// RUN: mlir-opt -split-input-file -test-liveness-analysis %s 2>&1 | FileCheck %s // Positive test: Type (1.a) "is an operand of an op with memory effects" // zero is live because it is stored in memory. // CHECK-LABEL: test_tag: zero: // CHECK-NEXT: result #0: live func.func @test_1_type_1.a(%arg0: memref) { %c0_i32 = arith.constant {tag = "zero"} 0 : i32 memref.store %c0_i32, %arg0[] : memref return } // ----- // Positive test: Type (1.b) "is a non-forwarded branch operand and a block // where its op could take the control has an op with memory effects" // %arg2 is live because it can make the control go into a block with a memory // effecting op. // CHECK-LABEL: test_tag: br: // CHECK-NEXT: operand #0: live // CHECK-NEXT: operand #1: live // CHECK-NEXT: operand #2: live func.func @test_2_RegionBranchOpInterface_type_1.b(%arg0: memref, %arg1: memref, %arg2: i1) { %c0_i32 = arith.constant 0 : i32 cf.cond_br %arg2, ^bb1(%c0_i32 : i32), ^bb2(%c0_i32 : i32) {tag = "br"} ^bb1(%0 : i32): memref.store %0, %arg0[] : memref cf.br ^bb3 ^bb2(%1 : i32): memref.store %1, %arg1[] : memref cf.br ^bb3 ^bb3: return } // ----- // Positive test: Type (1.b) "is a non-forwarded branch operand and a block // where its op could take the control has an op with memory effects" // %arg0 is live because it can make the control go into a block with a memory // effecting op. // CHECK-LABEL: test_tag: flag: // CHECK-NEXT: operand #0: live func.func @test_3_BranchOpInterface_type_1.b(%arg0: i32, %arg1: memref, %arg2: memref) { %c0_i32 = arith.constant 0 : i32 cf.switch %arg0 : i32, [ default: ^bb1, 42: ^bb2 ] {tag = "flag"} ^bb1: memref.store %c0_i32, %arg1[] : memref cf.br ^bb3 ^bb2: memref.store %c0_i32, %arg2[] : memref cf.br ^bb3 ^bb3: return } // ----- func.func private @private(%arg0 : i32, %arg1 : i32) { func.return } // Positive test: Type (1.c) "is a non-forwarded call operand" // CHECK-LABEL: test_tag: call // CHECK-LABEL: operand #0: not live // CHECK-LABEL: operand #1: not live // CHECK-LABEL: operand #2: live func.func @test_4_type_1.c(%arg0: i32, %arg1: i32, %device: i32, %m0: memref) { test.call_on_device @private(%arg0, %arg1), %device {tag = "call"} : (i32, i32, i32) -> () return } // ----- // Positive test: Type (2) "is returned by a public function" // zero is live because it is returned by a public function. // CHECK-LABEL: test_tag: zero: // CHECK-NEXT: result #0: live func.func @test_5_type_2() -> (f32){ %0 = arith.constant {tag = "zero"} 0.0 : f32 return %0 : f32 } // ----- // Positive test: Type (3) "is used to compute a value of type (1) or (2)" // %arg1 is live because the scf.while has a live result and %arg1 is a // non-forwarded branch operand. // %arg2 is live because it is forwarded to the live result of the scf.while // op. // %arg5 is live because it is forwarded to %arg8 which is live. // %arg8 is live because it is forwarded to %arg4 which is live as it writes // to memory. // Negative test: // %arg3 is not live even though %arg1, %arg2, and %arg5 are live because it // is neither a non-forwarded branch operand nor a forwarded operand that // forwards to a live value. It actually is a forwarded operand that forwards // to non-live values %0#1 and %arg7. // CHECK-LABEL: test_tag: condition: // CHECK-NEXT: operand #0: live // CHECK-NEXT: operand #1: live // CHECK-NEXT: operand #2: not live // CHECK-NEXT: operand #3: live // CHECK-LABEL: test_tag: add: // CHECK-NEXT: operand #0: live func.func @test_6_RegionBranchTerminatorOpInterface_type_3(%arg0: memref, %arg1: i1) -> (i32) { %c0_i32 = arith.constant 0 : i32 %c1_i32 = arith.constant 1 : i32 %c2_i32 = arith.constant 2 : i32 %0:3 = scf.while (%arg2 = %c0_i32, %arg3 = %c1_i32, %arg4 = %c2_i32, %arg5 = %c2_i32) : (i32, i32, i32, i32) -> (i32, i32, i32) { memref.store %arg4, %arg0[] : memref scf.condition(%arg1) {tag = "condition"} %arg2, %arg3, %arg5 : i32, i32, i32 } do { ^bb0(%arg6: i32, %arg7: i32, %arg8: i32): %1 = arith.addi %arg8, %arg8 {tag = "add"} : i32 %c3_i32 = arith.constant 3 : i32 scf.yield %arg6, %arg7, %arg8, %c3_i32 : i32, i32, i32, i32 } return %0#0 : i32 } // ----- func.func private @private0(%0 : i32) -> i32 { %1 = arith.addi %0, %0 {tag = "in_private0"} : i32 func.return %1 : i32 } // Positive test: Type (3) "is used to compute a value of type (1) or (2)" // zero, ten, and one are live because they are used to decide the number of // times the `for` loop executes, which in turn decides the value stored in // memory. // in_private0 and x are also live because they decide the value stored in // memory. // Negative test: // y is not live even though the non-forwarded branch operand and x are live. // CHECK-LABEL: test_tag: in_private0: // CHECK-NEXT: operand #0: live // CHECK-NEXT: operand #1: live // CHECK-NEXT: result #0: live // CHECK-LABEL: test_tag: zero: // CHECK-NEXT: result #0: live // CHECK-LABEL: test_tag: ten: // CHECK-NEXT: result #0: live // CHECK-LABEL: test_tag: one: // CHECK-NEXT: result #0: live // CHECK-LABEL: test_tag: x: // CHECK-NEXT: result #0: live // CHECK-LABEL: test_tag: y: // CHECK-NEXT: result #0: not live func.func @test_7_type_3(%arg0: memref) { %c0 = arith.constant {tag = "zero"} 0 : index %c10 = arith.constant {tag = "ten"} 10 : index %c1 = arith.constant {tag = "one"} 1 : index %x = arith.constant {tag = "x"} 0 : i32 %y = arith.constant {tag = "y"} 1 : i32 %0:2 = scf.for %arg1 = %c0 to %c10 step %c1 iter_args(%arg2 = %x, %arg3 = %y) -> (i32, i32) { %1 = arith.addi %x, %x : i32 %2 = func.call @private0(%1) : (i32) -> i32 scf.yield %2, %arg3 : i32, i32 } memref.store %0#0, %arg0[] : memref return } // ----- func.func private @private1(%0 : i32) -> i32 { %1 = func.call @private2(%0) : (i32) -> i32 %2 = arith.muli %0, %1 {tag = "in_private1"} : i32 func.return %2 : i32 } func.func private @private2(%0 : i32) -> i32 { %cond = arith.index_cast %0 {tag = "in_private2"} : i32 to index %1 = scf.index_switch %cond -> i32 case 1 { %ten = arith.constant 10 : i32 scf.yield %ten : i32 } case 2 { %twenty = arith.constant 20 : i32 scf.yield %twenty : i32 } default { %thirty = arith.constant 30 : i32 scf.yield %thirty : i32 } func.return %1 : i32 } // Positive test: Type (3) "is used to compute a value of type (1) or (2)" // in_private1, in_private2, and final are live because they are used to compute // the value returned by this public function. // CHECK-LABEL: test_tag: in_private1: // CHECK-NEXT: operand #0: live // CHECK-NEXT: operand #1: live // CHECK-NEXT: result #0: live // CHECK-LABEL: test_tag: in_private2: // CHECK-NEXT: operand #0: live // CHECK-NEXT: result #0: live // CHECK-LABEL: test_tag: final: // CHECK-NEXT: operand #0: live // CHECK-NEXT: operand #1: live // CHECK-NEXT: result #0: live func.func @test_8_type_3(%arg: i32) -> (i32) { %0 = func.call @private1(%arg) : (i32) -> i32 %final = arith.muli %0, %arg {tag = "final"} : i32 return %final : i32 } // ----- // Negative test: None of the types (1), (2), or (3) // zero is not live because it has no effect outside the program: it doesn't // affect the memory or the program output. // CHECK-LABEL: test_tag: zero: // CHECK-NEXT: result #0: not live // CHECK-LABEL: test_tag: one: // CHECK-NEXT: result #0: live func.func @test_9_negative() -> (f32){ %0 = arith.constant {tag = "zero"} 0.0 : f32 %1 = arith.constant {tag = "one"} 1.0 : f32 return %1 : f32 } // ----- // Negative test: None of the types (1), (2), or (3) // %1 is not live because it has no effect outside the program: it doesn't // affect the memory or the program output. Even though it is returned by the // function `@private_1`, it is never used by the caller. // Note that this test clearly shows how this liveness analysis utility differs // from the existing liveness utility present at // llvm-project/mlir/include/mlir/Analysis/Liveness.h. The latter marks %1 as // live as it exists the block of function `@private_1`, simply because it is // computed inside and returned by the block, irrespective of whether or not it // is used by the caller. // CHECK-LABEL: test_tag: one: // CHECK: result #0: not live func.func private @private_1() -> (i32, i32) { %0 = arith.constant 0 : i32 %1 = arith.addi %0, %0 {tag = "one"} : i32 return %0, %1 : i32, i32 } func.func @test_10_negative() -> (i32) { %0:2 = func.call @private_1() : () -> (i32, i32) return %0#0 : i32 }