return getAffineConstantExpr( ceilDiv(lhsConst.getValue(), rhsConst.getValue()), lhs.getContext()); // Fold ceildiv of a multiply with a constant that is a multiple of the // divisor. Eg: (i * 128) ceildiv 64 = i * 2. if (rhsConst.getValue() == 1) return lhs; // Simplify (expr * const) ceildiv divConst when const is known to be a // multiple of divConst. auto lBin = dyn_cast(lhs); if (lBin && lBin.getKind() == AffineExprKind::Mul) { if (auto lrhs = dyn_cast(lBin.getRHS())) { // rhsConst is known to be a positive constant. if (lrhs.getValue() % rhsConst.getValue() == 0) return lBin.getLHS() * (lrhs.getValue() / rhsConst.getValue()); } } return nullptr; } AffineExpr AffineExpr::ceilDiv(uint64_t v) const { return ceilDiv(getAffineConstantExpr(v, getContext())); } AffineExpr AffineExpr::ceilDiv(AffineExpr other) const { if (auto simplified = simplifyCeilDiv(*this, other)) return simplified; StorageUniquer &uniquer = getContext()->getAffineUniquer(); return uniquer.get( /*initFn=*/{}, static_cast(AffineExprKind::CeilDiv), *this, other); } static AffineExpr simplifyMod(AffineExpr lhs, AffineExpr rhs) { auto lhsConst = dyn_cast(lhs); auto rhsConst = dyn_cast(rhs); // mod w.r.t zero or negative numbers is undefined and preserved as is. if (!rhsConst || rhsConst.getValue() < 1) return nullptr; if (lhsConst) return getAffineConstantExpr(mod(lhsConst.getValue(), rhsConst.getValue()), lhs.getContext()); // Fold modulo of an expression that is known to be a multiple of a constant // to zero if that constant is a multiple of the modulo factor. Eg: (i * 128) // mod 64 is folded to 0, and less trivially, (i*(j*4*(k*32))) mod 128 = 0. if (lhs.getLargestKnownDivisor() % rhsConst.getValue() == 0) return getAffineConstantExpr(0, lhs.getContext()); // Simplify (expr1 + expr2) mod divConst when either expr1 or expr2 is // known to be a multiple of divConst. auto lBin = dyn_cast(lhs); if (lBin && lBin.getKind() == AffineExprKind::Add) { int64_t llhsDiv = lBin.getLHS().getLargestKnownDivisor(); int64_t lrhsDiv = lBin.getRHS().getLargestKnownDivisor(); // rhsConst is known to be a positive constant. if (llhsDiv % rhsConst.getValue() == 0) return lBin.getRHS() % rhsConst.getValue(); if (lrhsDiv % rhsConst.getValue() == 0) return lBin.getLHS() % rhsConst.getValue(); } // Simplify (e % a) % b to e % b when b evenly divides a if (lBin && lBin.getKind() == AffineExprKind::Mod) { auto intermediate = dyn_cast(lBin.getRHS()); if (intermediate && intermediate.getValue() >= 1 && mod(intermediate.getValue(), rhsConst.getValue()) == 0) { return lBin.getLHS() % rhsConst.getValue(); } } return nullptr; } AffineExpr AffineExpr::operator%(uint64_t v) const { return *this % getAffineConstantExpr(v, getContext()); } AffineExpr AffineExpr::operator%(AffineExpr other) const { if (auto simplified = simplifyMod(*this, other)) return simplified; StorageUniquer &uniquer = getContext()->getAffineUniquer(); return uniquer.get( /*initFn=*/{}, static_cast(AffineExprKind::Mod), *this, other); } AffineExpr AffineExpr::compose(AffineMap map) const { SmallVector dimReplacements(map.getResults().begin(), map.getResults().end()); return replaceDimsAndSymbols(dimReplacements, {}); } raw_ostream &mlir::operator<<(raw_ostream &os, AffineExpr expr) { expr.print(os); return os; } /// Constructs an affine expression from a flat ArrayRef. If there are local /// identifiers (neither dimensional nor symbolic) that appear in the sum of /// products expression, `localExprs` is expected to have the AffineExpr /// for it, and is substituted into. The ArrayRef `flatExprs` is expected to be /// in the format [dims, symbols, locals, constant term]. AffineExpr mlir::getAffineExprFromFlatForm(ArrayRef flatExprs, unsigned numDims, unsigned numSymbols, ArrayRef localExprs, MLIRContext *context) { // Assert expected numLocals = flatExprs.size() - numDims - numSymbols - 