// RUN: mlir-opt -split-input-file -verify-diagnostics %s | FileCheck %s // CHECK-LABEL: func @depthwise_conv_1d_nwc_wcm func.func @depthwise_conv_1d_nwc_wcm(%input: tensor<1x12x8xf32>, %filter: tensor<3x8x8xf32>) -> tensor<1x10x8x8xf32> { %zero = arith.constant 0.000000e+00 : f32 %init = tensor.empty() : tensor<1x10x8x8xf32> %fill = linalg.fill ins(%zero : f32) outs(%init : tensor<1x10x8x8xf32>) -> tensor<1x10x8x8xf32> // CHECK: depthwise_conv_1d_nwc_wcm %0 = linalg.depthwise_conv_1d_nwc_wcm {dilations = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} ins(%input, %filter : tensor<1x12x8xf32>, tensor<3x8x8xf32>) outs(%fill : tensor<1x10x8x8xf32>) -> tensor<1x10x8x8xf32> return %0 : tensor<1x10x8x8xf32> } // ----- // CHECK-LABEL: func @depthwise_conv_1d_nwc_wc func.func @depthwise_conv_1d_nwc_wc(%input: tensor<1x12x8xf32>, %filter: tensor<3x8xf32>) -> tensor<1x10x8xf32> { %zero = arith.constant 0.000000e+00 : f32 %init = tensor.empty() : tensor<1x10x8xf32> %fill = linalg.fill ins(%zero : f32) outs(%init : tensor<1x10x8xf32>) -> tensor<1x10x8xf32> // CHECK: depthwise_conv_1d_nwc_wc %0 = linalg.depthwise_conv_1d_nwc_wc {dilations = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} ins(%input, %filter : tensor<1x12x8xf32>, tensor<3x8xf32>) outs(%fill : tensor<1x10x8xf32>) -> tensor<1x10x8xf32> return %0 : tensor<1x10x8xf32> } // ----- // CHECK-LABEL: func @depthwise_conv_1d_ncw_cw func.func @depthwise_conv_1d_ncw_cw(%input: tensor<1x8x12xf32>, %filter: tensor<8x3xf32>) -> tensor<1x8x10xf32> { %zero = arith.constant 0.000000e+00 : f32 %init = tensor.empty() : tensor<1x8x10xf32> %fill = linalg.fill ins(%zero : f32) outs(%init : tensor<1x8x10xf32>) -> tensor<1x8x10xf32> // CHECK: depthwise_conv_1d_ncw_cw %0 = linalg.depthwise_conv_1d_ncw_cw {dilations = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} ins(%input, %filter : tensor<1x8x12xf32>, tensor<8x3xf32>) outs(%fill : tensor<1x8x10xf32>) -> tensor<1x8x10xf32> return %0 : tensor<1x8x10xf32> } // ----- // CHECK-LABEL: func @depthwise_conv_2d_nhwc_hwcm_tensor func.func @depthwise_conv_2d_nhwc_hwcm_tensor(%input: tensor<2x4x5x2xf32>, %filter: tensor<2x2x2x3xf32>) -> tensor<2x3x4x2x3xf32> { %zero = arith.constant 0.000000e+00 : f32 %init = tensor.empty() : tensor<2x3x4x2x3xf32> %fill = linalg.fill ins(%zero : f32) outs(%init : tensor<2x3x4x2x3xf32>) -> tensor<2x3x4x2x3xf32> // CHECK: %{{.+}} = linalg.depthwise_conv_2d_nhwc_hwcm // CHECK-SAME: {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} // CHECK-SAME: ins(%{{.+}}, %{{.+}} : tensor<2x4x5x2xf32>, tensor<2x2x2x3xf32>) // CHECK-SAME: outs(%{{.+}} : tensor<2x3x4x2x3xf32>) %0 = linalg.depthwise_conv_2d_nhwc_hwcm { dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64> } ins(%input, %filter : tensor<2x4x5x2xf32>, tensor<2x2x2x3xf32>) outs(%fill : tensor<2x3x4x2x3xf32>) -> tensor<2x3x4x2x3xf32> return %0 : tensor<2x3x4x2x3xf32> } // CHECK-LABEL: func @depthwise_conv_2d_nhwc_hwcm_memref func.func @depthwise_conv_2d_nhwc_hwcm_memref(%input: memref<2x4x5x2xf32>, %filter: memref<2x2x2x3xf32>, %output: memref<2x3x4x2x3xf32>) { // CHECK: linalg.depthwise_conv_2d_nhwc_hwcm // CHECK-SAME: {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} // CHECK-SAME: ins(%{{.+}}, %{{.+}} : memref<2x4x5x2xf32>, memref<2x2x2x3xf32>) // CHECK-SAME: outs(%{{.+}} : memref<2x3x4x2x3xf32>) linalg.depthwise_conv_2d_nhwc_hwcm { dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64> } ins(%input, %filter : memref<2x4x5x2xf32>, memref<2x2x2x3xf32>) outs(%output : memref<2x3x4x2x3xf32>) return } // CHECK-LABEL: func @depthwise_conv_1d_nw_tensor func.func @depthwise_conv_1d_nw_tensor(%input: tensor<1x113x96xf32>, %filter: tensor<3x96xf32>) -> tensor<1x56x96xf32> { %init = tensor.empty() : tensor<1x56x96xf32> // CHECK: %{{.