// RUN: mlir-opt %s -test-linalg-data-layout-propagation -split-input-file | FileCheck %s #map0 = affine_map<(d0, d1) -> (d0, d1)> func.func @dynamic_elem_pack(%arg0: tensor, %dest: tensor) -> tensor { %c0 = arith.constant 0 : index %c1 = arith.constant 1 : index %0 = tensor.dim %arg0, %c0 : tensor %1 = tensor.dim %arg0, %c1 : tensor %2 = tensor.empty(%0, %1) : tensor %3 = linalg.generic {indexing_maps = [#map0, #map0], iterator_types = ["parallel", "parallel"]} ins(%arg0 : tensor) outs(%2 : tensor) { ^bb0(%arg3: f32, %arg4: f32): %4 = arith.addf %arg3, %arg3 : f32 linalg.yield %4 : f32 } -> tensor %4 = tensor.pack %3 inner_dims_pos = [0, 1] inner_tiles = [8, 2] into %dest : tensor -> tensor return %4 : tensor } // CHECK-DAG: #[[MAP0:.+]] = affine_map<()[s0] -> (s0 ceildiv 8)> // CHECK-DAG: #[[MAP1:.+]] = affine_map<()[s0] -> (s0 ceildiv 2)> // CHECK-DAG: #[[MAP2:.+]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)> // CHECK: func.func @dynamic_elem_pack // CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]] // CHECK-SAME: %[[DEST:[a-zA-Z0-9]+]] // CHECK-DAG: %[[C0:.+]] = arith.constant 0 : index // CHECK-DAG: %[[C1:.+]] = arith.constant 1 : index // CHECK-DAG: %[[D0:.+]] = tensor.dim %[[ARG0]], %[[C0]] // CHECK-DAG: %[[D1:.+]] = tensor.dim %[[ARG0]], %[[C1]] // CHECK-DAG: %[[OUTER_D0:.+]] = affine.apply #[[MAP0]]()[%[[D0]]] // CHECK-DAG: %[[OUTER_D1:.+]] = affine.apply #[[MAP1]]()[%[[D1]]] // CHECK: %[[ARG0_EMPTY:.+]] = tensor.empty(%[[OUTER_D0]], %[[OUTER_D1]]) : tensor // CHECK: %[[PACK_ARG0:.+]] = tensor.pack %[[ARG0]] // CHECK-SAME: inner_dims_pos = [0, 1] inner_tiles = [8, 2] // CHECK-SAME: into %[[ARG0_EMPTY]] // CHECK: %[[ELEM:.+]] = linalg.generic // CHECK-SAME: indexing_maps = [#[[MAP2]], #[[MAP2]]] // CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel", "parallel"] // CHECK-SAME: ins(%[[PACK_ARG0]] // CHECK-SAME: outs(%[[DEST]] // CHECK: return %[[ELEM]] : tensor // ----- #map0 = affine_map<(d0, d1) -> (d0, d1)> func.func @elem_pack_transpose_inner_dims(%arg0: tensor<128x256xi32>, %dest: tensor<4x16x16x32xi32>) -> tensor<4x16x16x32xi32>{ %init = tensor.empty() : tensor<128x256xi32> %elem = linalg.generic {indexing_maps = [#map0, #map0], iterator_types = ["parallel", "parallel"]} ins(%arg0 : tensor<128x256xi32>) outs(%init : tensor<128x256xi32>) { ^bb0(%arg3: i32, %arg4: i32): %4 = arith.addi %arg3, %arg3 : i32 linalg.yield %4 : i32 } -> tensor<128x256xi32> %pack = tensor.pack %elem inner_dims_pos = [1, 0] inner_tiles = [16, 32] into %dest : tensor<128x256xi32> -> tensor<4x16x16x32xi32> return %pack : tensor<4x16x16x32xi32> } // CHECK-DAG: #[[MAP:.+]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)> // CHECK: func.func @elem_pack_transpose_inner_dims // CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]] // CHECK-SAME: %[[DEST:[a-zA-Z0-9]+]] // CHECK: %[[ARG0_EMPTY:.+]] = tensor.empty() : tensor<4x16x16x32xi32> // CHECK: %[[PACK_ARG0:.+]] = tensor.pack %[[ARG0]] // CHECK-SAME: inner_dims_pos = [1, 0] inner_tiles = [16, 32] // CHECK-SAME: into %[[ARG0_EMPTY]] // CHECK: %[[ELEM:.+]] = linalg.generic // CHECK-SAME: indexing_maps = [#[[MAP]], #[[MAP]]] // CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel", "parallel"] // CHECK-SAME: ins(%[[PACK_ARG0]] // CHECK-SAME: outs(%[[DEST]] // CHECK: return %[[ELEM]] : tensor<4x16x16x32xi32> // ----- #map0 = affine_map<(d0, d1) -> (d0, d1)> func.func @elem_pack_transpose_outer_dims(%arg0: tensor<128x256xi32>, %dest: tensor<16x4x32x16xi32>) -> tensor<16x4x32x16xi32>{ %init = tensor.empty() : tensor<128x256xi32> %elem = linalg.generic {indexing_maps = [#map0, #map0], iterator_types = ["parallel", "parallel"]} ins(%arg0 : tensor<128x256xi32>) outs(%init : tensor<128x256xi32>) { ^bb0(%arg3: i32, %arg4: i32): %4 = arith.addi %arg3, %arg3 : i32 linalg.yield %4 : i32 } -> tensor<128x256xi32> %pack = tensor.pack %elem outer_dims_perm = [1, 0] inner_dims_pos = [0, 1] inner_tiles = [32, 16] into %dest : tensor<128x256xi32> -> tensor<16x4x32x16xi32> return %pack : tensor<16x4x32x16xi32> } // CHECK-DAG: #[[MAP0:.+]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)> // CHECK: func.func @elem_pack_transpose_outer_dims // CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]] // CHECK-SAME: %[[DEST:[a-zA-Z0-9]+]] // CHECK: %[[ARG0_EMPTY:.+]] = tensor.empty() : tensor<16x4x32x16xi32> // CHECK: %[[PACK_ARG0:.+]] = tensor.pack %[[ARG0]] // CHECK-SAME: outer_dims_perm = [1, 0] inner_dims_pos = [0, 1] inner_tiles = [32, 16] // CHECK-SAME: into %[[ARG0_EMPTY]] : tensor<128x256xi32> -> tensor<16x4x32x16xi32> // CHECK: %[[ELEM:.