// RUN: mlir-opt %s -test-linalg-elementwise-fusion-patterns=fuse-with-reshape-by-collapsing -split-input-file | FileCheck %s // RUN: mlir-opt %s -test-linalg-elementwise-fusion-patterns=fuse-with-reshape-by-collapsing-control -split-input-file | FileCheck %s --check-prefix=CONTROL // Static problem sizes. Checks all aspects of fusion by collapsing. Rest of the // tests only check a subset of conditions. #map0 = affine_map<(d0, d1, d2, d3, d4, d5, d6, d7) -> (d0, d1, d2, d3, d4, d5, d6, d7)> #map1 = affine_map<(d0, d1, d2, d3, d4, d5, d6, d7) -> (d0, d1, d2)> #map2 = affine_map<(d0, d1, d2, d3, d4, d5, d6, d7) -> (d3, d4, d5, d6)> #map3 = affine_map<(d0, d1, d2, d3, d4, d5, d6, d7) -> (d0, d1, d2, d3, d4, d5, d6, d7)> func.func @fuse_by_collapsing(%arg0 : tensor<2x12x5x336x9xi32>, %arg1 : tensor<2x3x4xi32>, %arg2 : tensor<5x6x7x8xi32>) -> tensor<2x3x4x5x6x7x8x9xi32> { %expand = tensor.expand_shape %arg0 [[0], [1, 2], [3], [4, 5, 6], [7]] : tensor<2x12x5x336x9xi32> into tensor<2x3x4x5x6x7x8x9xi32> %init = tensor.empty() : tensor<2x3x4x5x6x7x8x9xi32> %generic = linalg.generic { indexing_maps = [#map0, #map1, #map2, #map3], iterator_types = ["parallel", "parallel", "parallel", "parallel", "parallel", "parallel", "parallel", "parallel"]} ins(%expand, %arg1, %arg2 : tensor<2x3x4x5x6x7x8x9xi32>, tensor<2x3x4xi32>, tensor<5x6x7x8xi32>) outs(%init : tensor<2x3x4x5x6x7x8x9xi32>) { ^bb0(%b0 : i32, %b1 : i32, %b2 : i32, %b3 : i32): %t0 = arith.addi %b0, %b1 : i32 %t1 = arith.addi %t0, %b2 : i32 linalg.yield %t1 : i32 } -> tensor<2x3x4x5x6x7x8x9xi32> return %generic : tensor<2x3x4x5x6x7x8x9xi32> } // CHECK-DAG: #[[MAP0:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2, d3, d4)> // CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d0, d1)> // CHECK-DAG: #[[MAP2:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d2, d3)> // CHECK: func @fuse_by_collapsing( // CHECK-SAME: %[[ARG0:.+]]: tensor<2x12x5x336x9xi32> // CHECK-SAME: %[[ARG1:.+]]: tensor<2x3x4xi32> // CHECK-SAME: %[[ARG2:.+]]: tensor<5x6x7x8xi32> // CHECK-DAG: %[[INIT:.+]] = tensor.empty() // CHECK-DAG: %[[ARG1_RESHAPE:.+]] = tensor.collapse_shape %[[ARG1]] {{\[}}[0], [1, 2]{{\]}} // CHECK-DAG: %[[ARG2_RESHAPE:.+]] = tensor.collapse_shape %[[ARG2]] {{\[}}[0], [1, 2, 3]{{\]}} // CHECK-DAG: %[[INIT_RESHAPE:.+]] = tensor.collapse_shape %[[INIT]] {{\[}}[0], [1, 2], [3], [4, 5, 6], [7]{{\]}} // CHECK: %[[COLLAPSED_OP:.+]] = linalg.generic // CHECK-SAME: indexing_maps = [#[[MAP0]], #[[MAP1]], #[[MAP2]], #[[MAP0]]] // CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel", "parallel", "parallel"] // CHECK-SAME: ins(%[[ARG0]], %[[ARG1_RESHAPE]], %[[ARG2_RESHAPE]] : // CHECK-SAME: outs(%[[INIT_RESHAPE]] : // CHECK: %[[RESULT_RESHAPE:.+]] = tensor.expand_shape %[[COLLAPSED_OP]] {{\[}}[0], [1, 2], [3], [4, 5, 6], [7]{{\]}} // CHECK: return %[[RESULT_RESHAPE]] // CONTROL: func @fuse_by_collapsing( // CONTROL-SAME: %[[ARG0:.+]]: tensor<2x12x5x336x9xi32> // CONTROL-SAME: %[[ARG1:.+]]: tensor<2x3x4xi32> // CONTROL-SAME: %[[ARG2:.+]]: tensor<5x6x7x8xi32> // CONTROL: %[[EXPAND:.