1. assert(flatExprs.size() - numDims - numSymbols - 1 == localExprs.size() && "unexpected number of local expressions"); auto expr = getAffineConstantExpr(0, context); // Dimensions and symbols. for (unsigned j = 0; j < numDims + numSymbols; j++) { if (flatExprs[j] == 0) continue; auto id = j < numDims ? getAffineDimExpr(j, context) : getAffineSymbolExpr(j - numDims, context); expr = expr + id * flatExprs[j]; } // Local identifiers. for (unsigned j = numDims + numSymbols, e = flatExprs.size() - 1; j < e; j++) { if (flatExprs[j] == 0) continue; auto term = localExprs[j - numDims - numSymbols] * flatExprs[j]; expr = expr + term; } // Constant term. int64_t constTerm = flatExprs[flatExprs.size() - 1]; if (constTerm != 0) expr = expr + constTerm; return expr; } /// Constructs a semi-affine expression from a flat ArrayRef. If there are /// local identifiers (neither dimensional nor symbolic) that appear in the sum /// of products expression, `localExprs` is expected to have the AffineExprs for /// it, and is substituted into. The ArrayRef `flatExprs` is expected to be in /// the format [dims, symbols, locals, constant term]. The semi-affine /// expression is constructed in the sorted order of dimension and symbol /// position numbers. Note: local expressions/ids are used for mod, div as well /// as symbolic RHS terms for terms that are not pure affine. static AffineExpr getSemiAffineExprFromFlatForm(ArrayRef flatExprs, unsigned numDims, unsigned numSymbols, ArrayRef localExprs, MLIRContext *context) { assert(!flatExprs.empty() && "flatExprs cannot be empty"); // Assert expected numLocals = flatExprs.size() - numDims - numSymbols - 1. assert(flatExprs.size() - numDims - numSymbols - 1 == localExprs.size() && "unexpected number of local expressions"); AffineExpr expr = getAffineConstantExpr(0, context); // We design indices as a pair which help us present the semi-affine map as // sum of product where terms are sorted based on dimension or symbol // position: for expressions of the form dimension * symbol, // where keyA is the position number of the dimension and keyB is the // position number of the symbol. For dimensional expressions we set the index // as (position number of the dimension, -1), as we want dimensional // expressions to appear before symbolic and product of dimensional and // symbolic expressions having the dimension with the same position number. // For symbolic expression set the index as (position number of the symbol, // maximum of last dimension and symbol position) number. For example, we want // the expression we are constructing to look something like: d0 + d0 * s0 + // s0 + d1*s1 + s1. // Stores the affine expression corresponding to a given index. DenseMap, AffineExpr> indexToExprMap; // Stores the constant coefficient value corresponding to a given // dimension, symbol or a non-pure affine expression stored in `localExprs`. DenseMap, int64_t> coefficients; // Stores the indices as defined above, and later sorted to produce // the semi-affine expression in the desired form. SmallVector, 8> indices; // Example: expression = d0 + d0 * s0 + 2 * s0. // indices = [{0,-1}, {0, 0}, {0, 1}] // coefficients = [{{0, -1}, 1}, {{0, 0}, 1}, {{0, 1}, 2}] // indexToExprMap = [{{0, -1}, d0}, {{0, 0}, d0 * s0}, {{0, 1}, s0}] // Adds entries to `indexToExprMap`, `coefficients` and `indices`. auto addEntry = [&](std::pair index, int64_t coefficient, AffineExpr expr) { assert(!llvm::is_contained(indices, index) && "Key is already present in indices vector and overwriting will " "happen in `indexToExprMap` and `coefficients`!"); indices.push_back(index); coefficients.insert({index, coefficient}); indexToExprMap.insert({index, expr}); }; // Design indices for dimensional or symbolic terms, and store the indices, // constant coefficient corresponding to the indices in `coefficients` map, // and