+]] = linalg.generic // CHECK-SAME: indexing_maps = [#[[MAP0]], #[[MAP0]]] // CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel", "parallel"] // CHECK-SAME: ins(%[[PACK_ARG0]] // CHECK-SAME: outs(%[[DEST]] // CHECK: return %[[ELEM]] : tensor<16x4x32x16xi32> // ----- #map0 = affine_map<(d0, d1) -> (d0, d1)> func.func @elem_pack_transpose_inner_and_outer_dims(%arg0: tensor<128x256xi32>, %dest: tensor<16x4x16x32xi32>) -> tensor<16x4x16x32xi32>{ %init = tensor.empty() : tensor<128x256xi32> %elem = linalg.generic {indexing_maps = [#map0, #map0], iterator_types = ["parallel", "parallel"]} ins(%arg0 : tensor<128x256xi32>) outs(%init : tensor<128x256xi32>) { ^bb0(%arg3: i32, %arg4: i32): %4 = arith.addi %arg3, %arg3 : i32 linalg.yield %4 : i32 } -> tensor<128x256xi32> %pack = tensor.pack %elem outer_dims_perm = [1, 0] inner_dims_pos = [1, 0] inner_tiles = [16, 32] into %dest : tensor<128x256xi32> -> tensor<16x4x16x32xi32> return %pack : tensor<16x4x16x32xi32> } // CHECK-DAG: #[[MAP0:.+]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)> // CHECK: func.func @elem_pack_transpose_inner_and_outer_dims // CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]] // CHECK-SAME: %[[DEST:[a-zA-Z0-9]+]] // CHECK: %[[ARG0_EMPTY:.+]] = tensor.empty() : tensor<16x4x16x32xi32> // CHECK: %[[PACK_ARG0:.+]] = tensor.pack %[[ARG0]] // CHECK-SAME: outer_dims_perm = [1, 0] inner_dims_pos = [1, 0] inner_tiles = [16, 32] // CHECK-SAME: into %[[ARG0_EMPTY]] // CHECK: %[[ELEM:.+]] = linalg.generic // CHECK-SAME: indexing_maps = [#[[MAP0]], #[[MAP0]]] // CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel", "parallel"] // CHECK-SAME: ins(%[[PACK_ARG0]] // CHECK-SAME: outs(%[[DEST]] // CHECK: return %[[ELEM]] : tensor<16x4x16x32xi32> // ----- #map0 = affine_map<(d0, d1) -> (d0, d1)> #map1 = affine_map<(d0, d1) -> (d0)> #map2 = affine_map<(d0, d1) -> (d1)> func.func @dynamic_broadcast_pack(%arg0: tensor, %arg1: tensor, %dest: tensor) -> tensor { %c0 = arith.constant 0 : index %0 = tensor.dim %arg0, %c0 : tensor %1 = tensor.dim %arg1, %c0 : tensor %2 = tensor.empty(%0, %1) : tensor %3 = linalg.generic {indexing_maps = [#map1, #map2, #map0], iterator_types = ["parallel", "parallel"]} ins(%arg0, %arg1 : tensor, tensor) outs(%2 : tensor) { ^bb0(%arg3: f32, %arg4: f32, %arg5: f32): %4 = arith.addf %arg3, %arg4 : f32 linalg.yield %4 : f32 } -> tensor %4 = tensor.pack %3 inner_dims_pos = [0, 1] inner_tiles = [8, 2] into %dest : tensor -> tensor return %4 : tensor } // CHECK-DAG: #[[MAP0:.+]] = affine_map<()[s0] -> (s0 ceildiv 8)> // CHECK-DAG: #[[MAP1:.+]] = affine_map<()[s0] -> (s0 ceildiv 2)> // CHECK-DAG: #[[MAP2:.+]] = affine_map<(d0, d1, d2, d3) -> (d0, d2)> // CHECK-DAG: #[[MAP3:.+]] = affine_map<(d0, d1, d2, d3) -> (d1, d3)> // CHECK-DAG: #[[MAP4:.+]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)> // CHECK: func.func @dynamic_broadcast_pack // CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]] // CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]] // CHECK-SAME: %[[DEST:[a-zA-Z0-9]+]] // CHECK-DAG: %[[C0:.+]] = arith.constant 0 : index // CHECK-DAG: %[[D0:.+]] = tensor.dim %[[ARG0]], %[[C0]] // CHECK-DAG: %[[OUTER_D0:.+]] = affine.apply #[[MAP0]]()[%[[D0]]] // CHECK: %[[ARG0_EMPTY:.+]] = tensor.empty(%[[OUTER_D0]]) : tensor // CHECK: %[[PACK_ARG0:.+]] = tensor.pack %[[ARG0]] // CHECK-SAME: inner_dims_pos = [0] inner_tiles = [8] // CHECK-SAME: into %[[ARG0_EMPTY]] // CHECK-DAG: %[[D1:.+]] = tensor.dim %[[ARG1]], %[[C0]] // CHECK-DAG: %[[OUTER_D1:.+]] = affine.apply #[[MAP1]]()[%[[D1]]] // CHECK: %[[ARG1_EMPTY:.+]] = tensor.empty(%[[OUTER_D1]]) : tensor // CHECK: %[[PACK_ARG1:.+]] = tensor.pack %[[ARG1]] // CHECK-SAME: inner_dims_pos = [0] inner_tiles = [2] // CHECK-SAME: into %[[ARG1_EMPTY]] // CHECK: %[[ELEM:.+]] = linalg.generic // CHECK-SAME: indexing_maps = [#[[MAP2]], #[[MAP3]], #[[MAP4]]] // CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel", "parallel"] // CHECK-SAME: ins(%[[PACK_ARG0]], %[[PACK_ARG0]] // CHECK-SAME: outs(%[[DEST]] // CHECK: return %[[ELEM]] : tensor // ----- #map = affine_map<(d0, d1, d2, d3) -> (d3)> #map1 = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)> func.func @elem_pack_transpose_inner_and_outer_dims2(%arg0: tensor<64xf32>, %dest: tensor<1x2x56x57x32xf32>) -> tensor<1x2x56x57x32xf32> { %0 = tensor.empty() : tensor<1x56x57x64xf32> %1 = linalg.generic { indexing_maps = [#map, #map1], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%arg0 : tensor<64xf32>) outs(%0 : tensor<1x56x57x64xf32>) { ^bb0(%in: f32, %out: f32): linalg.yield %in : f32 } -> tensor<1x56x57x64xf32> %2 = tensor.pack %1 outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32] into %dest : tensor<1x56x57x64xf32> -> tensor<1x2x56x57x32xf32> return %2 : tensor<1x2x56x57x32xf32> } // CHECK-DAG: #[[MAP0:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d1, d4)> // CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2, d3, d4)> // CHECK: func.func @elem_pack_transpose_inner_and_outer_dims2 // CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]] // CHECK-SAME: %[[DEST:[a-zA-Z0-9]+]] // CHECK: %[[ARG0_EMPTY:.+]] = tensor.empty() : tensor<2x32xf32> // CHECK: %[[PACKED_ARG0:.+]] = tensor.pack %[[ARG0]] // CHECK-SAME: inner_dims_pos = [0] inner_tiles = [32] // CHECK-SAME: into %[[ARG0_EMPTY]] // CHECK: %[[RES:.