+]] = tensor.expand_shape %[[ARG0]] // CONTROL: %[[GENERIC:.+]] = linalg.generic // CONTROL-SAME: ins(%[[EXPAND]], // CONTROL: return %[[GENERIC]] // ----- #map0 = affine_map<(d0, d1, d2, d3, d4, d5, d6, d7) -> (d0, d1, d2, d3, d4, d5, d6, d7)> #map1 = affine_map<(d0, d1, d2, d3, d4, d5, d6, d7) -> (d0, d1, d2)> #map2 = affine_map<(d0, d1, d2, d3, d4, d5, d6, d7) -> (d3, d4, d5, d6)> #map3 = affine_map<(d0, d1, d2, d3, d4, d5, d6, d7) -> (d0, d1, d2, d3, d4, d5, d6, d7)> func.func @fuse_by_collapsing_indexing_op(%arg0 : tensor<2x12x5x336x9xi32>, %arg1 : tensor<2x3x4xi32>, %arg2 : tensor<5x6x7x8xi32>) -> tensor<2x3x4x5x6x7x8x9xi32> { %expand = tensor.expand_shape %arg0 [[0], [1, 2], [3], [4, 5, 6], [7]] : tensor<2x12x5x336x9xi32> into tensor<2x3x4x5x6x7x8x9xi32> %init = tensor.empty() : tensor<2x3x4x5x6x7x8x9xi32> %generic = linalg.generic { indexing_maps = [#map0, #map1, #map2, #map3], iterator_types = ["parallel", "parallel", "parallel", "parallel", "parallel", "parallel", "parallel", "parallel"]} ins(%expand, %arg1, %arg2 : tensor<2x3x4x5x6x7x8x9xi32>, tensor<2x3x4xi32>, tensor<5x6x7x8xi32>) outs(%init : tensor<2x3x4x5x6x7x8x9xi32>) { ^bb0(%b0 : i32, %b1 : i32, %b2 : i32, %b3 : i32): %iv0 = linalg.index 0: index %iv1 = linalg.index 1: index %t0 = arith.addi %iv0, %iv1 : index %iv2 = linalg.index 2 : index %t1 = arith.addi %t0, %iv2 : index %iv3 = linalg.index 3 : index %t2 = arith.addi %t1, %iv3 : index %iv4 = linalg.index 4 : index %t3 = arith.addi %t2, %iv4 : index %iv5 = linalg.index 5 : index %t4 = arith.addi %t3, %iv5 : index %iv6 = linalg.index 6 : index %t5 = arith.addi %t4, %iv6 : index %iv7 = linalg.index 7 : index %t6 = arith.addi %t5, %iv7 : index %yield = arith.index_cast %t6 : index to i32 linalg.yield %yield : i32 } -> tensor<2x3x4x5x6x7x8x9xi32> return %generic : tensor<2x3x4x5x6x7x8x9xi32> } // CHECK-LABEL: func @fuse_by_collapsing_indexing_op( // CHECK-DAG: %[[C4:.+]] = arith.constant 4 : index // CHECK-DAG: %[[C8:.+]] = arith.constant 8 : index // CHECK-DAG: %[[C7:.+]] = arith.constant 7 : index // CHECK: %[[IV0:.+]] = linalg.index 0 // CHECK: %[[IV1:.+]] = linalg.index 1 // CHECK: %[[REM_IV1:.+]] = arith.remui %[[IV1]], %[[C4]] // CHECK: %[[DIV_IV1:.+]] = arith.divui %[[IV1]], %[[C4]] // CHECK: %[[IV2:.+]] = linalg.index 2 // CHECK: %[[IV3:.+]] = linalg.index 3 // CHECK: %[[REM1_IV3:.+]] = arith.remui %[[IV3]], %[[C8]] // CHECK: %[[DIV1_IV3:.+]] = arith.divui %[[IV3]], %[[C8]] // CHECK: %[[REM2_IV3:.+]] = arith.remui %[[DIV1_IV3]], %[[C7]] // CHECK: %[[DIV2_IV3:.+]] = arith.divui %[[DIV1_IV3]], %[[C7]] // CHECK: %[[IV4:.+]] = linalg.index 4 // CHECK: %[[T0:.+]] = arith.addi %[[IV0]], %[[DIV_IV1]] // CHECK: %[[T1:.+]] = arith.addi %[[T0]], %[[REM_IV1]] // CHECK: %[[T2:.+]] = arith.addi %[[T1]], %[[IV2]] // CHECK: %[[T3:.+]] = arith.addi %[[T2]], %[[DIV2_IV3]] // CHECK: %[[T4:.+]] = arith.addi %[[T3]], %[[REM2_IV3]] // CHECK: %[[T5:.+]] = arith.addi %[[T4]], %[[REM1_IV3]] // CHECK: %[[T6:.+]] = arith.addi %[[T5]], %[[IV4]] // CHECK: %[[YIELD:.