affine expression corresponding to indices in `indexToExprMap` map. // Ensure we do not have duplicate keys in `indexToExpr` map. unsigned offsetSym = 0; signed offsetDim = -1; for (unsigned j = numDims; j < numDims + numSymbols; ++j) { if (flatExprs[j] == 0) continue; // For symbolic expression set the index as number, // as we want symbolic expressions with the same positional number to // appear after dimensional expressions having the same positional number. std::pair indexEntry( j - numDims, std::max(numDims, numSymbols) + offsetSym++); addEntry(indexEntry, flatExprs[j], getAffineSymbolExpr(j - numDims, context)); } // Denotes semi-affine product, modulo or division terms, which has been added // to the `indexToExpr` map. SmallVector addedToMap(flatExprs.size() - numDims - numSymbols - 1, false); unsigned lhsPos, rhsPos; // Construct indices for product terms involving dimension, symbol or constant // as lhs/rhs, and store the indices, constant coefficient corresponding to // the indices in `coefficients` map, and affine expression corresponding to // in indices in `indexToExprMap` map. for (const auto &it : llvm::enumerate(localExprs)) { AffineExpr expr = it.value(); if (flatExprs[numDims + numSymbols + it.index()] == 0) continue; AffineExpr lhs = cast(expr).getLHS(); AffineExpr rhs = cast(expr).getRHS(); if (!((isa(lhs) || isa(lhs)) && (isa(rhs) || isa(rhs) || isa(rhs)))) { continue; } if (isa(rhs)) { // For product/modulo/division expressions, when rhs of modulo/division // expression is constant, we put 0 in place of keyB, because we want // them to appear earlier in the semi-affine expression we are // constructing. When rhs is constant, we place 0 in place of keyB. if (isa(lhs)) { lhsPos = cast(lhs).getPosition(); std::pair indexEntry(lhsPos, offsetDim--); addEntry(indexEntry, flatExprs[numDims + numSymbols + it.index()], expr); } else { lhsPos = cast(lhs).getPosition(); std::pair indexEntry( lhsPos, std::max(numDims, numSymbols) + offsetSym++); addEntry(indexEntry, flatExprs[numDims + numSymbols + it.index()], expr); } } else if (isa(lhs)) { // For product/modulo/division expressions having lhs as dimension and rhs // as symbol, we order the terms in the semi-affine expression based on // the pair: for expressions of the form dimension * symbol, // where keyA is the position number of the dimension and keyB is the // position number of the symbol. lhsPos = cast(lhs).getPosition(); rhsPos = cast(rhs).getPosition(); std::pair indexEntry(lhsPos, rhsPos); addEntry(indexEntry, flatExprs[numDims + numSymbols + it.index()], expr); } else { // For product/modulo/division expressions having both lhs and rhs as // symbol, we design indices as a pair: for expressions // of the form dimension * symbol, where keyA is the position number of // the dimension and keyB is the position number of the symbol. lhsPos = cast(lhs).getPosition(); rhsPos = cast(rhs).getPosition(); std::pair indexEntry( lhsPos, std::max(numDims, numSymbols) + offsetSym++); addEntry(indexEntry, flatExprs[numDims + numSymbols + it.index()], expr); } addedToMap[it.index()] = true; } for (unsigned j = 0; j < numDims; ++j) { if (flatExprs[j] == 0) continue; // For dimensional expressions we set the index as , as we want dimensional expressions to appear before // symbolic ones and products of dimensional and symbolic expressions // having the dimension with the same position number. std::pair indexEntry(j, offsetDim--); addEntry(indexEntry, flatExprs[j], getAffineDimExpr(j, context)); } // Constructing the simplified semi-affine sum of product/division/mod // expression from the flattened form in the desired sorted order of indices // of the various individual product/division/mod expressions. llvm::sort(indices); for (const std::pair index : indices) { assert(indexToExprMap.lookup(index) && "cannot find key in `indexToExprMap` map"); expr = expr + indexToExprMap.lookup(index) * coefficients.lookup(index); } // Local identifiers. for (unsigned j = numDims + numSymbols, e = flatExprs.size() - 1; j < e; j++) { // If the coefficient of the local expression is 0, continue as we need not // add it in out final expression. if (flatExprs[j] == 0 || addedToMap[j - numDims - numSymbols]) continue; auto term = localExprs[j - numDims - numSymbols] * flatExprs[j]; expr = expr + term; } // Constant term. int64_t constTerm = flatExprs.back(); if (constTerm != 0) expr = expr + constTerm; return expr; } SimpleAffineExprFlattener::SimpleAffineExprFlattener(unsigned numDims, unsigned numSymbols) : numDims(numDims), numSymbols(numSymbols), numLocals(0) { operandExprStack.reserve(8); } // In pure affine t = expr * c, we multiply each coefficient of lhs with c. // // In case of semi affine multiplication expressions, t = expr * symbolic_expr, // introduce a local variable p (= expr * symbolic_expr), and the affine // expression expr * symbolic_expr is added to `localExprs`. LogicalResult SimpleAffineExprFlattener::visitMulExpr(AffineBinaryOpExpr expr) { assert(operandExprStack.size() >= 2); SmallVector rhs = operandExprStack.back(); operandExprStack.pop_back(); SmallVector &lhs = operandExprStack.back(); // Flatten semi-affine multiplication expressions by introducing a local // variable in place of the product; the affine expression // corresponding to the quantifier is added to `localExprs`. if (!isa(expr.getRHS())) { MLIRContext *context = expr.getContext(); AffineExpr a = getAffineExprFromFlatForm(lhs, numDims, numSymbols, localExprs, context); AffineExpr b = getAffineExprFromFlatForm(rhs, numDims, numSymbols, localExprs, context); addLocalVariableSemiAffine(a * b, lhs, lhs.size()); return success(); } // Get the RHS constant. auto rhsConst = rhs[getConstantIndex()]; for (unsigned i = 0, e = lhs.size(); i < e; i++) { lhs[i] *= rhsConst; } return success(); } LogicalResult SimpleAffineExprFlattener::visitAddExpr(AffineBinaryOpExpr expr) { assert(operandExprStack.size() >= 2); const auto &rhs = operandExprStack.back(); auto &lhs = operandExprStack[operandExprStack.size() - 2]; assert(lhs.size() == rhs.size()); // Update the LHS in place. for (unsigned i = 0, e = rhs.size(); i < e; i++) { lhs[i] += rhs[i]; } // Pop off the RHS. operandExprStack.pop_back(); return success(); } // // t = expr mod c <=> t = expr - c*q and c*q <= expr <= c*q + c - 1 // // A mod expression "expr mod c" is thus flattened by introducing a new local // variable q (= expr floordiv c), such that expr mod c is replaced with // 'expr - c * q' and c * q <= expr <= c * q + c - 1 are added to localVarCst. // // In case of semi-affine modulo expressions, t = expr mod symbolic_expr, // introduce a local variable m (= expr mod symbolic_expr), and the affine // expression expr mod symbolic_expr is added to `localExprs`. LogicalResult SimpleAffineExprFlattener::visitModExpr(AffineBinaryOpExpr expr) { assert(operandExprStack.size() >= 2); SmallVector rhs = operandExprStack.back(); operandExprStack.pop_back(); SmallVector &lhs = operandExprStack.back(); MLIRContext *context = expr.getContext(); // Flatten semi affine modulo expressions by introducing a local // variable in place of the modulo value, and the affine expression // corresponding to the quantifier is added to `localExprs`. if (!isa(expr.getRHS())) { AffineExpr dividendExpr = getAffineExprFromFlatForm( lhs, numDims, numSymbols, localExprs, context); AffineExpr divisorExpr = getAffineExprFromFlatForm(rhs, numDims, numSymbols, localExprs, context); AffineExpr modExpr = dividendExpr % divisorExpr; addLocalVariableSemiAffine(modExpr, lhs, lhs.size()); return success(); } int64_t rhsConst = rhs[getConstantIndex()]; if (rhsConst <= 0) return failure(); // Check if the LHS expression is a multiple of modulo factor. unsigned