+]] = linalg.generic // CHECK-SAME: indexing_maps = [#[[MAP0]], #[[MAP1]]] // CHECK-SAME: ins(%[[PACKED_ARG0]] // CHECK-SAME: outs(%[[DEST]] // ----- func.func @transpose_pack(%arg0: tensor<100x128x200x256xi32>, %arg1: tensor<100xi32>, %arg2: tensor<128xi32>, %dest: tensor<100x200x4x16x16x32xi32>) -> tensor<100x200x4x16x16x32xi32> { %init_transpose = tensor.empty() : tensor<100x200x128x256xi32> %transpose = linalg.generic { indexing_maps = [affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>, affine_map<(d0, d1, d2, d3) -> (d0)>, affine_map<(d0, d1, d2, d3) -> (d1)>, affine_map<(d0, d1, d2, d3) -> (d0, d2, d1, d3)>], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%arg0, %arg1, %arg2 : tensor<100x128x200x256xi32>, tensor<100xi32>, tensor<128xi32>) outs(%init_transpose : tensor<100x200x128x256xi32>) { ^bb0(%b0 : i32, %b1 : i32, %b2 : i32, %b3 : i32): %0 = arith.addi %b0, %b1 : i32 %1 = arith.addi %0, %b2 : i32 linalg.yield %1 : i32 } -> tensor<100x200x128x256xi32> %4 = tensor.pack %transpose inner_dims_pos = [3, 2] inner_tiles = [16, 32] into %dest : tensor<100x200x128x256xi32> -> tensor<100x200x4x16x16x32xi32> return %4 : tensor<100x200x4x16x16x32xi32> } // CHECK-DAG: #[[MAP0:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, d1, d2, d3, d4, d5)> // CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0)> // CHECK-DAG: #[[MAP2:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d1, d5)> // CHECK-DAG: #[[MAP3:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, d2, d1, d3, d4, d5)> // CHECK: func.func @transpose_pack // CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]] // CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]] // CHECK-SAME: %[[ARG2:[a-zA-Z0-9]+]] // CHECK-SAME: %[[DEST:[a-zA-Z0-9]+]] // CHECK: %[[ARG0_EMPTY:.+]] = tensor.empty() : tensor<100x4x200x16x16x32xi32> // CHECK: %[[PACKED_ARG0:.+]] = tensor.pack %[[ARG0]] // CHECK-SAME: inner_dims_pos = [3, 1] inner_tiles = [16, 32] // CHECK-SAME: into %[[ARG0_EMPTY]] // CHECK: %[[ARG2_EMPTY:.+]] = tensor.empty() : tensor<4x32xi32> // CHECK: %[[PACKED_ARG2:.+]] = tensor.pack %[[ARG2]] // CHECK-SAME: inner_dims_pos = [0] inner_tiles = [32] // CHECK-SAME: into %[[ARG2_EMPTY]] // CHECK: %[[RES:.+]] = linalg.generic // CHECK-SAME: indexing_maps = [#[[MAP0]], #[[MAP1]], #[[MAP2]], #[[MAP3]]] // CHECK-SAME: ins(%[[PACKED_ARG0]], %[[ARG1]], %[[PACKED_ARG2]] // CHECK-SAME: outs(%[[DEST]] // ----- func.func @affine_constant_expr_pack(%arg0: tensor<100x128x200x256xi32>, %arg1: tensor<100x1x1x1xi32>, %arg2: tensor<1x128x1x1xi32>, %dest: tensor<100x200x4x16x16x32xi32>) -> tensor<100x200x4x16x16x32xi32> { %init_transpose = tensor.empty() : tensor<100x200x128x256xi32> %transpose = linalg.generic { indexing_maps = [affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>, affine_map<(d0, d1, d2, d3) -> (d0, 0, 0, 0)>, affine_map<(d0, d1, d2, d3) -> (0, d1, 0, 0)>, affine_map<(d0, d1, d2, d3) -> (d0, d2, d1, d3)>], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%arg0, %arg1, %arg2 : tensor<100x128x200x256xi32>, tensor<100x1x1x1xi32>, tensor<1x128x1x1xi32>) outs(%init_transpose : tensor<100x200x128x256xi32>) { ^bb0(%b0 : i32, %b1 : i32, %b2 : i32, %b3 : i32): %0 = arith.addi %b0, %b1 : i32 %1 = arith.addi %0, %b2 : i32 linalg.yield %1 : i32 } -> tensor<100x200x128x256xi32> %4 = tensor.pack %transpose inner_dims_pos = [3, 2] inner_tiles = [16, 32] into %dest : tensor<100x200x128x256xi32> -> tensor<100x200x4x16x16x32xi32> return %4 : tensor<100x200x4x16x16x32xi32> } // CHECK-DAG: #[[MAP0:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, d1, d2, d3, d4, d5)> // CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, 0, 0, 0)> // CHECK-DAG: #[[MAP2:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (0, d1, 0, 0, d5)> // CHECK-DAG: #[[MAP3:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, d2, d1, d3, d4, d5)> // CHECK: func.func @affine_constant_expr_pack // CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]] // CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]] // CHECK-SAME: %[[ARG2:[a-zA-Z0-9]+]] // CHECK-SAME: %[[DEST:[a-zA-Z0-9]+]] // CHECK: %[[ARG0_EMPTY:.+]] = tensor.empty() : tensor<100x4x200x16x16x32xi32> // CHECK: %[[PACKED_ARG0:.+]] = tensor.pack %[[ARG0]] // CHECK-SAME: inner_dims_pos = [3, 1] inner_tiles = [16, 32] // CHECK-SAME: into %[[ARG0_EMPTY]] // CHECK: %[[ARG2_EMPTY:.+]] = tensor.empty() : tensor<1x4x1x1x32xi32> // CHECK: %[[PACKED_ARG2:.+]] = tensor.pack %[[ARG2]] // CHECK-SAME: inner_dims_pos = [1] inner_tiles = [32] // CHECK-SAME: into %[[ARG2_EMPTY]] // CHECK: %[[RES:.