+]] = arith.index_cast %[[T6]] // CHECK: linalg.yield %[[YIELD]] // ----- #map0 = affine_map<(d0, d1, d2, d3, d4, d5, d6, d7) -> (d7, d5, d6, d0, d1, d2, d3, d4)> #map1 = affine_map<(d0, d1, d2, d3, d4, d5, d6, d7) -> (d5, d6, d0)> #map2 = affine_map<(d0, d1, d2, d3, d4, d5, d6, d7) -> (d4, d1, d2, d3)> #map3 = affine_map<(d0, d1, d2, d3, d4, d5, d6, d7) -> (d0, d1, d2, d3, d4, d5, d6, d7)> func.func @fuse_by_collapsing_change_reshape_order(%arg0 : tensor<9x56x2x60x6xi32>, %arg1 : tensor<7x8x2xi32>, %arg2 : tensor<6x3x4x5xi32>) -> tensor<2x3x4x5x6x7x8x9xi32> { %expand = tensor.expand_shape %arg0 [[0], [1, 2], [3], [4, 5, 6], [7]] : tensor<9x56x2x60x6xi32> into tensor<9x7x8x2x3x4x5x6xi32> %init = tensor.empty() : tensor<2x3x4x5x6x7x8x9xi32> %generic = linalg.generic { indexing_maps = [#map0, #map1, #map2, #map3], iterator_types = ["parallel", "parallel", "parallel", "parallel", "parallel", "parallel", "parallel", "parallel"]} ins(%expand, %arg1, %arg2 : tensor<9x7x8x2x3x4x5x6xi32>, tensor<7x8x2xi32>, tensor<6x3x4x5xi32>) outs(%init : tensor<2x3x4x5x6x7x8x9xi32>) { ^bb0(%b0 : i32, %b1 : i32, %b2 : i32, %b3 : i32): %t0 = arith.addi %b0, %b1 : i32 %t1 = arith.addi %t0, %b2 : i32 linalg.yield %t1 : i32 } -> tensor<2x3x4x5x6x7x8x9xi32> return %generic : tensor<2x3x4x5x6x7x8x9xi32> } // CHECK-DAG: #[[MAP0:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d4, d3, d0, d1, d2)> // CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d3, d0)> // CHECK-DAG: #[[MAP2:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d2, d1)> // CHECK-DAG: #[[MAP3:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2, d3, d4)> // CHECK: func @fuse_by_collapsing_change_reshape_order( // CHECK-SAME: %[[ARG0:.+]]: tensor<9x56x2x60x6xi32> // CHECK-SAME: %[[ARG1:.+]]: tensor<7x8x2xi32> // CHECK-SAME: %[[ARG2:.+]]: tensor<6x3x4x5xi32> // CHECK-DAG: %[[INIT:.+]] = tensor.empty() // CHECK-DAG: %[[ARG1_RESHAPE:.+]] = tensor.collapse_shape %[[ARG1]] {{\[}}[0, 1], [2]{{\]}} // CHECK-DAG: %[[ARG2_RESHAPE:.+]] = tensor.collapse_shape %[[ARG2]] {{\[}}[0], [1, 2, 3]{{\]}} // CHECK-DAG: %[[INIT_RESHAPE:.+]] = tensor.collapse_shape %[[INIT]] {{\[}}[0], [1, 2, 3], [4], [5, 6], [7]{{\]}} // CHECK: %[[COLLAPSED_OP:.+]] = linalg.generic // CHECK-SAME: indexing_maps = [#[[MAP0]], #[[MAP1]], #[[MAP2]], #[[MAP3]]] // CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel", "parallel", "parallel"] // CHECK-SAME: ins(%[[ARG0]], %[[ARG1_RESHAPE]], %[[ARG2_RESHAPE]] : // CHECK-SAME: outs(%[[INIT_RESHAPE]] : // CHECK: %[[RESULT_RESHAPE:.+]] = tensor.expand_shape %[[COLLAPSED_OP]] {{\[}}[0], [1, 2, 3], [4], [5, 6], [7]{{\]}} // CHECK: return %[[RESULT_RESHAPE]] // ----- // Dynamic case. Only checks things not covered by `fuse_by_collapsing` test above. #map0 = affine_map<(d0, d1, d2, d3, d4, d5, d6, d7) -> (d7, d5, d6, d0, d1, d2, d3, d4)> #map1 = affine_map<(d0, d1, d2, d3, d4, d5, d6, d7) -> (d5, d6, d0)> #map2 = affine_map<(d0, d1, d2, d3, d4, d5, d6, d7) -> (d4, d1, d2, d3)> #map3 = affine_map<(d0, d1, d2, d3, d4, d5, d6, d7) -> (d0, d1, d2, d3, d4, d5, d6, d7)> func.func @fuse_by_collapsing_dynamic(%arg0 : tensor, %arg1 : tensor, %arg2 : tensor) -> tensor { %c0 = arith.constant 0 : index %c1 = arith.constant 1 : index %c2 = arith.constant 2 : index %expand = tensor.expand_shape %arg0 [[0], [1, 2], [3], [4, 5, 6], [7]] : tensor into tensor %d0 = tensor.dim %arg1, %c2 : tensor %d2 = tensor.dim %arg2, %c2 : tensor %d4 = tensor.dim %arg2, %c0 : tensor %d6 = tensor.dim %arg1, %c1 : tensor %d7 = tensor.dim %arg0, %c0 : tensor %init = tensor.empty(%d0, %d2, %d4, %d6, %d7) : tensor %generic = linalg.generic { indexing_maps = [#map0, #map1, #map2, #map3], iterator_types = ["parallel", "parallel", "parallel", "parallel", "parallel", "parallel", "parallel", "parallel"]} ins(%expand, %arg1, %arg2 : tensor, tensor, tensor) outs(%init : tensor) { ^bb0(%b0 : i32, %b1 : i32, %b2 : i32, %b3 : i32): %iv0 = linalg.index 0: index %iv1 = linalg.index 1: index %t0 = arith.addi %iv0, %iv1 : index %iv2 = linalg.index 2 : index %t1 = arith.addi %t0, %iv2 : index %iv3 = linalg.index 3 : index %t2 = arith.addi %t1, %iv3 : index %iv4 = linalg.index 4 : index %t3 = arith.addi %t2, %iv4 : index %iv5 = linalg.index 5 : index %t4 = arith.addi %t3, %iv5 : index %iv6 = linalg.index 6 : index %t5 = arith.addi %t4, %iv6 : index %iv7 = linalg.index 7 : index %t6 = arith.addi %t5, %iv7 : index %yield = arith.index_cast %t6 : index to i32 linalg.yield %yield : i32 } -> tensor return %generic : tensor } // CHECK: func @fuse_by_collapsing_dynamic( // CHECK-SAME: %[[ARG0:.+]]: tensor // CHECK-DAG: %[[C2:.+]] = arith.constant 2 : index // CHECK-DAG: %[[C5:.+]] = arith.constant 5 : index // CHECK: %[[EXPAND:.+]] = tensor.expand_shape %[[ARG0]] // CHECK-DAG: %[[D0:.+]] = tensor.dim %[[EXPAND]], %[[C2]] // CHECK-DAG: %[[D1:.+]] = tensor.dim %[[EXPAND]], %[[C5]] // CHECK: linalg.generic // CHECK: %[[IV0:.+]] = linalg.index 1 // CHECK: %[[REM1_IV0:.+]] = arith.remui %[[IV0]], %[[C5]] // CHECK: %[[DIV1_IV0:.+]] = arith.divui %[[IV0]], %[[C5]] // CHECK: %[[REM2_IV0:.+]] = arith.remui %[[DIV1_IV0]], %[[D1]] // CHECK: %[[DIV2_IV0:.+]] = arith.divui %[[DIV1_IV0]], %[[D1]] // CHECK: %[[IV1:.+]] = linalg.index 3 // CHECK: %[[REM1_IV1:.+]] = arith.remui %[[IV1]], %[[D0]] // CHECK: %[[DIV1_IV1:.+]] = arith.divui %[[IV1]], %[[D0]] // ----- #map0 = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)> #map1 = affine_map<(d0, d1, d2, d3) -> (d0, d3)> func.func @fuse_reductions(%arg0 : tensor<2x?x5xf32>, %arg1 : tensor<2x5xf32>) -> tensor<2x5xf32> { %0 = tensor.expand_shape %arg0 [[0], [1, 2], [3]] : tensor<2x?x5xf32> into tensor<2x6x?x5xf32> %1 = linalg.generic { indexing_maps = [#map0, #map1], iterator_types = ["parallel", "reduction", "reduction", "parallel"]} ins(%0 : tensor<2x6x?x5xf32>) outs(%arg1 : tensor<2x5xf32>) { ^bb0(%b0 : f32, %b1 : f32): %2 = arith.addf %b0, %b1 : f32 linalg.yield %2 : f32 } -> tensor<2x5xf32> return %1 : tensor<2x5xf32> } // CHECK-DAG: #[[MAP0:.+]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)> // CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1, d2) -> (d0, d2)> // CHECK: func @fuse_reductions( // CHECK-SAME: %[[ARG0:.