i, e; for (i = 0, e = lhs.size(); i < e; i++) if (lhs[i] % rhsConst != 0) break; // If yes, modulo expression here simplifies to zero. if (i == lhs.size()) { std::fill(lhs.begin(), lhs.end(), 0); return success(); } // Add a local variable for the quotient, i.e., expr % c is replaced by // (expr - q * c) where q = expr floordiv c. Do this while canceling out // the GCD of expr and c. SmallVector floorDividend(lhs); uint64_t gcd = rhsConst; for (unsigned i = 0, e = lhs.size(); i < e; i++) gcd = std::gcd(gcd, (uint64_t)std::abs(lhs[i])); // Simplify the numerator and the denominator. if (gcd != 1) { for (unsigned i = 0, e = floorDividend.size(); i < e; i++) floorDividend[i] = floorDividend[i] / static_cast(gcd); } int64_t floorDivisor = rhsConst / static_cast(gcd); // Construct the AffineExpr form of the floordiv to store in localExprs. AffineExpr dividendExpr = getAffineExprFromFlatForm( floorDividend, numDims, numSymbols, localExprs, context); AffineExpr divisorExpr = getAffineConstantExpr(floorDivisor, context); AffineExpr floorDivExpr = dividendExpr.floorDiv(divisorExpr); int loc; if ((loc = findLocalId(floorDivExpr)) == -1) { addLocalFloorDivId(floorDividend, floorDivisor, floorDivExpr); // Set result at top of stack to "lhs - rhsConst * q". lhs[getLocalVarStartIndex() + numLocals - 1] = -rhsConst; } else { // Reuse the existing local id. lhs[getLocalVarStartIndex() + loc] = -rhsConst; } return success(); } LogicalResult SimpleAffineExprFlattener::visitCeilDivExpr(AffineBinaryOpExpr expr) { return visitDivExpr(expr, /*isCeil=*/true); } LogicalResult SimpleAffineExprFlattener::visitFloorDivExpr(AffineBinaryOpExpr expr) { return visitDivExpr(expr, /*isCeil=*/false); } LogicalResult SimpleAffineExprFlattener::visitDimExpr(AffineDimExpr expr) { operandExprStack.emplace_back(SmallVector(getNumCols(), 0)); auto &eq = operandExprStack.back(); assert(expr.getPosition() < numDims && "Inconsistent number of dims"); eq[getDimStartIndex() + expr.getPosition()] = 1; return success(); } LogicalResult SimpleAffineExprFlattener::visitSymbolExpr(AffineSymbolExpr expr) { operandExprStack.emplace_back(SmallVector(getNumCols(), 0)); auto &eq = operandExprStack.back(); assert(expr.getPosition() < numSymbols && "inconsistent number of symbols"); eq[getSymbolStartIndex() + expr.getPosition()] = 1; return success(); } LogicalResult SimpleAffineExprFlattener::visitConstantExpr(AffineConstantExpr expr) { operandExprStack.emplace_back(SmallVector(getNumCols(), 0)); auto &eq = operandExprStack.back(); eq[getConstantIndex()] = expr.getValue(); return success(); } void SimpleAffineExprFlattener::addLocalVariableSemiAffine( AffineExpr expr, SmallVectorImpl &result, unsigned long resultSize) { assert(result.size() == resultSize && "`result` vector passed is not of correct size"); int loc; if ((loc = findLocalId(expr)) == -1) addLocalIdSemiAffine(expr); std::fill(result.begin(), result.end(), 0); if (loc == -1) result[getLocalVarStartIndex() + numLocals - 1] = 1; else result[getLocalVarStartIndex() + loc] = 1; } // t = expr floordiv c <=> t = q, c * q <= expr <= c * q + c - 1 // A floordiv is thus flattened by introducing a new local variable q, and // replacing that expression with 'q' while adding the constraints // c * q <= expr <= c * q + c - 1 to localVarCst (done by // IntegerRelation::addLocalFloorDiv). // // A ceildiv is similarly flattened: // t = expr ceildiv c <=> t = (expr + c - 1) floordiv c // // In case of semi affine division expressions, t = expr floordiv symbolic_expr // or t = expr ceildiv symbolic_expr, introduce a local variable q (= expr // floordiv/ceildiv symbolic_expr), and the affine floordiv/ceildiv is added to // `localExprs`. LogicalResult SimpleAffineExprFlattener::visitDivExpr(AffineBinaryOpExpr expr, bool isCeil) { assert(operandExprStack.size() >= 2); MLIRContext *context = expr.getContext(); SmallVector rhs = operandExprStack.back(); operandExprStack.pop_back(); SmallVector &lhs = operandExprStack.back(); // Flatten semi affine division expressions by introducing a local // variable in place of the quotient, and the affine expression corresponding // to the quantifier is added to `localExprs`. if (!isa(expr.getRHS())) { AffineExpr a = getAffineExprFromFlatForm(lhs, numDims, numSymbols, localExprs, context); AffineExpr b = getAffineExprFromFlatForm(rhs, numDims, numSymbols, localExprs, context); AffineExpr divExpr = isCeil ? a.ceilDiv(b) : a.floorDiv(b); addLocalVariableSemiAffine(divExpr, lhs, lhs.size()); return success(); } // This is a pure affine expr; the RHS is a positive constant. int64_t rhsConst = rhs[getConstantIndex()]; if (rhsConst <= 0) return failure(); // Simplify the floordiv, ceildiv if possible by canceling out the greatest // common divisors of the numerator and denominator. uint64_t gcd = std::abs(rhsConst); for (unsigned i = 0, e = lhs.size(); i < e; i++) gcd = std::gcd(gcd, (uint64_t)std::abs(lhs[i])); // Simplify the numerator and the denominator. if (gcd != 1) { for (unsigned i = 0, e = lhs.size(); i < e; i++) lhs[i] = lhs[i] / static_cast(gcd); } int64_t divisor = rhsConst / static_cast(gcd); // If the divisor becomes 1, the updated LHS is the result. (The // divisor can't be negative since rhsConst is positive). if (divisor == 1) return success(); // If the divisor cannot be simplified to one, we will have to retain // the ceil/floor expr (simplified up until here). Add an existential // quantifier to express its result, i.e., expr1 div expr2 is replaced // by a new identifier, q. AffineExpr a = getAffineExprFromFlatForm(lhs, numDims, numSymbols, localExprs, context); AffineExpr b = getAffineConstantExpr(divisor, context); int loc; AffineExpr divExpr = isCeil ? a.ceilDiv(b) : a.floorDiv(b); if ((loc = findLocalId(divExpr)) == -1) { if (!isCeil) { SmallVector dividend(lhs); addLocalFloorDivId(dividend, divisor, divExpr); } else { // lhs ceildiv c <=> (lhs + c - 1) floordiv c SmallVector dividend(lhs); dividend.back() += divisor - 1; addLocalFloorDivId(dividend, divisor, divExpr); } } // Set the expression on stack to the local var introduced to capture the // result of the division (floor or ceil). std::fill(lhs.begin(), lhs.end(), 0); if (loc == -1) lhs[getLocalVarStartIndex() + numLocals - 1] = 1; else lhs[getLocalVarStartIndex() + loc] = 1; return success(); } // Add a local identifier (needed to flatten a mod, floordiv, ceildiv expr). // The local identifier added is always a floordiv of a pure add/mul affine // function of other identifiers, coefficients of which are specified in // dividend and with respect to a positive constant divisor. localExpr is the // simplified tree expression (AffineExpr) corresponding to the quantifier. void SimpleAffineExprFlattener::addLocalFloorDivId(ArrayRef dividend, int64_t divisor, AffineExpr localExpr) { assert(divisor > 0 && "positive constant divisor expected"); for (SmallVector &subExpr : operandExprStack) subExpr.insert(subExpr.begin() + getLocalVarStartIndex() + numLocals, 0); localExprs.push_back(localExpr); numLocals++; // dividend and divisor are not used here; an override of this method uses it. } void SimpleAffineExprFlattener::addLocalIdSemiAffine(AffineExpr localExpr) { for (SmallVector &subExpr : operandExprStack) subExpr.insert(subExpr.begin() + getLocalVarStartIndex() + numLocals, 0); localExprs.push_back(localExpr); ++numLocals; } int SimpleAffineExprFlattener::findLocalId(AffineExpr localExpr) { SmallVectorImpl::iterator it; if ((it = llvm::find(localExprs, localExpr)) == localExprs.end()) return -1; return it - localExprs.begin(); } /// Simplify the affine expression by flattening it and reconstructing it. AffineExpr mlir::simplifyAffineExpr(AffineExpr expr, unsigned numDims, unsigned