+]] = linalg.generic // CHECK-SAME: indexing_maps = [#[[MAP0]], #[[MAP1]], #[[MAP2]], #[[MAP3]]] // CHECK-SAME: ins(%[[PACKED_ARG0]], %[[ARG1]], %[[PACKED_ARG2]] // CHECK-SAME: outs(%[[DEST]] // ----- func.func @transpose_pack_with_outer_dims(%arg0: tensor<100x128x200x256xi32>, %arg1: tensor<100xi32>, %arg2: tensor<128xi32>, %dest: tensor<200x4x16x100x16x32xi32>) -> tensor<200x4x16x100x16x32xi32> { %init_transpose = tensor.empty() : tensor<100x200x128x256xi32> %transpose = linalg.generic { indexing_maps = [affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>, affine_map<(d0, d1, d2, d3) -> (d0)>, affine_map<(d0, d1, d2, d3) -> (d1)>, affine_map<(d0, d1, d2, d3) -> (d0, d2, d1, d3)>], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%arg0, %arg1, %arg2 : tensor<100x128x200x256xi32>, tensor<100xi32>, tensor<128xi32>) outs(%init_transpose : tensor<100x200x128x256xi32>) { ^bb0(%b0 : i32, %b1 : i32, %b2 : i32, %b3 : i32): %0 = arith.addi %b0, %b1 : i32 %1 = arith.addi %0, %b2 : i32 linalg.yield %1 : i32 } -> tensor<100x200x128x256xi32> %4 = tensor.pack %transpose outer_dims_perm = [1, 2, 3, 0] inner_dims_pos = [3, 2] inner_tiles = [16, 32] into %dest : tensor<100x200x128x256xi32> -> tensor<200x4x16x100x16x32xi32> return %4 : tensor<200x4x16x100x16x32xi32> } // CHECK-DAG: #[[MAP:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, d1, d2, d3, d4, d5)> // CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d3)> // CHECK-DAG: #[[MAP2:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d1, d5)> // CHECK: func.func @transpose_pack_with_outer_dims // CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]] // CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]] // CHECK-SAME: %[[ARG2:[a-zA-Z0-9]+]] // CHECK-SAME: %[[DEST:[a-zA-Z0-9]+]] // CHECK: %[[ARG0_EMPTY:.+]] = tensor.empty() : tensor<200x4x16x100x16x32xi32> // CHECK: %[[PACKED_ARG0:.+]] = tensor.pack %[[ARG0]] // CHECK-SAME: outer_dims_perm = [2, 1, 3, 0] inner_dims_pos = [3, 1] inner_tiles = [16, 32] // CHECK-SAME: into %[[ARG0_EMPTY]] // CHECK: %[[ARG2_EMPTY:.+]] = tensor.empty() : tensor<4x32xi32> // CHECK: %[[PACKED_ARG2:.+]] = tensor.pack %[[ARG2]] // CHECK-SAME: inner_dims_pos = [0] inner_tiles = [32] // CHECK-SAME: into %[[ARG2_EMPTY]] // CHECK: %[[RES:.+]] = linalg.generic // CHECK-SAME: indexing_maps = [#[[MAP]], #[[MAP1]], #[[MAP2]], #[[MAP]]] // CHECK-SAME: ins(%[[PACKED_ARG0]], %[[ARG1]], %[[PACKED_ARG2]] // CHECK-SAME: outs(%[[DEST]] // ----- #map0 = affine_map<(d0, d1) -> (d0, d1)> func.func @elem_pack_transpose_outer_dims(%arg0: tensor<128x256xi32>, %init: tensor<128x256xi32>) -> tensor<16x4x32x16xi32>{ %elem = linalg.generic {indexing_maps = [#map0, #map0], iterator_types = ["parallel", "parallel"]} ins(%arg0 : tensor<128x256xi32>) outs(%init : tensor<128x256xi32>) { ^bb0(%arg3: i32, %arg4: i32): %4 = arith.addi %arg3, %arg4 : i32 linalg.yield %4 : i32 } -> tensor<128x256xi32> %empty = tensor.empty() : tensor<16x4x32x16xi32> %pack = tensor.pack %elem outer_dims_perm = [1, 0] inner_dims_pos = [0, 1] inner_tiles = [32, 16] into %empty : tensor<128x256xi32> -> tensor<16x4x32x16xi32> return %pack : tensor<16x4x32x16xi32> } // CHECK: #[[MAP:.+]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)> // CHECK: func.func @elem_pack_transpose_outer_dims // CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]] // CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]] // CHECK: %[[ARG1_EMPTY:.+]] = tensor.empty() : tensor<16x4x32x16xi32> // CHECK: %[[PACKED_ARG1:.+]] = tensor.pack %[[ARG1]] // CHECK-SAME: outer_dims_perm = [1, 0] inner_dims_pos = [0, 1] inner_tiles = [32, 16] // CHECK-SAME: into %[[ARG1_EMPTY]] // CHECK: %[[ARG0_EMPTY:.+]] = tensor.empty() : tensor<16x4x32x16xi32> // CHECK: %[[PACKED_ARG0:.+]] = tensor.pack %[[ARG0]] // CHECK-SAME: outer_dims_perm = [1, 0] inner_dims_pos = [0, 1] inner_tiles = [32, 16] // CHECK-SAME: into %[[ARG0_EMPTY]] // CHECK: %[[RES:.+]] = linalg.generic // CHECK-SAME: indexing_maps = [#[[MAP]], #[[MAP]]] // CHECK-SAME: ins(%[[PACKED_ARG0]] // CHECK-SAME: outs(%[[PACKED_ARG1]] // ----- #map = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)> func.func @unpack_on_output(%arg0: tensor<12x2x56x56x32xf32>) -> tensor<12x56x56x64xf32> { %0 = tensor.empty() : tensor<12x56x56x64xf32> %1 = tensor.unpack %arg0 outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32] into %0 : tensor<12x2x56x56x32xf32> -> tensor<12x56x56x64xf32> %2 = linalg.generic {indexing_maps = [#map], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} outs(%1 : tensor<12x56x56x64xf32>) { ^bb0(%out: f32): %3 = arith.addf %out, %out : f32 linalg.yield %3 : f32 } -> tensor<12x56x56x64xf32> return %2 : tensor<12x56x56x64xf32> } // CHECK: #[[MAP:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2, d3, d4)> // CHECK: func.func @unpack_on_output // CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]] // CHECK: %[[ARG0_EMPTY_UNPACK:.+]] = tensor.empty() : tensor<12x56x56x64xf32> // CHECK: %[[UNPACKED_ARG0:.+]] = tensor.unpack %[[ARG0]] // CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32] // CHECK-SAME: into %[[ARG0_EMPTY_UNPACK]] // CHECK: %[[ARG0_EMPTY_PACK:.+]] = tensor.empty() : tensor<12x2x56x56x32xf32> // CHECK: %[[PACKED_ARG0:.+]] = tensor.pack %[[UNPACKED_ARG0]] // CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32] // CHECK-SAME: into %[[ARG0_EMPTY_PACK]] // CHECK: %[[RES:.