+]]: tensor<2x?x5xf32> // CHECK-SAME: %[[ARG1:.+]]: tensor<2x5xf32>) -> tensor<2x5xf32> // CHECK: %[[GENERIC:.+]] = linalg.generic // CHECK-SAME: indexing_maps = [#[[MAP0]], #[[MAP1]]] // CHECK-SAME: iterator_types = ["parallel", "reduction", "parallel"] // CHECK-SAME: ins(%[[ARG0]] : tensor<2x?x5xf32>) // CHECK-SAME: outs(%[[ARG1]] : tensor<2x5xf32>) // ----- // Test no fusion because the folded dimensions are not all preserved. #map0 = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)> #map1 = affine_map<(d0, d1, d2, d3) -> (d0, d1)> func.func @no_fuse_unpreserved_folding(%arg0 : tensor<2x12x5xf32>, %arg1 : tensor<2x3xf32>) -> tensor<2x3x4x5xf32> { %0 = tensor.expand_shape %arg0 [[0], [1, 2], [3]] : tensor<2x12x5xf32> into tensor<2x3x4x5xf32> %init = tensor.empty(): tensor<2x3x4x5xf32> %1 = linalg.generic { indexing_maps = [#map0, #map1, #map0], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%0, %arg1 : tensor<2x3x4x5xf32>, tensor<2x3xf32>) outs(%init : tensor<2x3x4x5xf32>) { ^bb0(%b0 : f32, %b1 : f32, %b2 : f32): %2 = arith.addf %b0, %b1 : f32 linalg.yield %2 : f32 } -> tensor<2x3x4x5xf32> return %1 : tensor<2x3x4x5xf32> } // CHECK: func @no_fuse_unpreserved_folding // CHECK-SAME: %[[ARG0:.+]]: tensor<2x12x5xf32> // CHECK-SAME: %[[ARG1:.+]]: tensor<2x3xf32> // CHECK: %[[RESHAPE:.+]] = tensor.expand_shape %[[ARG0]] // CHECK: %[[GENERIC:.+]] = linalg.generic // CHECK-SAME: ins(%[[RESHAPE]], %[[ARG1]] : // CHECK: return %[[GENERIC]] // ----- // Test no fusion because the folded dimensions are not all preserved. #map0 = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)> #map1 = affine_map<(d0, d1, d2, d3) -> (d0)> #map2 = affine_map<(d0, d1, d2, d3) -> (d0, d2, d1, d3)> func.func @no_fuse_unpreserved_folding_transpose(%arg0 : tensor<2x12x5xf32>, %arg1 : tensor<2xf32>) -> tensor<2x4x3x5xf32> { %0 = tensor.expand_shape %arg0 [[0], [1, 2], [3]] : tensor<2x12x5xf32> into tensor<2x3x4x5xf32> %init = tensor.empty() : tensor<2x4x3x5xf32> %1 = linalg.generic { indexing_maps = [#map0, #map1, #map2], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%0, %arg1 : tensor<2x3x4x5xf32>, tensor<2xf32>) outs(%init : tensor<2x4x3x5xf32>) { ^bb0(%b0 : f32, %b1 : f32, %b2 : f32): %2 = arith.addf %b0, %b1 : f32 linalg.yield %2 : f32 } -> tensor<2x4x3x5xf32> return %1 : tensor<2x4x3x5xf32> } // CHECK: func @no_fuse_unpreserved_folding_transpose // CHECK-SAME: %[[ARG0:.+]]: tensor<2x12x5xf32> // CHECK-SAME: %[[ARG1:.+]]: tensor<2xf32> // CHECK: %[[RESHAPE:.+]] = tensor.expand_shape %[[ARG0]] // CHECK: %[[GENERIC:.+]] = linalg.generic // CHECK-SAME: ins(%[[RESHAPE]], %[[ARG1]] : // CHECK: return %[[GENERIC]] // ----- // Test no fusion because the iterator types of folded dims are not preserved. #map0 = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)> #map1 = affine_map<(d0, d1, d2, d3) -> (d0, d1)> #map2 = affine_map<(d0, d1, d2, d3) -> (d0, d3)> func.func @no_fuse_mismatched_iterator_types(%arg0 : tensor<2x12x5xf32>, %arg1 : tensor<2x3xf32>) -> tensor<2x5xf32> { %0 = tensor.expand_shape %arg0 [[0], [1, 