// RUN: mlir-opt %s --pass-pipeline="builtin.module(transform-interpreter{debug-payload-root-tag=start_here})" --split-input-file --verify-diagnostics module attributes { transform.with_named_sequence } { transform.named_sequence @print_structured(%arg0: !transform.any_op {transform.readonly}) { transform.debug.emit_remark_at %arg0, "structured" : !transform.any_op transform.yield } transform.named_sequence @match_structured_empty(%arg0: !transform.any_op {transform.readonly}) -> !transform.any_op { %0 = transform.match.structured %arg0 : (!transform.any_op) -> !transform.any_op { ^bb0(%arg1: !transform.any_op): transform.match.structured.yield %arg1 : !transform.any_op } transform.yield %0 : !transform.any_op } // Entry point. Match any structured operation and emit at remark. transform.named_sequence @__transform_main(%arg0: !transform.any_op {transform.consumed}) { transform.foreach_match in %arg0 @match_structured_empty -> @print_structured : (!transform.any_op) -> !transform.any_op transform.yield } func.func @payload() attributes { transform.target_tag = "start_here" } { %preA = tensor.empty() : tensor<2x3xf32> %cA = arith.constant 1.0 : f32 // expected-remark @below {{structured}} %A = linalg.fill ins(%cA : f32) outs(%preA : tensor<2x3xf32>) -> tensor<2x3xf32> %B = arith.constant dense<1.0> : tensor<3x4xf32> %C = arith.constant dense<1000.0> : tensor<2x4xf32> // expected-remark @below {{structured}} %D = linalg.matmul ins(%A, %B: tensor<2x3xf32>, tensor<3x4xf32>) outs(%C: tensor<2x4xf32>) -> tensor<2x4xf32> %E = arith.constant dense<2.0> : tensor<2x4xf32> // expected-remark @below {{structured}} linalg.generic { indexing_maps = [affine_map<(d0, d1) -> (d0, d1)>, affine_map<(d0, d1) -> (d0, d1)>], iterator_types = ["parallel", "parallel"] } ins(%D : tensor<2x4xf32>) outs(%E : tensor<2x4xf32>) { ^bb0(%arg0: f32, %arg1: f32): linalg.yield %arg0 : f32 } -> tensor<2x4xf32> return } } // ----- module attributes { transform.with_named_sequence } { transform.named_sequence @do_nothing(%arg0: !transform.any_op {transform.readonly}) { transform.yield } transform.named_sequence @print_in_matcher(%arg0: !transform.any_op {transform.readonly}) -> !transform.any_op { transform.print %arg0 : !transform.any_op transform.yield %arg0 : !transform.any_op } transform.named_sequence @__transform_main(%arg0: !transform.any_op {transform.consumed}) { transform.foreach_match in %arg0 @print_in_matcher -> @do_nothing : (!transform.any_op) -> !transform.any_op transform.yield } func.func @payload() attributes { transform.target_tag = "start_here" } { // CHECK: [[ IR Printer ]] // CHECK: test.print_me %0 = "test.print_me"() : () -> (i1) return } } // ----- module attributes { transform.with_named_sequence } { transform.named_sequence @do_nothing(%arg0: !transform.any_op {transform.readonly}) { transform.yield } // Entry point. Match any structured operation and emit a remark. Also emit // a different remark at all considered operations. When it fails, the // failure is suppressed and the resulting handle is assocaited with an empty // list, hence nothing is printed. Both remark printing operations happen // after the check in the sequence, so they only apply if the check operation // produced success (due to failure suppression or not). transform.named_sequence @match_structured_suppress(%arg0: !transform.any_op {transform.readonly}) -> !transform.any_op { %0 = transform.match.structured failures(suppress) %arg0 : (!transform.any_op) -> !transform.any_op { ^bb0(%arg1: !transform.any_op): transform.match.structured.yield %arg1 : !transform.any_op } transform.debug.emit_remark_at %0, "structured" : !transform.any_op transform.debug.emit_remark_at %arg0, "other" : !transform.any_op transform.yield %0 : !transform.any_op } transform.named_sequence @__transform_main(%arg0: !transform.any_op {transform.consumed}) { transform.foreach_match restrict_root in %arg0 @match_structured_suppress -> @do_nothing : (!transform.any_op) -> !transform.any_op transform.yield } // expected-remark @below {{other}} func.func @payload() attributes { transform.target_tag = "start_here" } { // expected-remark @below {{other}} %D = arith.constant dense<1.0> : tensor<2x4xf32> // expected-remark @below {{other}} %E = arith.constant dense<2.0> : tensor<2x4xf32> // expected-remark @below {{structured}} // expected-remark @below {{other}} linalg.generic { indexing_maps = [affine_map<(d0, d1) -> (d0, d1)>, affine_map<(d0, d1) -> (d0, d1)>], iterator_types = ["parallel", "parallel"] } ins(%D : tensor<2x4xf32>) outs(%E : tensor<2x4xf32>) { ^bb0(%arg0: f32, %arg1: f32): // expected-remark @below {{other}} linalg.yield %arg0 : f32 } -> tensor<2x4xf32> // expected-remark @below {{other}} return } } // ----- module attributes { transform.with_named_sequence } { transform.named_sequence @print_passthrough(%arg0: !transform.any_op {transform.readonly}) { transform.debug.emit_remark_at %arg0, "passthrough" : !transform.any_op transform.yield } transform.named_sequence @match_structured_body_passthrough(%arg0: !transform.any_op {transform.readonly}) -> !transform.any_op { %0 = transform.match.structured failures(propagate) %arg0 : (!transform.any_op) -> !transform.any_op { ^bb0(%arg1: !transform.any_op): transform.match.structured.body %arg1 { passthrough } : !transform.any_op transform.match.structured.yield %arg1 : !transform.any_op } transform.yield %0 : !transform.any_op } transform.named_sequence @__transform_main(%arg0: !transform.any_op {transform.consumed}) { transform.foreach_match in %arg0 @match_structured_body_passthrough -> @print_passthrough : (!transform.any_op) -> !transform.any_op transform.yield } func.func @payload(%in: tensor<2xf32>, %out: tensor<2xf32>) attributes { transform.target_tag = "start_here" } { // expected-remark @below {{passthrough}} linalg.generic { indexing_maps = [affine_map<(d0) -> (d0)>, affine_map<(d0) -> (d0)>], iterator_types = ["parallel"] } ins(%in : tensor<2xf32>) outs(%out : tensor<2xf32>) { ^bb0(%arg0: f32, %arg1: f32): linalg.yield %arg0 : f32 } -> tensor<2xf32> linalg.generic { indexing_maps = [affine_map<(d0) -> (d0)>, affine_map<(d0) -> (d0)>], iterator_types = ["parallel"] } ins(%in : tensor<2xf32>) outs(%out : tensor<2xf32>) { ^bb0(%arg0: f32, %arg1: f32): %0 = arith.mulf %arg0, %arg1 : f32 linalg.yield %0 : f32 } -> tensor<2xf32> // expected-remark @below {{passthrough}} linalg.copy ins(%in : tensor<2xf32>) outs(%out : tensor<2xf32>) -> tensor<2xf32> return } } // ----- module attributes { transform.with_named_sequence } { transform.named_sequence @print_reduction(%arg0: !transform.any_op {transform.readonly}) { transform.debug.emit_remark_at %arg0, "reduction" : !transform.any_op transform.yield } transform.named_sequence @match_structured_body_reduction(%arg0: !transform.any_op {transform.readonly}) -> !transform.any_op { %0 = transform.match.structured failures(propagate) %arg0 : (!transform.any_op) -> !transform.any_op { ^bb0(%arg1: !transform.any_op): transform.match.structured.body %arg1 { reduction_position = 0 } : !transform.any_op transform.match.structured.yield %arg1 : !transform.any_op } transform.yield %0 : !transform.any_op } transform.named_sequence @__transform_main(%arg0: !transform.any_op {transform.consumed}) { transform.foreach_match in %arg0 @match_structured_body_reduction -> @print_reduction : (!transform.any_op) -> !transform.any_op transform.yield } func.func @payload(%lhs: tensor<2x4xf32>, %rhs: tensor<4x3xf32>, %out: tensor<2x3xf32>) attributes { transform.target_tag = "start_here" } { // expected-remark @below {{reduction}} linalg.generic { indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d2)>, affine_map<(d0, d1, d2) -> (d2, d1)>, affine_map<(d0, d1, d2) -> (d0, d1)>], iterator_types = ["parallel", "parallel", "reduction"] } ins(%lhs, %rhs: tensor<2x4xf32>, tensor<4x3xf32>) outs(%out: tensor<2x3xf32>) { ^bb0(%arg0: f32, %arg1: f32, %arg2: f32): %0 = arith.mulf %arg0, %arg1 : f32 %1 = arith.addf %0, %arg2 : f32 linalg.yield %1 : f32 } -> tensor<2x3xf32> %r = tensor.empty() : tensor<2x3xf32> linalg.generic { indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d2)>, affine_map<(d0, d1, d2) -> (d2, d1)>, affine_map<(d0, d1, d2) -> (d0, d1)>, affine_map<(d0, d1, d2) -> (d0, d1)>], iterator_types = ["parallel", "parallel", "reduction"] } ins(%lhs, %rhs: tensor<2x4xf32>, tensor<4x3xf32>) outs(%out, %r: tensor<2x3xf32>, tensor<2x3xf32>) { ^bb0(%arg0: f32, %arg1: f32, %arg2: f32, %arg3: f32): %0 = arith.mulf %arg0, %arg1 : f32 %1 = arith.cmpf olt, %0, %arg2 : f32 %2 = arith.select %1, %0, %arg2 : f32 %3 = arith.select %1, %arg3, %0 : f32 linalg.yield %2, %3 : f32, f32 } -> (tensor<2x3xf32>, tensor<2x3xf32>) // expected-remark @below {{reduction}} linalg.matmul ins(%lhs, %rhs: tensor<2x4xf32>, tensor<4x3xf32>) outs(%out: tensor<2x3xf32>) -> tensor<2x3xf32> %e = tensor.empty() : tensor<2x4xf32> linalg.generic { indexing_maps = [affine_map<(d0, d1) -> (d0, d1)>, affine_map<(d0, d1) -> (d0, d1)>], iterator_types = ["parallel", "parallel"] } ins(%lhs: tensor<2x4xf32>) outs(%e: tensor<2x4xf32>) { ^bb0(%arg0: f32, %arg1: f32): linalg.yield %arg0 : f32 } -> tensor<2x4xf32> return } } // ----- module attributes { transform.with_named_sequence } { transform.named_sequence @do_nothing(%arg0: !transform.any_op {transform.readonly}) { transform.yield } transform.named_sequence @print_dimension_size_match(%arg0: !transform.any_op {transform.readonly}) { transform.debug.emit_remark_at %arg0, "matched sizes" : !transform.any_op transform.yield } transform.named_sequence @match_dimension_capture(%arg0: !transform.any_op {transform.readonly}) -> !transform.any_op { // Capture multiple dimension values. Suppress failures so we can print them anyway after the capture. %0:9 = transform.match.structured failures(suppress) %arg0 : (!transform.any_op) -> (!transform.any_op, !transform.param, !transform.param, !transform.param, !transform.param, !transform.param, !transform.param, !transform.param, !transform.param) { ^bb0(%arg1: !transform.any_op): // This also tests the positional specification used by other ops, which may not test it again. %1 = transform.match.structured.dim %arg1[all] : (!transform.any_op) -> !transform.param %2 = transform.match.structured.dim %arg1[0] : (!transform.any_op) -> !transform.param %3 = transform.match.structured.dim %arg1[-1] : (!transform.any_op) -> !transform.param %4 = transform.match.structured.dim %arg1[0, 2] : (!transform.any_op) -> !transform.param %5 = transform.match.structured.dim %arg1[0, -1] : (!transform.any_op) -> !transform.param %6 = transform.match.structured.dim %arg1[except(-1)] : (!transform.any_op) -> !transform.param %7 = transform.match.structured.dim %arg1[except(0, -2)] : (!transform.any_op) -> !transform.param %8 = transform.match.structured.dim %arg1[0, -3] : (!transform.any_op) -> !transform.param transform.match.structured.yield %arg1, %1, %2, %3, %4, %5, %6, %7, %8 : !transform.any_op, !transform.param, !transform.param, !transform.param, !transform.param, !transform.param, !transform.param, !transform.param, !transform.param } transform.debug.emit_param_as_remark %0#1, "dimensions all:" at %0#0 : !transform.param, !transform.any_op transform.debug.emit_param_as_remark %0#2, "dimension 0:" at %0#0 : !transform.param, !transform.any_op transform.debug.emit_param_as_remark %0#3, "dimension -1:" at %0#0 : !transform.param, !transform.any_op transform.debug.emit_param_as_remark %0#4, "dimensions 0, 2:" at %0#0 : !transform.param, !transform.any_op transform.debug.emit_param_as_remark %0#5, "dimensions 0, -1:" at %0#0 : !transform.param, !transform.any_op transform.debug.emit_param_as_remark %0#6, "dimensions except -1:" at %0#0 : !transform.param, !transform.any_op transform.debug.emit_param_as_remark %0#7, "dimensions except 0, -2:" at %0#0 : !transform.param, !transform.any_op transform.debug.emit_param_as_remark %0#8, "dimensions 