+]] = linalg.generic // CHECK-SAME: indexing_maps = [#[[MAP]]] // CHECK-SAME: outs(%[[PACKED_ARG0]] // CHECK: %[[UNPACK:.+]] = tensor.unpack %[[RES]] // CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32] // CHECK-SAME: into %[[ARG0_EMPTY_UNPACK]] // ----- #map = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)> func.func @unpack_on_input(%arg0: tensor<12x2x56x56x32xf32>, %init: tensor<12x56x56x64xf32>) -> tensor<12x56x56x64xf32> { %0 = tensor.empty() : tensor<12x56x56x64xf32> %1 = tensor.unpack %arg0 outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32] into %0 : tensor<12x2x56x56x32xf32> -> tensor<12x56x56x64xf32> %2 = linalg.generic {indexing_maps = [#map, #map], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1: tensor<12x56x56x64xf32>) outs(%init : tensor<12x56x56x64xf32>) { ^bb0(%in: f32, %out: f32): %3 = arith.addf %in, %out : f32 linalg.yield %3 : f32 } -> tensor<12x56x56x64xf32> return %2 : tensor<12x56x56x64xf32> } // CHECK: #[[MAP:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2, d3, d4)> // CHECK: func.func @unpack_on_input // CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]] // CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]] // CHECK: %[[ARG0_UNPACK_EMPTY:.+]] = tensor.empty() : tensor<12x56x56x64xf32> // CHECK: %[[UNPACKED_ARG0:.+]] = tensor.unpack %[[ARG0]] // CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32] // CHECK-SAME: into %[[ARG0_UNPACK_EMPTY]] // CHECK: %[[ARG1_PACK_EMPTY:.+]] = tensor.empty() : tensor<12x2x56x56x32xf32> // CHECK: %[[ARG1_PACK:.+]] = tensor.pack %[[ARG1]] // CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32] // CHECK-SAME: into %[[ARG1_PACK_EMPTY]] // CHECK: %[[ARG0_PACK_EMPTY:.+]] = tensor.empty() : tensor<12x2x56x56x32xf32> // CHECK: %[[ARG0_PACK:.+]] = tensor.pack %[[UNPACKED_ARG0]] // CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32] // CHECK-SAME: into %[[ARG0_PACK_EMPTY]] // CHECK: %[[RES:.+]] = linalg.generic // CHECK-SAME: indexing_maps = [#[[MAP]], #[[MAP]]] // CHECK-SAME: ins(%[[ARG0_PACK]] // CHECK-SAME: outs(%[[ARG1_PACK]] // CHECK: %[[UNPACK:.+]] = tensor.unpack %[[RES]] // CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32] // CHECK-SAME: into %[[ARG0_UNPACK_EMPTY]] // ----- #map = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)> func.func @unpack_element_type_change(%arg0: tensor<12x2x56x56x32xf32>, %init: tensor<12x56x56x64xf16>) -> tensor<12x56x56x64xf16> { %0 = tensor.empty() : tensor<12x56x56x64xf32> %1 = tensor.unpack %arg0 outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32] into %0 : tensor<12x2x56x56x32xf32> -> tensor<12x56x56x64xf32> %2 = linalg.generic {indexing_maps = [#map, #map], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1: tensor<12x56x56x64xf32>) outs(%init : tensor<12x56x56x64xf16>) { ^bb0(%in: f32, %out: f16): %3 = arith.truncf %in : f32 to f16 linalg.yield %3 : f16 } -> tensor<12x56x56x64xf16> return %2 : tensor<12x56x56x64xf16> } // CHECK: #[[MAP:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2, d3, d4)> // CHECK: func.func @unpack_element_type_change // CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]] // CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]] // CHECK: %[[ARG0_UNPACK_EMPTY:.+]] = tensor.empty() : tensor<12x56x56x64xf32> // CHECK: %[[UNPACKED_ARG0:.+]] = tensor.unpack %[[ARG0]] // CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32] // CHECK-SAME: into %[[ARG0_UNPACK_EMPTY]] // CHECK: %[[ARG1_PACK_EMPTY:.+]] = tensor.empty() : tensor<12x2x56x56x32xf16> // CHECK: %[[ARG1_PACK:.+]] = tensor.pack %[[ARG1]] // CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32] // CHECK-SAME: into %[[ARG1_PACK_EMPTY]] // CHECK: %[[ARG0_PACK_EMPTY:.+]] = tensor.empty() : tensor<12x2x56x56x32xf32> // CHECK: %[[ARG0_PACK:.+]] = tensor.pack %[[UNPACKED_ARG0]] // CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32] // CHECK-SAME: into %[[ARG0_PACK_EMPTY]] // CHECK: %[[RES:.+]] = linalg.generic // CHECK-SAME: indexing_maps = [#[[MAP]], #[[MAP]]] // CHECK-SAME: ins(%[[ARG0_PACK]] // CHECK-SAME: outs(%[[ARG1_PACK]] // CHECK: %[[ARG0_NEW_EMPTY_UNPACK:.+]] = tensor.empty() : tensor<12x56x56x64xf16> // CHECK: %[[UNPACK:.+]] = tensor.unpack %[[RES]] // CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32] // CHECK-SAME: into %[[ARG0_NEW_EMPTY_UNPACK]] // ----- #map = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)> func.func @forward_tensor_empty(%arg0: tensor<12x2x56x56x32xf32>) -> tensor<12x56x56x64xf32> { %init = tensor.empty() : tensor<12x56x56x64xf32> %0 = tensor.empty() : tensor<12x56x56x64xf32> %1 = tensor.unpack %arg0 outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32] into %0 : tensor<12x2x56x56x32xf32> -> tensor<12x56x56x64xf32> %2 = linalg.generic {indexing_maps = [#map, #map], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1: tensor<12x56x56x64xf32>) outs(%init : tensor<12x56x56x64xf32>) { ^bb0(%in: f32, %out: f32): %3 = arith.addf %in, %in : f32 linalg.yield %3 : f32 } -> tensor<12x56x56x64xf32> return %2 : tensor<12x56x56x64xf32> } // CHECK: #[[MAP:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2, d3, d4)> // CHECK: func.func @forward_tensor_empty // CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]] // CHECK: %[[ARG0_UNPACK_EMPTY:.