2], [3]] : tensor<2x12x5xf32> into tensor<2x3x4x5xf32> %init = tensor.empty() : tensor<2x5xf32> %1 = linalg.generic { indexing_maps = [#map0, #map1, #map2], iterator_types = ["parallel", "reduction", "parallel", "parallel"]} ins(%0, %arg1 : tensor<2x3x4x5xf32>, tensor<2x3xf32>) outs(%init : tensor<2x5xf32>) { ^bb0(%b0 : f32, %b1 : f32, %b2 : f32): %2 = arith.addf %b0, %b1 : f32 linalg.yield %2 : f32 } -> tensor<2x5xf32> return %1 : tensor<2x5xf32> } // CHECK: func @no_fuse_mismatched_iterator_types // CHECK-SAME: %[[ARG0:.+]]: tensor<2x12x5xf32> // CHECK-SAME: %[[ARG1:.+]]: tensor<2x3xf32> // CHECK: %[[RESHAPE:.+]] = tensor.expand_shape %[[ARG0]] // CHECK: %[[GENERIC:.+]] = linalg.generic // CHECK-SAME: ins(%[[RESHAPE]], %[[ARG1]] : // CHECK: return %[[GENERIC]] // ----- // Test control of fusion using control function // Test no fusion because the folded dimensions are not all preserved. #map0 = affine_map<(d0, d1, d2, d3) -> (d0, d1)> #map1 = affine_map<(d0, d1, d2, d3) -> (d2, d3)> #map2 = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)> func.func @control_fusion(%arg0 : tensor<6xf32>, %arg1 : tensor<20xf32>) -> tensor<2x3x4x5xf32> { %0 = tensor.expand_shape %arg0 [[0, 1]] : tensor<6xf32> into tensor<2x3xf32> %1 = tensor.expand_shape %arg1 [[0, 1]] : tensor<20xf32> into tensor<4x5xf32> %init = tensor.empty() : tensor<2x3x4x5xf32> %2 = linalg.generic { indexing_maps = [#map0, #map1, #map2], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%0, %1 : tensor<2x3xf32>, tensor<4x5xf32>) outs(%init : tensor<2x3x4x5xf32>) { ^bb0(%b0 : f32, %b1 : f32, %b2 : f32): %3 = arith.addf %b0, %b1 : f32 linalg.yield %3 : f32 } -> tensor<2x3x4x5xf32> return %2 : tensor<2x3x4x5xf32> } // CHECK-DAG: #[[MAP0:.+]] = affine_map<(d0, d1) -> (d0)> // CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1) -> (d1)> // CHECK-DAG: #[[MAP2:.+]] = affine_map<(d0, d1) -> (d0, d1)> // CHECK: func @control_fusion( // CHECK-SAME: %[[ARG0:.+]]: tensor<6xf32> // CHECK-SAME: %[[ARG1:.+]]: tensor<20xf32> // CHECK: %[[GENERIC:.+]] = linalg.generic // CHECK-SAME: indexing_maps = [#[[MAP0]], #[[MAP1]], #[[MAP2]]] // CHECK-SAME: iterator_types = ["parallel", "parallel"] // CHECK-SAME: ins(%[[ARG0]], %[[ARG1]] : // CHECK-SAME: outs(%{{.+}}: tensor<6x20xf32>) // CHECK: %[[RESHAPE1:.+]] = tensor.expand_shape %[[GENERIC]] {{\[}}[0], [1, 2]{{\]}} // CHECK: %[[RESHAPE2:.+]] = tensor.expand_shape %[[RESHAPE1]] {{\[}}[0, 1], [2], [3]{{\]}} // CHECK: return %[[RESHAPE2]] // CONTROL-DAG: #[[MAP0:.+]] = affine_map<(d0, d1, d2) -> (d0, d1)> // CONTROL-DAG: #[[MAP1:.+]] = affine_map<(d0, d1, d2) -> (d2)> // CONTROL-DAG: #[[MAP3:.+]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)> // CONTROL: func @control_fusion( // CONTROL-SAME: %[[ARG0:.+]]: tensor<6xf32> // CONTROL-SAME: %[[ARG1:.+]]: tensor<20xf32> // CONTROL: %[[EXPAND:.+]] = tensor.expand_shape %[[ARG0]] // CONTROL: %[[INIT:.+]] = tensor.empty() // CONTROL: %[[INIT_RESHAPE:.+]] = tensor.collapse_shape %[[INIT]] {{\[}}[0], [1], [2, 3]{{\]}} // CONTROL: %[[GENERIC:.