0, -3:" at %0#0 : !transform.param, !transform.any_op transform.yield %0#0 : !transform.any_op } transform.named_sequence @match_dimension_sizes(%arg0: !transform.any_op {transform.readonly}) -> (!transform.any_op) { %0 = transform.match.structured failures(propagate) %arg0 : (!transform.any_op) -> !transform.any_op { ^bb0(%arg1: !transform.any_op): %1 = transform.match.structured.dim %arg1[all] : (!transform.any_op) -> !transform.param %c2 = transform.param.constant 2 : i64 -> !transform.param %c3 = transform.param.constant 3 : i64 -> !transform.param %c4 = transform.param.constant 4 : i64 -> !transform.param %2 = transform.merge_handles %c2, %c3, %c4 : !transform.param transform.match.param.cmpi eq %1, %2 : !transform.param transform.match.structured.yield %arg1 : !transform.any_op } transform.yield %0 : !transform.any_op } transform.named_sequence @__transform_main(%arg0: !transform.any_op {transform.consumed}) { %0 = transform.foreach_match in %arg0 @match_dimension_capture -> @do_nothing : (!transform.any_op) -> !transform.any_op %1 = transform.foreach_match in %0 @match_dimension_sizes -> @print_dimension_size_match : (!transform.any_op) -> !transform.any_op transform.yield } func.func @payload(%lhs: tensor<2x4xf32>, %rhs: tensor<4x3xf32>, %out: tensor<2x3xf32>) attributes { transform.target_tag = "start_here" } { // The last does not emit anything because it fails to match // due to 0 and -3 being the same dimension in the 3D case. // expected-remark @below {{dimensions all: 2 : i64, 3 : i64, 4 : i64}} // expected-remark @below {{dimension 0: 2 : i64}} // expected-remark @below {{dimension -1: 4 : i64}} // expected-remark @below {{dimensions 0, 2: 2 : i64, 4 : i64}} // expected-remark @below {{dimensions 0, -1: 2 : i64, 4 : i64}} // expected-remark @below {{dimensions except -1: 2 : i64, 3 : i64}} // expected-remark @below {{dimensions except 0, -2: 4 : i64}} // expected-remark @below {{dimensions 0, -3:}} // expected-remark @below {{matched sizes}} linalg.generic { indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d2)>, affine_map<(d0, d1, d2) -> (d2, d1)>, affine_map<(d0, d1, d2) -> (d0, d1)>], iterator_types = ["parallel", "parallel", "reduction"] } ins(%lhs, %rhs: tensor<2x4xf32>, tensor<4x3xf32>) outs(%out: tensor<2x3xf32>) { ^bb0(%arg0: f32, %arg1: f32, %arg2: f32): %0 = arith.mulf %arg0, %arg1 : f32 %1 = arith.addf %0, %arg2 : f32 linalg.yield %1 : f32 } -> tensor<2x3xf32> return } } // ----- module attributes { transform.with_named_sequence } { transform.named_sequence @print_all_reduction(%arg0: !transform.any_op {transform.readonly}) { transform.debug.emit_remark_at %arg0, "all reduction" : !transform.any_op transform.yield } transform.named_sequence @print_all_parallel(%arg0: !transform.any_op {transform.readonly}) { transform.debug.emit_remark_at %arg0, "all parallel" : !transform.any_op transform.yield } transform.named_sequence @print_last_reduction(%arg0: !transform.any_op {transform.readonly}) { transform.debug.emit_remark_at %arg0, "last reduction" : !transform.any_op transform.yield } transform.named_sequence @print_parallel_except_last(%arg0: !transform.any_op {transform.readonly}) { transform.debug.emit_remark_at %arg0, "parallel except last" : !transform.any_op transform.yield } transform.named_sequence @match_all_reduction(%arg0: !transform.any_op {transform.readonly}) -> !transform.any_op { transform.match.structured failures(propagate) %arg0 : !transform.any_op { ^bb0(%arg1: !transform.any_op): transform.match.structured.dim %arg1[all] { reduction } : !transform.any_op transform.match.structured.yield } transform.yield %arg0 : !transform.any_op } transform.named_sequence @match_all_parallel(%arg0: !transform.any_op {transform.readonly}) -> !transform.any_op { transform.match.structured failures(propagate) %arg0 : !transform.any_op { ^bb0(%arg1: !transform.any_op): transform.match.structured.dim %arg1[all] { parallel } : !transform.any_op transform.match.structured.yield } transform.yield %arg0 : !transform.any_op } transform.named_sequence @match_last_reduction(%arg0: !transform.any_op {transform.readonly}) -> !transform.any_op { transform.match.structured failures(propagate) %arg0 : !transform.any_op { ^bb0(%arg1: !transform.any_op): transform.match.structured.dim %arg1[-1] { reduction } : !transform.any_op transform.match.structured.yield } transform.yield %arg0 : !transform.any_op } transform.named_sequence @match_parallel_except_last(%arg0: !transform.any_op {transform.readonly}) -> !transform.any_op { transform.match.structured failures(propagate) %arg0 : !transform.any_op { ^bb0(%arg1: !transform.any_op): transform.match.structured.dim %arg1[except(-1)] { parallel } : !transform.any_op transform.match.structured.yield } transform.yield %arg0 : !transform.any_op } transform.named_sequence @__transform_main(%arg0: !transform.any_op {transform.consumed}) { %0 = transform.foreach_match in %arg0 @match_all_reduction -> @print_all_reduction : (!transform.any_op) -> !transform.any_op %1 = transform.foreach_match in %0 @match_all_parallel -> @print_all_parallel : (!transform.any_op) -> !transform.any_op %2 = transform.foreach_match in %1 @match_last_reduction -> @print_last_reduction : (!transform.any_op) -> !transform.any_op %3 = transform.foreach_match in %2 @match_parallel_except_last -> @print_parallel_except_last : (!transform.any_op) -> !transform.any_op transform.yield } func.func @payload(%lhs: tensor<2x4xf32>, %rhs: tensor<4x3xf32>, %out: tensor<2x3xf32>) attributes { transform.target_tag = "start_here" } { // expected-remark @below {{last reduction}} // expected-remark @below {{parallel except last}} linalg.generic { indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d2)>, affine_map<(d0, d1, d2) -> (d2, d1)>, affine_map<(d0, d1, d2) -> (d0, d1)>], iterator_types = ["parallel", "parallel", "reduction"] } ins(%lhs, %rhs: tensor<2x4xf32>, tensor<4x3xf32>) outs(%out: tensor<2x3xf32>) { ^bb0(%arg0: f32, %arg1: f32, %arg2: f32): %0 = arith.mulf %arg0, %arg1 : f32 %1 = arith.addf %0, %arg2 : f32 linalg.yield %1 : f32 } -> tensor<2x3xf32> // expected-remark @below {{last reduction}} // expected-remark @below {{parallel except last}} linalg.matmul ins(%lhs, %rhs : tensor<2x4xf32>, tensor<4x3xf32>) outs(%out : tensor<2x3xf32>) -> tensor<2x3xf32> %cst = arith.constant 1.0 : f32 // expected-remark @below {{all parallel}} // expected-remark @below {{parallel except last}} linalg.fill ins(%cst : f32) outs(%out: tensor<2x3xf32>) -> tensor<2x3xf32> return } } // ----- module attributes { transform.with_named_sequence } { transform.named_sequence @match_bitwidth(%arg0: !transform.any_op {transform.readonly}) -> (!transform.any_op, !transform.param) { %bw = transform.match.structured failures(propagate) %arg0 : (!transform.any_op) -> !transform.param { ^bb0(%arg1: !transform.any_op): %0 = transform.match.structured.init %arg1 [0] : (!transform.any_op) -> !transform.any_value %1 = transform.match.structured.elemental_bitwidth %0 : (!transform.any_value) -> !transform.param transform.match.structured.yield %1 : !transform.param } transform.yield %arg0, %bw : !transform.any_op, !transform.param } transform.named_sequence @print_bitwidth(%arg0: !transform.any_op {transform.readonly}, %arg1: !transform.param {transform.readonly}) { transform.debug.emit_param_as_remark %arg1, "bitwidth:" at %arg0 : !transform.param, !transform.any_op transform.yield } transform.named_sequence @__transform_main(%arg0: !transform.any_op {transform.consumed}) { transform.foreach_match in %arg0 @match_bitwidth -> @print_bitwidth : (!transform.any_op) -> !transform.any_op transform.yield } func.func @payload(%f32: f32, %tf32: tensor, %index: index, %tindex: tensor) attributes { transform.target_tag = "start_here" } { // expected-remark @below {{bitwidth: 32}} linalg.fill ins(%f32: f32) outs(%tf32: tensor) -> tensor linalg.fill ins(%index: index) outs(%tindex: tensor) -> tensor return } } // ----- module attributes { transform.with_named_sequence } { transform.named_sequence @match_init(%arg0: !transform.any_op {transform.readonly}) -> (!transform.any_op, !transform.any_value, !transform.any_value, !transform.any_op) { %outs:3 = transform.match.structured failures(suppress) %arg0 : (!transform.any_op) -> (!transform.any_value, !transform.any_value, !transform.any_op) { ^bb0(%arg1: !transform.any_op): %0 = transform.match.structured.init %arg1 [0] : (!transform.any_op) -> !transform.any_value %1 = transform.match.structured.init %arg1 [all] : (!transform.any_op) -> !transform.any_value %2 = transform.match.structured.init %arg1 [0] : (!transform.any_op) -> !transform.any_op transform.match.structured.yield %0, %1, %2 : !transform.any_value, !transform.any_value, !transform.any_op } transform.yield %arg0, %outs#0, %outs#1, %outs#2 : !transform.any_op, !transform.any_value, !transform.any_value, !transform.any_op } transform.named_sequence @print_init(%arg0: !transform.any_op {transform.readonly}, %arg1: !transform.any_value {transform.readonly}, %arg2: !transform.any_value {transform.readonly}, %arg3: !transform.any_op {transform.readonly}) { transform.debug.emit_remark_at %arg1, "output 0" : !transform.any_value transform.debug.emit_remark_at %arg3, "output producer" : !transform.any_op transform.debug.emit_remark_at %arg2, "all output" : !transform.any_value transform.yield } transform.named_sequence @__transform_main(%arg0: !transform.any_op {transform.consumed}) { transform.foreach_match in %arg0 @match_init -> @print_init : (!transform.any_op) -> !transform.any_op transform.yield } func.func @payload(%f32: f32, // expected-remark @below {{output 0}} // expected-remark @below {{all output}} // expected-note @below {{value handle points to a block argument #1 in block #0 in region #0}} %tf32: tensor, // expected-remark @below {{all output}} // expected-note @below {{value handle points to a block argument #2 in block #0 in region #0}} %tf32_2: tensor) attributes { transform.target_tag = "start_here" } { // expected-remark @below {{output 0}} // expected-remark @below {{output producer}} // expected-remark @below {{all output}} // expected-note @below {{value handle points to an op result #0}} %0 = linalg.fill ins(%f32: f32) outs(%tf32: tensor) -> tensor linalg.generic { indexing_maps = [affine_map<(d0) -> (d0)>, affine_map<(d0) -> (d0)>, affine_map<(d0) -> (d0)>], iterator_types = ["parallel"] } ins(%tf32: tensor) outs(%0, %tf32_2: tensor, tensor) { ^bb0(%arg0: f32, %arg1: f32, %arg2: f32): linalg.yield %arg0, %arg0 : f32, f32 } -> (tensor, tensor) return } } // ----- module attributes { transform.with_named_sequence } { transform.named_sequence @match_init_0_permutation(%arg0: !transform.any_op {transform.readonly}) -> !transform.any_op { %0 = transform.match.structured failures(propagate) %arg0 : (!transform.any_op) -> !transform.any_op { ^bb0(%arg1: !transform.any_op): transform.match.structured.init %arg1[0] { permutation }: !transform.any_op transform.match.structured.yield %arg1 : !transform.any_op } transform.yield %0 : !transform.any_op } transform.named_sequence @match_init_1_permutation(%arg0: !transform.any_op {transform.readonly}) -> !transform.any_op { %0 = transform.match.structured failures(propagate) %arg0 : (!transform.any_op) -> !transform.any_op { ^bb0(%arg1: !transform.any_op): transform.match.structured.init %arg1[1] { permutation }: !transform.any_op transform.match.structured.yield %arg1 : !transform.any_op } transform.yield %0 : !transform.any_op } transform.named_sequence @match_init_2_projected_permutation(%arg0: !transform.any_op {transform.readonly}) -> !transform.any_op { %0 = transform.match.structured failures(propagate) %arg0 : (!transform.any_op) -> !transform.any_op { ^bb0(%arg1: !transform.any_op): transform.match.structured.init %arg1[2] { projected_permutation }: !transform.any_op transform.match.structured.yield %arg1 : !transform.any_op } transform.yield %0 : !transform.any_op } transform.named_sequence @print_init_0_permutation(%arg0: !transform.any_op {transform.readonly}) { transform.debug.emit_remark_at %arg0, "matched output 0 permutation" : !transform.any_op transform.yield } transform.named_sequence @print_init_1_permutation(%arg0: !transform.any_op {transform.readonly}) { transform.debug.emit_remark_at %arg0, "matched output 1 permutation" : !transform.any_op transform.yield } transform.named_sequence @print_init_2_projected_permutation(%arg0: !transform.any_op {transform.readonly}) { transform.debug.emit_remark_at %arg0, "matched output 2 projected permutation" : !transform.any_op transform.yield } transform.named_sequence @__transform_main(%arg0: !transform.any_op {transform.consumed}) { %0 = transform.foreach_match in %arg0 @match_init_0_permutation -> @print_init_0_permutation : (!transform.any_op) -> !transform.any_op %1 = transform.foreach_match in %0 @match_init_1_permutation -> @print_init_1_permutation : (!transform.any_op) -> !transform.any_op %2 = transform.foreach_match in %1 @match_init_2_projected_permutation -> @print_init_2_projected_permutation : (!transform.any_op) -> !transform.any_op transform.yield } func.func @payload(%f32: f32, %oned: tensor, %oned2: tensor, %twod: tensor) attributes { transform.target_tag = "start_here" } { // expected-remark @below {{matched output 2 projected permutation}} linalg.generic { indexing_maps = [affine_map<(d0, d1) -> (d0)>, affine_map<(d0, d1) -> (d0 + d1)>, affine_map<(d0, d1) -> (d1)>, affine_map<(d0, d1) -> (d1, d0)>], iterator_types = ["parallel", "parallel"] } ins(%oned: tensor) outs(%oned, %oned2, %twod: tensor, tensor, tensor) { ^bb0(%arg0: f32, %arg1: f32, %arg2: f32, %arg3: f32): linalg.yield %arg0, %arg0, %arg0 : f32, f32, f32 } -> (tensor, tensor, tensor) // expected-remark @below {{matched output 2 projected permutation}} // expected-remark @below {{matched output 1 permutation}} linalg.generic { indexing_maps = [affine_map<(d0, d1) -> (d0)>, affine_map<(d0, d1) -> (d0 + d1)>, affine_map<(d0, d1) -> (d1, d0)>, affine_map<(d0, d1) -> (d1)>], iterator_types = ["parallel", "parallel"] } ins(%oned: tensor) outs(%oned, %twod, %oned2: tensor, tensor, tensor) { ^bb0(%arg0: f32, %arg1: f32, %arg2: f32, %arg3: f32): linalg.yield %arg0, %arg0, %arg0 : f32, f32, f32 } -> (tensor, tensor, tensor) return } } // ----- module attributes { transform.with_named_sequence } { transform.named_sequence @match_num_io(%arg0: !transform.any_op {transform.readonly}) -> (!transform.param, !transform.param, !transform.any_op) { %0:3 = transform.match.structured failures(propagate) %arg0 : (!transform.any_op) -> (!transform.param, !transform.param, !transform.any_op) { ^bb0(%arg1: !transform.any_op): %1 = transform.match.structured.num_inputs %arg1 : (!transform.any_op) -> !transform.param %2 = transform.match.structured.num_inits %arg1 : (!transform.any_op) -> !transform.param transform.match.structured.yield %1, %2, %arg1 : !transform.param, !transform.param, !transform.any_op } transform.yield %0#0, %0#1, %0#2 : !transform.param, !transform.param, !transform.any_op } transform.named_sequence @print_num_io( %arg0: !transform.param {transform.readonly}, %arg1: !transform.param {transform.readonly}, %arg2: !transform.any_op {transform.readonly}) { transform.debug.emit_param_as_remark %arg0, "inputs" at %arg2 : !transform.param, !transform.any_op transform.debug.emit_param_as_remark %arg1, "outputs" at %arg2 : !transform.param, !transform.any_op transform.yield } transform.named_sequence @__transform_main(%arg0: !transform.any_op {transform.consumed}) { %0 = transform.foreach_match in %arg0 @match_num_io -> @print_num_io : (!transform.any_op) -> !transform.any_op transform.yield } func.func @payload(%f32: f32, %oned: tensor, %oned2: tensor, %twod: tensor) attributes { transform.target_tag = "start_here" } { // expected-remark @below {{inputs 1}} // expected-remark @below {{outputs 3}} linalg.generic { indexing_maps = [affine_map<(d0, d1) -> (d0)>, affine_map<(d0, d1) -> (d0 + d1)>, affine_map<(d0, d1) -> (d1)>, affine_map<(d0, d1) -> (d1, d0)>], iterator_types = ["parallel", "parallel"] } ins(%oned: tensor) outs(%oned, %oned2, %twod: tensor, tensor, tensor) { ^bb0(%arg0: f32, %arg1: f32, %arg2: f32, %arg3: f32): linalg.yield %arg0, %arg0, %arg0 : f32, f32, f32 } -> (tensor, tensor, tensor) // expected-remark @below {{inputs 2}} // expected-remark @below {{outputs 2}} linalg.generic { indexing_maps = [affine_map<(d0, d1) -> (d0)>, affine_map<(d0, d1) -> (d1, d0)>, affine_map<(d0, d1) -> (d0 + d1)>, affine_map<(d0, d1) -> (d1)>], iterator_types = ["parallel", "parallel"] } ins(%oned, %twod: tensor, tensor) outs(%oned, %oned2: tensor, tensor) { ^bb0(%arg0: f32, %arg1: f32, %arg2: f32, %arg3: f32): linalg.yield %arg0, %arg0 : f32, f32 } -> (tensor, tensor) return } } // ----- module attributes { transform.with_named_sequence } { transform.named_sequence @match_rank(%arg0: !transform.any_op {transform.readonly}) -> (!transform.param, !transform.any_op) { %0:2 = transform.match.structured failures(propagate) %arg0 : (!transform.any_op) -> (!transform.param, !transform.any_op) { ^bb0(%arg1: !transform.any_op): %1 = transform.match.structured.rank %arg1 : (!transform.any_op) -> !transform.param transform.match.structured.yield %1, %arg1 : !transform.param, !transform.any_op } transform.yield %0#0, %0#1 : !transform.param, !transform.any_op } transform.named_sequence @print_rank(%arg0: !transform.param {transform.readonly}, %arg2: !transform.any_op {transform.readonly}) { transform.debug.emit_param_as_remark %arg0, "rank" at %arg2 : !transform.param, !transform.any_op transform.yield } transform.named_sequence @__transform_main(%arg0: !transform.any_op {transform.consumed}) { %0 = transform.foreach_match in %arg0 @match_rank -> @print_rank : (!transform.any_op) -> !transform.any_op transform.yield } func.func @payload(%f32: f32, %twod: tensor<42x42xf32>) attributes { transform.target_tag = "start_here" } { %0 = tensor.empty() : tensor<42x42xf32> // expected-remark @below {{rank 2}} %1 = linalg.fill ins(%f32 : f32) outs(%0 : tensor<42x42xf32>) -> tensor<42x42xf32> // expected-remark @below {{rank 3}} linalg.matmul ins(%twod, %twod : tensor<42x42xf32>, tensor<42x42xf32>) outs(%1 : tensor<42x42xf32>) -> tensor<42x42xf32> return } } // ----- module attributes { transform.with_named_sequence } { transform.named_sequence @match_single_result(%arg0: !transform.any_op {transform.readonly}) -> (!transform.any_op, !transform.any_op) { %0:2 = transform.match.structured failures(propagate) %arg0 : (!transform.any_op) -> (!transform.any_op, !transform.any_op) { ^bb0(%arg1: !transform.any_op): %1 = transform.match.structured.result %arg1[0] { single } : (!transform.any_op) -> !transform.any_op transform.match.structured.yield %1, %arg1 : !transform.any_op, !transform.any_op } transform.yield %0#0, %0#1 : !transform.any_op, !transform.any_op } transform.named_sequence @match_result_value(%arg0: !transform.any_op {transform.readonly}) -> (!transform.any_value, !transform.any_op) { %0:2 = transform.match.structured failures(propagate) %arg0 : (!transform.any_op) -> (!transform.any_value, !transform.any_op) { ^bb0(%arg1: !transform.any_op): %1 = transform.match.structured.result %arg1[0] : (!transform.any_op) -> !transform.any_value transform.match.structured.yield %1, %arg1 : !transform.any_value, !transform.any_op } transform.yield %0#0, %0#1 : !transform.any_value, !transform.any_op } transform.named_sequence @match_any_result(%arg0: !transform.any_op {transform.readonly}) -> (!transform.any_op) { %0 = transform.match.structured failures(propagate) %arg0 : (!transform.any_op) -> !transform.any_op { ^bb0(%arg1: !transform.any_op): %1 = transform.match.structured.result %arg1[-1] { any } : (!transform.any_op) -> !transform.any_op transform.match.structured.yield %arg1 : !transform.any_op } transform.yield %0 : !transform.any_op } transform.named_sequence @print_single_result(%arg0: !transform.any_op {transform.readonly}, %arg2: !transform.any_op {transform.readonly}) { transform.debug.emit_remark_at %arg2, "matched single result" : !transform.any_op transform.debug.emit_remark_at %arg0, "single user" : !transform.any_op transform.yield } transform.named_sequence @print_result_value(%arg0: !transform.any_value {transform.readonly}, %arg1: !transform.any_op {transform.readonly}) { transform.debug.emit_remark_at %arg1, "matched result value" : !transform.any_op transform.debug.emit_remark_at %arg0, "op result" : !transform.any_value transform.yield } transform.named_sequence @print_any_result(%arg0: !transform.any_op {transform.readonly}) { transform.debug.emit_remark_at %arg0, "matched any result" : !transform.any_op transform.yield } transform.named_sequence @__transform_main(%arg0: !transform.any_op {transform.consumed}) { %0 = transform.foreach_match in %arg0 @match_single_result -> @print_single_result : (!transform.any_op) -> !transform.any_op %1 = transform.foreach_match in %0 @match_result_value -> @print_result_value : (!transform.any_op) -> !transform.any_op %2 = transform.foreach_match in %1 @match_any_result -> @print_any_result : (!transform.any_op) -> !transform.any_op transform.yield } func.func @payload(%f32: f32, %f322: f32, %f323: f32, %twod: tensor<42x42xf32>) attributes { transform.target_tag = "start_here" } { %0 = tensor.empty() : tensor<42x42xf32> // expected-remark @below {{matched result value}} // expected-remark @below {{op result}} // expected-note @below {{value handle points to an op result #0}} %1 = linalg.fill ins(%f32 : f32) outs(%0 : tensor<42x42xf32>) -> tensor<42x42xf32> // expected-remark @below {{matched result value}} // expected-remark @below {{op result}} // expected-note @below {{value handle points to an op result #0}} // expected-remark @below {{matched single result}} // expected-remark @below {{matched any result}} %2 = linalg.fill ins(%f322 : f32) outs(%0 : tensor<42x42xf32>) -> tensor<42x42xf32> // expected-remark @below {{matched result value}} // expected-remark @below {{op result}} // expected-note @below {{value handle points to an op result #0}} // expected-remark @below {{matched any result}} %3 = linalg.fill ins(%f323 : f32) outs(%0 : tensor<42x42xf32>) -> tensor<42x42xf32> // expected-remark @below {{matched result value}} // expected-remark @below {{op result}} // expected-note @below {{value handle points to an op result #0}} // expected-remark @below {{single user}} linalg.elemwise_unary {fun = #linalg.unary_fn} ins(%2 : tensor<42x42xf32>) outs(%0 : tensor<42x42xf32>) -> tensor<42x42xf32> // expected-remark @below {{matched result value}} // expected-remark @below {{op result}} // expected-note @below {{value handle points to an op result #0}} linalg.elemwise_unary {fun = #linalg.unary_fn} ins(%3 : tensor<42x42xf32>) outs(%0 : tensor<42x42xf32>) -> tensor<42x42xf32> // expected-remark @below {{matched result value}} // expected-remark @below {{op result}} // expected-note @below {{value handle points to an op result #0}} linalg.elemwise_unary {fun = #linalg.unary_fn} ins(%3 : tensor<42x42xf32>) outs(%0 : tensor<42x42xf32>) -> tensor<42x42xf32> return } } // ----- module attributes { transform.with_named_sequence } { transform.named_sequence @match_input_indexing_map(%arg0: !transform.any_op {transform.readonly}) -> (!transform.affine_map, !transform.any_op) { %0 = transform.match.structured failures(propagate) %arg0 : (!transform.any_op) -> !transform.affine_map { ^bb0(%arg1: !transform.any_op): %1 = transform.match.structured.input %arg1[0] : (!transform.any_op) -> !transform.affine_map transform.match.structured.yield %1 : !transform.affine_map } transform.yield %0, %arg0 : !transform.affine_map, !transform.any_op } transform.named_sequence @match_init_indexing_map(%arg0: !transform.any_op {transform.readonly}) -> (!transform.affine_map, !transform.any_op) { %0 = transform.match.structured failures(propagate) %arg0 : (!transform.any_op) -> !transform.affine_map { ^bb0(%arg1: !transform.any_op): %1 = transform.match.structured.init %arg1[0] : (!transform.any_op) -> !transform.affine_map transform.match.structured.yield %1 : !transform.affine_map } transform.yield %0, %arg0 : !transform.affine_map, !transform.any_op } transform.named_sequence @print_indexing_map_1(%arg0: !transform.affine_map {transform.readonly}, %arg1: !transform.any_op {transform.readonly}) { transform.debug.emit_param_as_remark %arg0, "indexing map 1" at %arg1 : !transform.affine_map, !transform.any_op transform.yield } transform.named_sequence @print_indexing_map_2(%arg0: !transform.affine_map {transform.readonly}, %arg1: !transform.any_op {transform.readonly}) { transform.debug.emit_param_as_remark %arg0, "indexing map 2" at %arg1 : !transform.affine_map, !transform.any_op transform.yield } transform.named_sequence @__transform_main(%arg0: !transform.any_op {transform.consumed}) { %3 = transform.foreach_match in %arg0 @match_input_indexing_map -> @print_indexing_map_1 : (!transform.any_op) -> !transform.any_op %4 = transform.foreach_match in %3 @match_init_indexing_map -> @print_indexing_map_2 : (!transform.any_op) -> !transform.any_op transform.yield } func.func @payload(%lhs: tensor<32x32xf32>, %rhs: tensor<32x32xf32>) attributes { transform.target_tag = "start_here" } { %out = tensor.empty() : tensor<32x32xf32> %cst = arith.constant 1.0 : f32 // expected-remark @below {{indexing map 1 affine_map<(d0, d1) -> ()>}} // expected-remark @below {{indexing map 2 affine_map<(d0, d1) -> (d0, d1)>}} %res = linalg.fill ins(%cst : f32) outs(%out : tensor<32x32xf32>) -> tensor<32x32xf32> // expected-remark @below {{indexing map 1 affine_map<(d0, d1, d2) -> (d0, d2)>}} // expected-remark @below {{indexing map 2 affine_map<(d0, d1, d2) -> (d0, d1)>}} linalg.matmul ins(%lhs, %rhs : tensor<32x32xf32>, tensor<32x32xf32>) outs(%res : tensor<32x32xf32>) -> tensor<32x32xf32> return } } // ----- module attributes { transform.with_named_sequence } { transform.named_sequence @match_contraction(%arg0: !transform.any_op {transform.readonly}) -> (!transform.any_op, !transform.param, !transform.param, !transform.param, !transform.param) { %1:4 = transform.match.structured %arg0 : (!transform.any_op) -> (!transform.param, !transform.param, !transform.param, !transform.param) { ^bb0(%struct: !transform.any_op): transform.match.structured.body %struct { contraction = ["arith.mulf", "arith.addf"] } : !transform.any_op %0:4 = transform.match.structured.classify_contraction_dims %struct : (!transform.any_op) -> (!transform.param, !transform.param, !transform.param, !transform.param) transform.match.structured.yield %0#0, %0#1, %0#2, %0#3 : !transform.param, !transform.param, !transform.param, !transform.param } transform.yield %arg0, %1#0, %1#1, %1#2, %1#3 : !transform.any_op, !transform.param, !transform.param, !transform.param, !transform.param } transform.named_sequence @print_contraction( %op: !transform.any_op {transform.readonly}, %batch: !transform.param {transform.readonly}, %m: !transform.param {transform.readonly}, %n: !transform.param {transform.readonly}, %k: !transform.param {transform.readonly}) { transform.debug.emit_remark_at %op, "contraction" : !transform.any_op transform.debug.emit_param_as_remark %batch, "batch dims" at %op : !transform.param, !transform.any_op transform.debug.emit_param_as_remark %m, "m dims" at %op : !transform.param, !transform.any_op transform.debug.emit_param_as_remark %n, "n dims" at %op : !transform.param, !transform.any_op transform.debug.emit_param_as_remark %k, "k dims" at %op : !transform.param, !transform.any_op transform.yield } transform.named_sequence @__transform_main(%arg0: !transform.any_op {transform.consumed}) { %3 = transform.foreach_match in %arg0 @match_contraction -> @print_contraction : (!transform.any_op) -> !transform.any_op transform.yield } } module attributes { transform.target_tag = "start_here" } { func.func @matmul_simple(%lhs: tensor<10x20xf32>, %rhs: tensor<20x15xf32>) -> tensor<10x15xf64> { %cst = arith.constant 0.0 : f64 %empty = tensor.empty() : tensor<10x15xf64> %fill = linalg.fill ins(%cst : f64) outs(%empty : tensor<10x15xf64>) -> tensor<10x15xf64> // expected-remark @below {{contraction}} // expected-remark @below {{batch dims}} // expected-remark @below {{m dims 0}} // expected-remark @below {{n dims 1}} // expected-remark @below {{k dims 2}} %result = linalg.matmul ins(%lhs, %rhs: tensor<10x20xf32>, tensor<20x15xf32>) outs(%fill: tensor<10x15xf64>) -> tensor<10x15xf64> return %result : tensor<10x15xf64> } func.func @vecmat_simple(%lhs: tensor<20xf32>, %rhs: tensor<20x15xf32>) -> tensor<15xf64> { %cst = arith.constant 0.0 : f64 %empty = tensor.empty() : tensor<15xf64> %fill = linalg.fill ins(%cst : f64) outs(%empty : tensor<15xf64>) -> tensor<15xf64> // expected-remark @below {{contraction}} // expected-remark @below {{batch dims}} // expected-remark @below {{m dims}} // expected-remark @below {{n dims 0}} // expected-remark @below {{k dims 1}} %result = linalg.vecmat ins(%lhs, %rhs: tensor<20xf32>, tensor<20x15xf32>) outs(%fill: tensor<15xf64>) -> tensor<15xf64> return %result : tensor<15xf64> } func.func @double_batch(%lhs: tensor<40x10x50x20xf32>, %rhs: tensor<40x20x50x15xf32>) -> tensor<40x10x50x15xf32> { %cst = arith.constant 0.0 : f32 %empty = tensor.empty() : tensor<40x10x50x15xf32> %fill = linalg.fill ins(%cst : f32) outs(%empty : tensor<40x10x50x15xf32>) -> tensor<40x10x50x15xf32> // expected-remark @below {{contraction}} // expected-remark @below {{batch dims 0 : i64, 2 : i64}} // expected-remark @below {{m dims 1}} // expected-remark @below {{n dims 3}} // expected-remark @below {{k dims 4}} %result = linalg.generic { indexing_maps = [affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2, d4)>, affine_map<(d0, d1, d2, d3, d4) -> (d0, d4, d2, d3)>, affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2, d3)>], iterator_types = ["parallel", "parallel", "parallel", "parallel", "reduction"] } ins(%lhs, %rhs : tensor<40x10x50x20xf32>, tensor<40x20x50x15xf32>) outs(%fill : tensor<40x10x50x15xf32>) { ^bb(%arg0: f32, %arg1: f32, %arg2: f32): %0 = arith.mulf %arg0, %arg1 : f32 %1 = arith.addf %arg2, %0 : f32 linalg.yield %1 : f32 } -> tensor<40x10x50x15xf32> return %result : tensor<40x10x50x15xf32> } } // ----- module attributes { transform.with_named_sequence } { transform.named_sequence @match_convolution(%arg0: !transform.any_op {transform.readonly}) -> (!transform.any_op, !transform.param, !transform.param, !transform.param, !transform.param, !transform.param, !transform.param, !transform.param, !transform.param) { %1:8 = transform.match.structured %arg0 : (!transform.any_op) -> (!transform.param, !transform.param, !transform.param, !transform.param, !transform.param, !transform.param, !transform.param, !transform.param) { ^bb0(%struct: !transform.any_op): transform.match.structured.body %struct { contraction = ["arith.mulf", "arith.addf"] } : !transform.any_op %0:8 = transform.match.structured.classify_convolution_dims %struct : (!transform.any_op) -> (!transform.param, !transform.param, !transform.param, !transform.param, !transform.param, !transform.param, !transform.param, !transform.param) transform.match.structured.yield %0#0, %0#1, %0#2, %0#3, %0#4, %0#5, %0#6, %0#7 : !transform.param, !transform.param, !transform.param, !transform.param, !transform.param, !transform.param, !transform.param, !transform.param } transform.yield %arg0, %1#0, %1#1, %1#2, %1#3, %1#4, %1#5, %1#6, %1#7 : !transform.any_op, !transform.param, !transform.param, !transform.param, !transform.param, !transform.param, !transform.param, !transform.param, !transform.param } transform.named_sequence @print_convolution( %op: !transform.any_op {transform.readonly}, %batch: !transform.param {transform.readonly}, %oi: !transform.param {transform.readonly}, %oc: !transform.param {transform.readonly}, %fl: !transform.param {transform.readonly}, %ic: !transform.param {transform.readonly}, %depth: !transform.param {transform.readonly}, %strides: !transform.param {transform.readonly}, %dilations: !transform.param {transform.readonly}) { transform.debug.emit_remark_at %op, "convolution" : !transform.any_op transform.debug.emit_param_as_remark %batch, "batch dims" at %op : !transform.param, !transform.any_op transform.debug.emit_param_as_remark %oi, "output image dims" at %op : !transform.param, !transform.any_op transform.debug.emit_param_as_remark %oc, "output channel dims" at %op : !transform.param, !transform.any_op transform.debug.emit_param_as_remark %fl, "filter loop dims" at %op : !transform.param, !transform.any_op transform.debug.emit_param_as_remark %ic, "input channel dims" at %op : !transform.param, !transform.any_op transform.debug.emit_param_as_remark %depth, "depth dims" at %op : !transform.param, !transform.any_op transform.debug.emit_param_as_remark %strides, "strides" at %op : !transform.param, !transform.any_op transform.debug.emit_param_as_remark %dilations, "dilations" at %op : !transform.param, !transform.any_op transform.yield } transform.named_sequence @__transform_main(%arg0: !transform.any_op {transform.consumed}) { %3 = transform.foreach_match in %arg0 @match_convolution -> @print_convolution : (!transform.any_op) -> !transform.any_op transform.yield } } module attributes { transform.target_tag = "start_here" } { func.func @convolution_simple(%input: tensor<10x20x30xf32>, %filter: tensor<3x30x15xf32>) -> tensor<10x18x15xf64> { %cst = arith.constant 0.0 : f64 %empty = tensor.empty() : tensor<10x18x15xf64> %fill = linalg.fill ins(%cst : f64) outs(%empty : tensor<10x18x15xf64>) -> tensor<10x18x15xf64> // expected-remark @below {{convolution}} // expected-remark @below {{batch dims 0}} // expected-remark @below {{output image dims 1}} // expected-remark @below {{output channel dims 2}} // expected-remark @below {{filter loop dims 3}} // expected-remark @below {{input channel dims 4}} // expected-remark @below {{depth dims}} // expected-remark @below {{strides 1}} // expected-remark @below {{dilations 1}} %result = linalg.conv_1d_nwc_wcf {dilations = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} ins(%input, %filter: tensor<10x20x30xf32>, tensor<3x30x15xf32>) outs(%fill: tensor<10x18x15xf64>) -> tensor<10x18x15xf64> return %result : tensor<10x18x15xf64> } func.func @convolution_multi_channel(%input: tensor<2x34x68x16xf32>, %filter: tensor<8x2x3x5x16x16xf32>) -> tensor<8x32x32x16xf32> { %cst = arith.constant 0.0 : f32 %empty = tensor.empty() : tensor<8x32x32x16xf32> %fill = linalg.fill ins(%cst : f32) outs(%empty : tensor<8x32x32x16xf32>) -> tensor<8x32x32x16xf32> // expected-remark @below {{convolution}} // expected-remark @below {{batch dims}} // expected-remark @below {{output image dims 1 : i64, 2 : i64}} // expected-remark @below {{output channel dims 0 : i64, 3 : i64}} // expected-remark @below {{filter loop dims 5 : i64, 6 : i64}} // expected-remark @below {{input channel dims 4 : i64, 7 : i64}} // expected-remark @below {{depth dims}} // expected-remark @below {{strides 1 : i64, 2 : i64}} // expected-remark @below {{dilations 1 : i64, 1 : i64}} %result = linalg.generic { indexing_maps = [ affine_map<(d0, d1, d2, d3, d4, d5, d6, d7) -> (d4, d1 + d5, 2 * d2 + d6, d7)>, affine_map<(d0, d1, d2, d3, d4, d5, d6, d7) -> (d0, d4, d5, d6, d7, d3)>, affine_map<(d0, d1, d2, d3, d4, d5, d6, d7) -> (d0, d1, d2, d3)>], iterator_types = ["parallel", "parallel", "parallel", "parallel", "reduction", "reduction", "reduction", "reduction"]} ins(%input, %filter : tensor<2x34x68x16xf32>, tensor<8x2x3x5x16x16xf32>) outs(%fill : tensor<8x32x32x16xf32>) { ^bb0(%in: f32, %in_0: f32, %out: f32): %mul = arith.mulf %in, %in_0 : f32 %add = arith.addf %mul, %out : f32 linalg.yield %add : f32 } -> tensor<8x32x32x16xf32> return %result : tensor<8x32x32x16xf32> } }