+]] = tensor.empty() : tensor<12x56x56x64xf32> // CHECK: %[[UNPACKED_ARG0:.+]] = tensor.unpack %[[ARG0]] // CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32] // CHECK-SAME: into %[[ARG0_UNPACK_EMPTY]] // CHECK: %[[DEST:.+]] = tensor.empty() : tensor<12x2x56x56x32xf32> // CHECK: %[[ARG0_PACK_EMPTY:.+]] = tensor.empty() : tensor<12x2x56x56x32xf32> // CHECK: %[[PACKED_ARG0:.+]] = tensor.pack %[[UNPACKED_ARG0]] // CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32] // CHECK-SAME: into %[[ARG0_PACK_EMPTY]] // CHECK: %[[RES:.+]] = linalg.generic // CHECK-SAME: indexing_maps = [#[[MAP]], #[[MAP]]] // CHECK-SAME: ins(%[[PACKED_ARG0]] // CHECK-SAME: outs(%[[DEST]] // CHECK: %[[UNPACKED:.+]] = tensor.unpack %[[RES]] // CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32] // CHECK-SAME: into %[[ARG0_UNPACK_EMPTY]] // ----- func.func @pad_valid_propagation(%arg0: tensor<1x2x56x56x32xf32>) -> tensor<1x58x58x64xf32> { %cst = arith.constant 0.000000e+00 : f32 %0 = tensor.empty() : tensor<1x56x56x64xf32> %1 = tensor.unpack %arg0 outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32] into %0 : tensor<1x2x56x56x32xf32> -> tensor<1x56x56x64xf32> %padded = tensor.pad %1 low[0, 1, 1, 0] high[0, 1, 1, 0] { ^bb0(%arg3: index, %arg4: index, %arg5: index, %arg6: index): tensor.yield %cst : f32 } : tensor<1x56x56x64xf32> to tensor<1x58x58x64xf32> return %padded : tensor<1x58x58x64xf32> } // CHECK: func.func @pad_valid_propagation( // CHECK-SAME: %[[ARG0:.+]]: tensor<1x2x56x56x32xf32>) // CHECK: %[[CST:.+]] = arith.constant 0.000000e+00 : f32 // CHECK: %[[PADDED:.+]] = tensor.pad %[[ARG0]] low[0, 0, 1, 1, 0] high[0, 0, 1, 1, 0] // CHECK: %[[EMPTY:.+]] = tensor.empty() : tensor<1x58x58x64xf32> // CHECK: %[[UNPACK:.+]] = tensor.unpack %[[PADDED]] // CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32] // CHECK-SAME: into %[[EMPTY]] : tensor<1x2x58x58x32xf32> -> tensor<1x58x58x64xf32> // ----- func.func @pad_valid_propagation(%arg0: tensor<1x2x56x56x32xf32>) -> tensor<2x58x58x64xf32> { %cst = arith.constant 0.000000e+00 : f32 %0 = tensor.empty() : tensor<1x56x56x64xf32> %1 = tensor.unpack %arg0 outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32] into %0 : tensor<1x2x56x56x32xf32> -> tensor<1x56x56x64xf32> %padded = tensor.pad %1 low[1, 1, 1, 0] high[0, 1, 1, 0] { ^bb0(%arg3: index, %arg4: index, %arg5: index, %arg6: index): tensor.yield %cst : f32 } : tensor<1x56x56x64xf32> to tensor<2x58x58x64xf32> return %padded : tensor<2x58x58x64xf32> } // CHECK: func.func @pad_valid_propagation( // CHECK-SAME: %[[ARG0:.+]]: tensor<1x2x56x56x32xf32>) // CHECK: %[[CST:.+]] = arith.constant 0.000000e+00 : f32 // CHECK: %[[PADDED:.+]] = tensor.pad %[[ARG0]] low[1, 0, 1, 1, 0] high[0, 0, 1, 1, 0] // CHECK: %[[EMPTY:.+]] = tensor.empty() : tensor<2x58x58x64xf32> // CHECK: %[[UNPACK:.+]] = tensor.unpack %[[PADDED]] // CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32] // CHECK-SAME: into %[[EMPTY]] : tensor<2x2x58x58x32xf32> -> tensor<2x58x58x64xf32> // ----- func.func @pad_along_unpacked_dim(%arg0: tensor<1x2x56x56x32xf32>) -> tensor<1x58x58x66xf32> { %cst = arith.constant 0.000000e+00 : f32 %0 = tensor.empty() : tensor<1x56x56x64xf32> %1 = tensor.unpack %arg0 outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32] into %0 : tensor<1x2x56x56x32xf32> -> tensor<1x56x56x64xf32> %padded = tensor.pad %1 low[0, 1, 1, 1] high[0, 1, 1, 1] { ^bb0(%arg3: index, %arg4: index, %arg5: index, %arg6: index): tensor.yield %cst : f32 } : tensor<1x56x56x64xf32> to tensor<1x58x58x66xf32> return %padded : tensor<1x58x58x66xf32> } // CHECK: func.func @pad_along_unpacked_dim( // CHECK: %[[ARG0:.+]]: tensor<1x2x56x56x32xf32>) // CHECK: %[[CST:.+]] = arith.constant 0.000000e+00 : f32 // CHECK: %[[EMPTY:.+]] = tensor.empty() : tensor<1x56x56x64xf32> // CHECK: %[[UNPACK:.+]] = tensor.unpack %[[ARG0]] // CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32] // CHECK-SAME: into %[[EMPTY]] : tensor<1x2x56x56x32xf32> -> tensor<1x56x56x64xf32> // CHECK: %[[PADDED:.+]] = tensor.pad %[[UNPACK]] low[0, 1, 1, 1] high[0, 1, 1, 1] // ----- #map0 = affine_map<(d0, d1) -> (d0, d1)> func.func @would_break_dominance(%arg0: tensor<128x256xi32>) -> tensor<4x16x16x32xi32>{ %init = tensor.empty() : tensor<128x256xi32> %elem = linalg.generic {indexing_maps = [#map0, #map0], iterator_types = ["parallel", "parallel"]} ins(%arg0 : tensor<128x256xi32>) outs(%init : tensor<128x256xi32>) { ^bb0(%arg3: i32, %arg4: i32): %4 = arith.addi %arg3, %arg3 : i32 linalg.yield %4 : i32 } -> tensor<128x256xi32> %dest = bufferization.alloc_tensor() : tensor<4x16x16x32xi32> %pack = tensor.pack %elem inner_dims_pos = [1, 0] inner_tiles = [16, 32] into %dest : tensor<128x256xi32> -> tensor<4x16x16x32xi32> return %pack : tensor<4x16x16x32xi32> } // CHECK: func.func @would_break_dominance( // CHECK-SAME: %[[ARG0:.