numSymbols) { // Simplify semi-affine expressions separately. if (!expr.isPureAffine()) expr = simplifySemiAffine(expr, numDims, numSymbols); SimpleAffineExprFlattener flattener(numDims, numSymbols); // has poison expression if (failed(flattener.walkPostOrder(expr))) return expr; ArrayRef flattenedExpr = flattener.operandExprStack.back(); if (!expr.isPureAffine() && expr == getAffineExprFromFlatForm(flattenedExpr, numDims, numSymbols, flattener.localExprs, expr.getContext())) return expr; AffineExpr simplifiedExpr = expr.isPureAffine() ? getAffineExprFromFlatForm(flattenedExpr, numDims, numSymbols, flattener.localExprs, expr.getContext()) : getSemiAffineExprFromFlatForm(flattenedExpr, numDims, numSymbols, flattener.localExprs, expr.getContext()); flattener.operandExprStack.pop_back(); assert(flattener.operandExprStack.empty()); return simplifiedExpr; } std::optional mlir::getBoundForAffineExpr( AffineExpr expr, unsigned numDims, unsigned numSymbols, ArrayRef> constLowerBounds, ArrayRef> constUpperBounds, bool isUpper) { // Handle divs and mods. if (auto binOpExpr = dyn_cast(expr)) { // If the LHS of a floor or ceil is bounded and the RHS is a constant, we // can compute an upper bound. if (binOpExpr.getKind() == AffineExprKind::FloorDiv) { auto rhsConst = dyn_cast(binOpExpr.getRHS()); if (!rhsConst || rhsConst.getValue() < 1) return std::nullopt; auto bound = getBoundForAffineExpr(binOpExpr.getLHS(), numDims, numSymbols, constLowerBounds, constUpperBounds, isUpper); if (!bound) return std::nullopt; return mlir::floorDiv(*bound, rhsConst.getValue()); } if (binOpExpr.getKind() == AffineExprKind::CeilDiv) { auto rhsConst = dyn_cast(binOpExpr.getRHS()); if (rhsConst && rhsConst.getValue() >= 1) { auto bound = getBoundForAffineExpr(binOpExpr.getLHS(), numDims, numSymbols, constLowerBounds, constUpperBounds, isUpper); if (!bound) return std::nullopt; return mlir::ceilDiv(*bound, rhsConst.getValue()); } return std::nullopt; } if (binOpExpr.getKind() == AffineExprKind::Mod) { // lhs mod c is always <= c - 1 and non-negative. In addition, if `lhs` is // bounded such that lb <= lhs <= ub and lb floordiv c == ub floordiv c // (same "interval"), then lb mod c <= lhs mod c <= ub mod c. auto rhsConst = dyn_cast(binOpExpr.getRHS()); if (rhsConst && rhsConst.getValue() >= 1) { int64_t rhsConstVal = rhsConst.getValue(); auto lb = getBoundForAffineExpr(binOpExpr.getLHS(), numDims, numSymbols, constLowerBounds, constUpperBounds, /*isUpper=*/false); auto ub = getBoundForAffineExpr(binOpExpr.getLHS(), numDims, numSymbols, constLowerBounds, constUpperBounds, isUpper); if (ub && lb && floorDiv(*lb, rhsConstVal) == floorDiv(*ub, rhsConstVal)) return isUpper ? mod(*ub, rhsConstVal) : mod(*lb, rhsConstVal); return isUpper ? rhsConstVal - 1 : 0; } } } // Flatten the expression. SimpleAffineExprFlattener flattener(numDims, numSymbols); auto simpleResult = flattener.walkPostOrder(expr); // has poison expression if (failed(simpleResult)) return std::nullopt; ArrayRef flattenedExpr = flattener.operandExprStack.back(); // TODO: Handle local variables. We can get hold of flattener.localExprs and // get bound on the local expr recursively. if (flattener.numLocals > 0) return std::nullopt; int64_t bound = 0; // Substitute the constant lower or upper bound for the dimensional or // symbolic input depending on `isUpper` to determine the bound. for (unsigned i = 0, e = numDims + numSymbols; i < e; ++i) { if (flattenedExpr[i] > 0) { auto &constBound = isUpper ? constUpperBounds[i] : constLowerBounds[i]; if (!constBound) return std::nullopt; bound += *constBound * flattenedExpr[i]; } else if (flattenedExpr[i] < 0) { auto &constBound = isUpper ? constLowerBounds[i] : constUpperBounds[i]; if (!constBound) return std::nullopt; bound += *constBound * flattenedExpr[i]; } } // Constant term. bound += flattenedExpr.back(); return bound; }