// RUN: mlir-opt %s -test-linalg-elementwise-fusion-patterns=fuse-with-reshape-by-collapsing -split-input-file | FileCheck %s // CHECK-DAG: #[[$MAP2:.*]] = affine_map<(d0, d1) -> (d0, d1)> // CHECK-DAG: #[[$MAP3:.*]] = affine_map<(d0, d1) -> (d1)> // CHECK-LABEL: func @reshape // CHECK-SAME: (%[[A:.*]]: tensor, %[[B:.*]]: tensor<16xf32>, %[[INIT:.*]]: tensor) // CHECK: %[[RI:.*]] = tensor.collapse_shape %[[INIT]] {{\[}}[0, 1], [2]] : tensor into tensor // CHECK: %[[R:.*]] = linalg.generic {indexing_maps = [#[[$MAP2]], #[[$MAP3]], #[[$MAP2]]], // CHECK-SAME: iterator_types = ["parallel", "parallel"]} // CHECK-SAME: ins(%[[A]], %[[B]] : tensor, tensor<16xf32>) outs(%[[RI]] : tensor) // CHECK: %[[RR:.*]] = tensor.expand_shape %[[R]] {{\[}}[0, 1], [2]] : tensor into tensor // CHECK: return %[[RR]] : tensor func.func @reshape(%A: tensor, %B: tensor<16xf32>, %init: tensor) -> tensor { %0 = tensor.expand_shape %A [[0, 1], [2]] : tensor into tensor %2 = linalg.generic {indexing_maps = [ affine_map<(d0, d1, d2) -> (d0, d1, d2)>, affine_map<(d0, d1, d2) -> (d2)>, affine_map<(d0, d1, d2) -> (d0, d1, d2)>], iterator_types = ["parallel", "parallel", "parallel"]} ins(%0, %B : tensor, tensor<16xf32>) outs(%init : tensor) { ^bb0(%arg1: f32, %arg2: f32, %arg3: f32): %s = arith.subf %arg1, %arg2 : f32 linalg.yield %s : f32 } -> tensor return %2 : tensor } // ----- // CHECK-DAG: #[[$MAP2:.*]] = affine_map<(d0, d1) -> (d0, d1)> // CHECK-DAG: #[[$MAP3:.*]] = affine_map<(d0, d1) -> (d1)> // CHECK-LABEL: func @reshape_multiple // CHECK-SAME: (%[[A:.*]]: tensor<12544x16xf32>, %[[B:.*]]: tensor<12544x16xf32>, %[[C:.*]]: tensor<16xf32>) // CHECK: %[[I:.*]] = tensor.empty() : tensor<112x112x16xf32> // CHECK: %[[RI:.*]] = tensor.collapse_shape %[[I]] {{\[}}[0, 1], [2]] : tensor<112x112x16xf32> into tensor<12544x16xf32> // CHECK: %[[R:.*]] = linalg.generic {indexing_maps = [#[[$MAP2]], #[[$MAP2]], #[[$MAP3]], #[[$MAP2]]], // CHECK-SAME: iterator_types = ["parallel", "parallel"]} // CHECK-SAME: ins(%[[A]], %[[B]], %[[C]] : tensor<12544x16xf32>, tensor<12544x16xf32>, tensor<16xf32>) outs(%[[RI]] : tensor<12544x16xf32>) // CHECK: %[[RR:.*]] = tensor.expand_shape %[[R]] {{\[}}[0, 1], [2]] : tensor<12544x16xf32> into tensor<112x112x16xf32> // CHECK: return %[[RR]] : tensor<112x112x16xf32> func.func @reshape_multiple(%A: tensor<12544x16xf32>, %B: tensor<12544x16xf32>, %C: tensor<16xf32>) -> tensor<112x112x16xf32> { %0 = tensor.expand_shape %A [[0, 1], [2]] : tensor<12544x16xf32> into tensor<112x112x16xf32> %1 = tensor.expand_shape %B [[0, 1], [2]] : tensor<12544x16xf32> into tensor<112x112x16xf32> %2 = tensor.empty() : tensor<112x112x16xf32> %3 = linalg.generic {indexing_maps = [ affine_map<(d0, d1, d2) -> (d0, d1, d2)>, affine_map<(d0, d1, d2) -> (d0, d1, d2)>, affine_map<(d0, d1, d2) -> (d2)>, affine_map<(d0, d1, d2) -> (d0, d1, d2)>], iterator_types = ["parallel", "parallel", "parallel"]} ins(%0, %1, %C : tensor<112x112x16xf32>, tensor<112x112x16xf32>, tensor<16xf32>) outs(%2 : tensor<112x112x16xf32>) { ^bb0(%arg1: f32, %arg2: f32, %arg3: f32, %arg4: f32): %s = arith.subf %arg1, %arg2 : f32 %m = arith.mulf %s, %arg3 : f32 linalg.yield %m : f32 } -> tensor<112x112x16xf32> return %3 : tensor<112x112x16xf32> } // ----- // Negative test, since the second source is broadcasted from d1 we cannot merge // d0 and d1 dimensions // CHECK-LABEL: func @reshape_negative // CHECK: tensor.expand_shape {{.*}} : tensor<12544x16xf32> into tensor<112x112x16xf32> // CHECK: linalg.generic // CHECK: } -> tensor<112x112x16xf32> func.func @reshape_negative(%A: tensor<12544x16xf32>, %B: tensor<112xf32>) -> tensor<112x112x16xf32> { %20 = tensor.expand_shape %A [[0, 1], [2]] : tensor<12544x16xf32> into tensor<112x112x16xf32> %21 = tensor.empty() : tensor<112x112x16xf32> %22 = linalg.generic {indexing_maps = [ affine_map<(d0, d1, d2) -> (d0, d1, d2)>, affine_map<(d0, d1, d2) -> (d1)>, affine_map<(d0, d1, d2) -> (d0, d1, d2)>], iterator_types = ["parallel", "parallel", "parallel"]} ins(%20, %B : tensor<112x112x16xf32>, tensor<112xf32>) outs(%21 : tensor<112x112x16xf32>) { ^bb0(%arg1: f32, %arg2: f32, %arg3: f32): %s = arith.subf %arg1, %arg2 : f32 linalg.yield %s : f32 } -> tensor<112x112x16xf32> return %22 : tensor<112x112x16xf32> } // ----- func.func @type_correctness(%arg0 : tensor<6x5xi32>, %arg1 : tensor<5xf32>, %arg2 : tensor<5xf32>) -> tensor<2x3x5xf32> { %cst_6 = arith.constant 1.000000e+00 : f32 %cst_7 = arith.constant 7.000000e+00 : f32 %cst_8 = arith.constant 1.1920929E-7 : f32 %25 = tensor.expand_shape %arg0 [[0, 1], [2]] : tensor<6x5xi32> into tensor<2x3x5xi32> %26 = tensor.empty() : tensor<2x3x5xf32> %28 = linalg.generic { indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d1, d2)>, affine_map<(d0, d1, d2) -> (d2)>, affine_map<(d0, d1, d2) -> (d2)>, affine_map<(d0, d1, d2) -> (d0, d1, d2)>], iterator_types = ["parallel", "parallel", "parallel"]} ins(%25, %arg1, %arg2 : tensor<2x3x5xi32>, tensor<5xf32>, tensor<5xf32>) outs(%26 : tensor<2x3x5xf32>) { ^bb0(%arg6: i32, %arg7: f32, %arg8: f32, %arg9: f32): %29 = arith.sitofp %arg6 : i32 to f32 %30 = arith.addf %arg7, %cst_8 : f32 %31 = arith.divf %cst_7, %30 : f32 %32 = arith.divf %cst_6, %31 : f32 %33 = arith.mulf %29, %32 : f32 %34 = arith.addf %33, %arg8 : f32 linalg.yield %34 : f32 } -> tensor<2x3x5xf32> return %28 : tensor<2x3x5xf32> } // CHECK-LABEL: func @type_correctness // CHECK: %[[OP:.+]] = linalg.generic // CHECK-SAME: ins(%{{.+}}, %{{.+}}, %{{.+}} : tensor<6x5xi32>, tensor<5xf32>, tensor<5xf32>) // CHECK-SAME: outs(%{{.+}} : tensor<6x5xf32>) // CHECK: tensor.expand_shape %[[OP]] // CHECK-SAME: tensor<6x5xf32> into tensor<2x3x5xf32>