+]] = linalg.generic // CONTROL-SAME: ins(%[[EXPAND]], %[[ARG1]] : // CONTROL-SAME: outs(%[[INIT_RESHAPE]] : // CONTROL: %[[RESULT:.+]] = tensor.expand_shape %[[GENERIC]] {{\[}}[0], [1], [2, 3]{{\]}} // ----- // Corner case that isnt handled currently. #map = affine_map<(d0) -> (d0)> func.func @zero_D_test(%arg0: tensor) -> tensor<1xf32> { %0 = tensor.expand_shape %arg0 [] : tensor into tensor<1xf32> %init = tensor.empty() : tensor<1xf32> %1 = linalg.generic { indexing_maps = [#map, #map], iterator_types = ["parallel"]} ins(%0: tensor<1xf32>) outs(%init : tensor<1xf32>) { ^bb0(%b0 : f32, %b1 : f32): linalg.yield %b0: f32 } -> tensor<1xf32> return %1 : tensor<1xf32> } // CHECK: func @zero_D_test // CHECK-SAME: %[[ARG0:.+]]: tensor // CHECK: %[[EXPAND:.+]] = tensor.expand_shape %[[ARG0]] // CHECK: %[[GENERIC:.+]] = linalg.generic // CHECK-SAME: ins(%[[EXPAND]] : // CHECK: return %[[GENERIC]] // ----- #map0 = affine_map<(d0, d1, d2, d3) -> (d1, d0, d2, d3)> #map1 = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)> func.func @fuse_only_one_reassociation(%arg0 : tensor, %arg1 : tensor<4x?x?x8xf32>) -> tensor<4x?x?x8xf32> { %0 = tensor.expand_shape %arg0 [[0, 1], [2, 3]] : tensor into tensor %1 = linalg.generic { indexing_maps = [#map0, #map1, #map1], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%0, %arg1 : tensor, tensor<4x?x?x8xf32>) outs(%arg1 : tensor<4x?x?x8xf32>) { ^bb0(%b0: f32, %b1 : f32, %b2 : f32): %2 = arith.addf %b0, %b1 : f32 linalg.yield %2 : f32 } -> tensor<4x?x?x8xf32> return %1 : tensor<4x?x?x8xf32> } // CHECK-DAG: #[[MAP0:.+]] = affine_map<(d0, d1, d2) -> (d1, d0, d2)> // CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)> // CHECK: func @fuse_only_one_reassociation( // CHECK-SAME: %[[ARG0:.+]]: tensor // CHECK-SAME: %[[ARG1:.+]]: tensor<4x?x?x8xf32> // CHECK-DAG: %[[EXPAND_ARG0:.+]] = tensor.expand_shape %[[ARG0]] {{\[}}[0, 1], [2, 3]{{\]}} // CHECK-DAG: %[[COLLAPSE_ARG0:.+]] = tensor.collapse_shape %[[EXPAND_ARG0]] {{\[}}[0], [1], [2, 3]{{\]}} // CHECK-DAG: %[[COLLAPSE_ARG1_0:.+]] = tensor.collapse_shape %[[ARG1]] {{\[}}[0], [1], [2, 3]{{\]}} // CHECK-DAG: %[[COLLAPSE_ARG1_1:.+]] = tensor.collapse_shape %[[ARG1]] {{\[}}[0], [1], [2, 3]{{\]}} // CHECK: %[[GENERIC:.+]] = linalg.generic // CHECK-SAME: indexing_maps = [#[[MAP0]], #[[MAP1]], #[[MAP1]]] // CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel"] // CHECK-SAME: ins(%[[COLLAPSE_ARG0]], %[[COLLAPSE_ARG1_0]] : // CHECK-SAME: outs(%[[COLLAPSE_ARG1_1]] : // CHECK: %[[EXPAND_GENERIC:.+]] = tensor.expand_shape %[[GENERIC]] {{\[}}[0], [1], [2, 3]{{\]}} // CHECK: return %[[EXPAND_GENERIC]] // ----- #map0 = affine_map<(d0, d1, d2, d3) -> (d0, d2, d3, d1)> #map1 = affine_map<(d0, d1, d2, d3) -> (d3, d1, d0, d2)> func.func @fold_non_consecutive_dims(%arg0 : tensor) -> tensor { %c0 = arith.constant 0 : index %c2 = arith.constant 2 : index %0 = tensor.expand_shape %arg0 [[0, 1], [2, 3]] : tensor into tensor %d0 = tensor.dim %0, %c0 : tensor %d1 = tensor.dim %0, %c2 : tensor %init = tensor.empty(%d1, %d0) : tensor %1 = linalg.generic { indexing_maps = [#map0, #map1], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%0 : tensor) outs(%init : tensor) { ^bb0(%b0 : i32, %b1 : i32): %2 = linalg.index 0 : index %3 = linalg.index 1 : index %4 = linalg.index 2 : index %5 = linalg.index 3 : index %6 = arith.addi %2, %3 : index %7 = arith.addi %6, %4 : index %8 = arith.addi %7, %5 : index %9 = arith.index_cast %8 : index to i32 linalg.yield %9: i32 } -> tensor return %1 : tensor } // CHECK-DAG: #[[MAP0:.