+]]: tensor<128x256xi32>) // CHECK: %[[EMPTY:.+]] = tensor.empty() : tensor<128x256xi32> // CHECK-NEXT: %[[GEN:.+]] = linalg.generic // CHECK-SAME: ins(%[[ARG0]] // CHECK-SAME: outs(%[[EMPTY]] // CHECK: %[[ALLOC:.+]] = bufferization.alloc_tensor() : tensor<4x16x16x32xi32> // CHECK-NEXT: %{{.+}} = tensor.pack %[[GEN]] // CHECK-SAME: inner_dims_pos = [1, 0] inner_tiles = [16, 32] // CHECK-SAME: into %[[ALLOC]] // ----- #map0 = affine_map<(d0, d1, d2, d3) -> ()> #map1 = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)> func.func @scalar_tensor(%arg0 : tensor) -> tensor<1x32x7x7x32xf32> { %empty_gen = tensor.empty() : tensor<1x7x7x1024xf32> %gen = linalg.generic {indexing_maps = [#map0, #map1], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%arg0 : tensor) outs(%empty_gen : tensor<1x7x7x1024xf32>) { ^bb0(%in: f32, %out: f32): linalg.yield %in : f32 } -> tensor<1x7x7x1024xf32> %empty_pack = tensor.empty() : tensor<1x32x7x7x32xf32> %pack = tensor.pack %gen outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32] into %empty_pack : tensor<1x7x7x1024xf32> -> tensor<1x32x7x7x32xf32> return %pack : tensor<1x32x7x7x32xf32> } // CHECK: #[[MAP:.+]] = affine_map<(d0, d1, d2, d3, d4) -> ()> // CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2, d3, d4)> // CHECK: func.func @scalar_tensor // CHECK-SAME: %[[ARG0:.+]]: tensor) // CHECK: %[[EMPTY:.+]] = tensor.empty() : tensor<1x32x7x7x32xf32> // CHECK: linalg.generic // CHECK-SAME: indexing_maps = [#[[MAP]], #[[MAP1]]] // CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel", "parallel", "parallel"] // CHECK-SAME: ins(%[[ARG0]] // CHECK-SAME: outs(%[[EMPTY]] // ----- #map = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)> func.func @unpack_empty_inner_dims(%arg0: tensor<12x64x56x56xf32>) -> tensor<12x56x56x64xf32> { %init = tensor.empty() : tensor<12x56x56x64xf32> %0 = tensor.empty() : tensor<12x56x56x64xf32> %1 = tensor.unpack %arg0 outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [] inner_tiles = [] into %0 : tensor<12x64x56x56xf32> -> tensor<12x56x56x64xf32> %2 = linalg.generic {indexing_maps = [#map, #map], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1: tensor<12x56x56x64xf32>) outs(%init : tensor<12x56x56x64xf32>) { ^bb0(%in: f32, %out: f32): %3 = arith.addf %in, %in : f32 linalg.yield %3 : f32 } -> tensor<12x56x56x64xf32> return %2 : tensor<12x56x56x64xf32> } // CHECK: func.func @unpack_empty_inner_dims // CHECK: %[[UNPACKED_ARG0:.+]] = tensor.unpack // CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [] inner_tiles = [] // CHECK: %[[PACKED_ARG0:.+]] = tensor.pack %[[UNPACKED_ARG0]] // CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [] inner_tiles = [] // CHECK: %[[RES:.+]] = linalg.generic // CHECK-SAME: ins(%[[PACKED_ARG0]] // CHECK: %[[UNPACKED:.+]] = tensor.unpack %[[RES]] // CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [] inner_tiles = [] // ----- #map0 = affine_map<(d0, d1, d2) -> (d0, d1, d2)> #map1 = affine_map<(d0, d1, d2) -> (d0, d1)> func.func @reduction_pack_transpose_inner_dims(%arg0: tensor<128x256x32xi32>, %arg1: tensor<128x256xi32>) -> tensor<4x16x16x32xi32>{ %elem = linalg.generic {indexing_maps = [#map0, #map1], iterator_types = ["parallel", "parallel", "reduction"]} ins(%arg0 : tensor<128x256x32xi32>) outs(%arg1 : tensor<128x256xi32>) { ^bb0(%arg3: i32, %arg4: i32): %4 = arith.addi %arg3, %arg4 : i32 linalg.yield %4 : i32 } -> tensor<128x256xi32> %dest = tensor.empty() : tensor<4x16x16x32xi32> %pack = tensor.pack %elem inner_dims_pos = [1, 0] inner_tiles = [16, 32] into %dest : tensor<128x256xi32> -> tensor<4x16x16x32xi32> return %pack : tensor<4x16x16x32xi32> } // CHECK-DAG: #[[MAP0:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2, d3, d4)> // CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d3, d4)> // CHECK: func.func @reduction_pack_transpose_inner_dims // CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]] // CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]] // CHECK: %[[ARG1_EMPTY:.+]] = tensor.empty() : tensor<4x16x16x32xi32> // CHECK: %[[PACK_ARG1:.+]] = tensor.pack %[[ARG1]] // CHECK-SME: inner_dims_pos = [1, 0] inner_tiles = [16, 32] // CHECK-SAME: into %[[ARG1_EMPTY]] // CHECK: %[[ARG0_EMPTY:.+]] = tensor.empty() : tensor<4x16x32x16x32xi32> // CHECK: %[[PACK_ARG0:.+]] = tensor.pack %[[ARG0]] // CHECK-SAME: inner_dims_pos = [1, 0] inner_tiles = [16, 32] // CHECK-SAME: into %[[ARG0_EMPTY]] // CHECK: %[[RED:.+]] = linalg.generic // CHECK-SAME: indexing_maps = [#[[MAP0]], #[[MAP1]]] // CHECK-SAME: iterator_types = ["parallel", "parallel", "reduction", "parallel", "parallel"] // CHECK-SAME: ins(%[[PACK_ARG0]] // CHECK-SAME: outs(%[[PACK_ARG1]] // CHECK: return %[[RED]] : tensor<4x16x16x32xi32> // ----- func.func @reduction_pack_with_outer_dims(%arg0: tensor<100x128x200x256xi32>, %arg1: tensor<100xi32>, %arg2: tensor<128xi32>, %init_reduction: tensor<100x128x256xi32>) -> tensor<4x16x100x16x32xi32> { %reduction = linalg.generic { indexing_maps = [affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>, affine_map<(d0, d1, d2, d3) -> (d0)>, affine_map<(d0, d1, d2, d3) -> (d1)>, affine_map<(d0, d1, d2, d3) -> (d0, d1, d3)>], iterator_types = ["parallel", "parallel", "reduction", "parallel"]} ins(%arg0, %arg1, %arg2 : tensor<100x128x200x256xi32>, tensor<100xi32>, tensor<128xi32>) outs(%init_reduction : tensor<100x128x256xi32>) { ^bb0(%b0 : i32, %b1 : i32, %b2 : i32, %b3 : i32): %0 = arith.addi %b0, %b1 : i32 %1 = arith.addi %0, %b2 : i32 %2 = arith.addi %1, %b3 : i32 linalg.yield %2 : i32 } -> tensor<100x128x256xi32> %init_pack = tensor.empty() : tensor<4x16x100x16x32xi32> %4 = tensor.pack %reduction outer_dims_perm = [1, 2, 0] inner_dims_pos = [2, 1] inner_tiles = [16, 32] into %init_pack : tensor<100x128x256xi32> -> tensor<4x16x100x16x32xi32> return %4 : tensor<4x16x100x16x32xi32> } // CHECK-DAG: #[[MAP:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, d1, d2, d3, d4, d5)> // CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d3)> // CHECK-DAG: #[[MAP2:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, d5)> // CHECK-DAG: #[[MAP3:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, d1, d3, d4, d5)> // CHECK: func.func @reduction_pack_with_outer_dims // CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]] // CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]] // CHECK-SAME: %[[ARG2:[a-zA-Z0-9]+]] // CHECK-SAME: %[[ARG3:[a-zA-Z0-9]+]] // CHECK: %[[ARG3_EMPTY:.+]] = tensor.empty() : tensor<4x16x100x16x32xi32> // CHECK: %[[PACKED_ARG3:.+]] = tensor.pack %[[ARG3]] // CHECK-SAME: outer_dims_perm = [1, 2, 0] inner_dims_pos = [2, 1] inner_tiles = [16, 32] // CHECK-SAME: into %[[ARG3_EMPTY]] // CHECK: %[[ARG0_EMPTY:.+]] = tensor.empty() : tensor<4x16x200x100x16x32xi32> // CHECK: %[[PACKED_ARG0:.+]] = tensor.pack %[[ARG0]] // CHECK-SAME: outer_dims_perm = [1, 3, 2, 0] inner_dims_pos = [3, 1] inner_tiles = [16, 32] // CHECK-SAME: into %[[ARG0_EMPTY]] // CHECK: %[[ARG2_EMPTY:.+]] = tensor.empty() : tensor<4x32xi32> // CHECK: %[[PACKED_ARG2:.+]] = tensor.pack %[[ARG2]] // CHECK-SAME: inner_dims_pos = [0] inner_tiles = [32] // CHECK-SAME: into %[[ARG2_EMPTY]] // CHECK: %[[RES:.+]] = linalg.generic // CHECK-SAME: indexing_maps = [#[[MAP]], #[[MAP1]], #[[MAP2]], #[[MAP3]]] // CHECK-SAME: ins(%[[PACKED_ARG0]], %[[ARG1]], %[[PACKED_ARG2]] // CHECK-SAME: outs(%[[PACKED_ARG3]] // ----- #map0 = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, d1, d2 * 2 + d4, d3 * 2 + d5)> #map1 = affine_map<(d0, d1, d2, d3, d4, d5) -> (d4, d5)> #map2 = affine_map<(d0, d1, d2, d3, d4, d5) -> (d1, d2, d3)> func.func @unpack_different_destination_shape(%arg0: tensor<1x1x1080x1920x16xi32>, %filter: tensor<2x2xi32>) -> tensor<16x540x960xi32>{ %init = tensor.empty() : tensor<16x540x960xi32> %empty = tensor.empty() : tensor<1x16x1080x1920xi32> %unpack = tensor.unpack %arg0 inner_dims_pos = [1] inner_tiles = [16] into %empty : tensor<1x1x1080x1920x16xi32> -> tensor<1x16x1080x1920xi32> %pool = linalg.generic {indexing_maps = [#map0, #map1, #map2], iterator_types = ["parallel", "parallel", "parallel", "parallel", "reduction", "reduction"]} ins(%unpack, %filter : tensor<1x16x1080x1920xi32>, tensor<2x2xi32>) outs(%init : tensor<16x540x960xi32>) { ^bb0(%in: i32, %in_1: i32, %out: i32): %max = arith.maxui %in, %in_1 : i32 linalg.yield %max : i32 } -> tensor<16x540x960xi32> return %pool : tensor<16x540x960xi32> } // CHECK-DAG: #[[MAP0:.+]] = affine_map<(d0, d1, d2, d3, d4, d5, d6) -> (d0, d1, d2 * 2 + d4, d3 * 2 + d5, d6)> // CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1, d2, d3, d4, d5, d6) -> (d4, d5)> // CHECK-DAG: #[[MAP2:.+]] = affine_map<(d0, d1, d2, d3, d4, d5, d6) -> (d1, d2, d3, d6)> // CHECK: func.func @unpack_different_destination_shape // CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]] // CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]] // CHECK: %[[INIT:.+]] = tensor.empty() : tensor<1x540x960x16xi32> // CHECK: %[[PACK_EMPTY:.+]] = tensor.empty() : tensor<1x1x1080x1920x16xi32> // CHECK: %[[PACK_ARG0:.+]] = tensor.pack // CHECK-SAME: inner_dims_pos = [1] inner_tiles = [16] // CHECK-SAME: into %[[PACK_EMPTY]] // CHECK: %[[POOL:.+]] = linalg.generic // CHECK-SAME: indexing_maps = [#[[MAP0]], #[[MAP1]], #[[MAP2]]] // CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel", "parallel", "reduction", "reduction", "parallel"] // CHECK-SAME: ins(%[[PACK_ARG0]], %[[ARG1]] // CHECK-SAME: outs(%[[INIT]] // CHECK: %[[UNPACK_NEW_DEST:.+]] = tensor.empty() : tensor<16x540x960xi32> // CHECK: %[[UNPACK:.+]] = tensor.unpack %[[POOL]] // CHECK-SAME: inner_dims_pos = [0] inner_tiles = [16] // CHECK-SAME: into %[[UNPACK_NEW_DEST]] // CHECK: return %[[UNPACK]] : tensor<16x540x960xi32>