+]] = affine_map<(d0, d1) -> (d0, d1)> // CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1) -> (d1, d0)> // CHECK: func @fold_non_consecutive_dims( // CHECK-SAME: %[[ARG0:.+]]: tensor) // CHECK-DAG: %[[C4:.+]] = arith.constant 4 : index // CHECK-DAG: %[[C8:.+]] = arith.constant 8 : index // CHECK: %[[INIT:.+]] = tensor.empty // CHECK: %[[COLLAPSE_INIT:.+]] = tensor.collapse_shape %[[INIT]] {{\[}}[0, 1], [2, 3]{{\]}} // CHECK: %[[GENERIC:.+]] = linalg.generic // CHECK-SAME: indexing_maps = [#[[MAP0]], #[[MAP1]]] // CHECK-SAME: iterator_types = ["parallel", "parallel"] // CHECK-SAME: ins(%[[ARG0]] : // CHECK-SAME: outs(%[[COLLAPSE_INIT]] : // CHECK-NEXT: ^bb{{[0-9]}} // CHECK: %[[ID0:.+]] = linalg.index 0 // CHECK-DAG: %[[T0:.+]] = arith.remui %[[ID0]], %[[C4]] // CHECK-DAG: %[[T1:.+]] = arith.divui %[[ID0]], %[[C4]] // CHECK: %[[ID1:.+]] = linalg.index 1 // CHECK-DAG: %[[T2:.+]] = arith.remui %[[ID1]], %[[C8]] // CHECK-DAG: %[[T3:.+]] = arith.divui %[[ID1]], %[[C8]] // CHECK-DAG: %[[T4:.+]] = arith.addi %[[T1]], %[[T2]] // CHECK-DAG: %[[T5:.+]] = arith.addi %[[T4]], %[[T0]] // CHECK-DAG: %[[T6:.+]] = arith.addi %[[T5]], %[[T3]] // CHECK-DAG: %[[T7:.+]] = arith.index_cast %[[T6]] // CHECK: linalg.yield %[[T7]] // CHECK: %[[EXPAND_GENERIC:.+]] = tensor.expand_shape %[[GENERIC]] {{\[}}[0, 1], [2, 3]{{\]}} // CHECK: return %[[EXPAND_GENERIC]] // ----- // None of the folded iteration space dims are contiguous reduction dimensions. // So no change in the code. #map0 = affine_map<(d0, d1, d2, d3) -> (d0, d2, d3, d1)> #map1 = affine_map<(d0, d1, d2, d3) -> ()> func.func @no_fold_non_consecutive_reduction_dims(%arg0 : tensor) -> tensor { %c0 = arith.constant 0 : index %c2 = arith.constant 2 : index %0 = tensor.expand_shape %arg0 [[0, 1], [2, 3]] : tensor into tensor %init = tensor.empty() : tensor %1 = linalg.generic { indexing_maps = [#map0, #map1], iterator_types = ["reduction", "reduction", "reduction", "reduction"]} ins(%0 : tensor) outs(%init : tensor) { ^bb0(%b0 : i32, %b1 : i32): %2 = linalg.index 0 : index %3 = linalg.index 1 : index %4 = linalg.index 2 : index %5 = linalg.index 3 : index %6 = arith.addi %2, %3 : index %7 = arith.addi %6, %4 : index %8 = arith.addi %7, %5 : index %9 = arith.index_cast %8 : index to i32 linalg.yield %9: i32 } -> tensor return %1 : tensor } // CHECK: func @no_fold_non_consecutive_reduction_dims( // CHECK-SAME: %[[ARG0:.+]]: tensor) // CHECK: %[[EXPAND_ARG0:.+]] = tensor.expand_shape %[[ARG0]] {{\[}}[0, 1], [2, 3]{{\]}} // CHECK: %[[GENERIC:.+]] = linalg.generic // CHECK-SAME: ins(%[[EXPAND_ARG0]] : // CHECK: return %[[GENERIC]]