+}} = linalg.depthwise_conv_1d_nw // CHECK-SAME: {dilations = dense<1> : vector<1xi64>, strides = dense<2> : vector<1xi64>} // CHECK-SAME: ins(%{{.+}}, %{{.+}} : tensor<1x113x96xf32>, tensor<3x96xf32>) // CHECK-SAME: outs(%{{.+}} : tensor<1x56x96xf32>) -> tensor<1x56x96xf32> %0 = linalg.depthwise_conv_1d_nwc_wc {dilations = dense<1> : vector<1xi64>, strides = dense<2> : vector<1xi64>} ins(%input, %filter: tensor<1x113x96xf32>, tensor<3x96xf32>) outs(%init: tensor<1x56x96xf32>) -> tensor<1x56x96xf32> return %0: tensor<1x56x96xf32> } // CHECK-LABEL: func @depthwise_conv_2d_nhwc_hwc_tensor func.func @depthwise_conv_2d_nhwc_hwc_tensor(%input: tensor<1x113x113x96xf32>, %filter: tensor<3x3x96xf32>) -> tensor<1x56x56x96xf32> { %init = tensor.empty() : tensor<1x56x56x96xf32> // CHECK: %{{.+}} = linalg.depthwise_conv_2d_nhwc_hwc // CHECK-SAME: {dilations = dense<1> : vector<2xi64>, strides = dense<2> : vector<2xi64>} // CHECK-SAME: ins(%{{.+}}, %{{.+}} : tensor<1x113x113x96xf32>, tensor<3x3x96xf32>) // CHECK-SAME: outs(%{{.+}} : tensor<1x56x56x96xf32>) -> tensor<1x56x56x96xf32> %0 = linalg.depthwise_conv_2d_nhwc_hwc {dilations = dense<1> : vector<2xi64>, strides = dense<2> : vector<2xi64>} ins(%input, %filter: tensor<1x113x113x96xf32>, tensor<3x3x96xf32>) outs(%init: tensor<1x56x56x96xf32>) -> tensor<1x56x56x96xf32> return %0: tensor<1x56x56x96xf32> } // CHECK-LABEL: func @depthwise_conv_2d_nhwc_hwc_memref func.func @depthwise_conv_2d_nhwc_hwc_memref(%input: memref<1x113x113x96xf32>, %filter: memref<3x3x96xf32>, %output: memref<1x56x56x96xf32>) { // CHECK: linalg.depthwise_conv_2d_nhwc_hwc // CHECK-SAME: {dilations = dense<1> : vector<2xi64>, strides = dense<2> : vector<2xi64>} // CHECK-SAME: ins(%{{.+}}, %{{.+}} : memref<1x113x113x96xf32>, memref<3x3x96xf32>) // CHECK-SAME: outs(%{{.+}} : memref<1x56x56x96xf32>) linalg.depthwise_conv_2d_nhwc_hwc {dilations = dense<1> : vector<2xi64>, strides = dense<2> : vector<2xi64>} ins(%input, %filter: memref<1x113x113x96xf32>, memref<3x3x96xf32>) outs(%output: memref<1x56x56x96xf32>) return } // CHECK-LABEL: func @depthwise_conv_2d_nchw_chw_tensor func.func @depthwise_conv_2d_nchw_chw_tensor(%input: tensor<1x96x113x113xf32>, %filter: tensor<96x3x3xf32>) -> tensor<1x96x56x56xf32> { %init = tensor.empty() : tensor<1x96x56x56xf32> // CHECK: %{{.+}} = linalg.depthwise_conv_2d_nchw_chw // CHECK-SAME: {dilations = dense<1> : vector<2xi64>, strides = dense<2> : vector<2xi64>} // CHECK-SAME: ins(%{{.+}}, %{{.+}} : tensor<1x96x113x113xf32>, tensor<96x3x3xf32>) // CHECK-SAME: outs(%{{.+}} : tensor<1x96x56x56xf32>) -> tensor<1x96x56x56xf32> %0 = linalg.depthwise_conv_2d_nchw_chw {dilations = dense<1> : vector<2xi64>, strides = dense<2> : vector<2xi64>} ins(%input, %filter: tensor<1x96x113x113xf32>, tensor<96x3x3xf32>) outs(%init: tensor<1x96x56x56xf32>) -> tensor<1x96x56x56xf32> return %0: tensor<1x96x56x56xf32> } // CHECK-LABEL: func @depthwise_conv_2d_nchw_chw_memref func.func @depthwise_conv_2d_nchw_chw_memref(%input: memref<1x96x113x113xf32>, %filter: memref<96x3x3xf32>, %output: memref<1x96x56x56xf32>) { // CHECK: linalg.depthwise_conv_2d_nchw_chw // CHECK-SAME: {dilations = dense<1> : vector<2xi64>, strides = dense<2> : vector<2xi64>} // CHECK-SAME: ins(%{{.+}}, %{{.+}} : memref<1x96x113x113xf32>, memref<96x3x3xf32>) // CHECK-SAME: outs(%{{.+}} : memref<1x96x56x56xf32>) linalg.depthwise_conv_2d_nchw_chw {dilations = dense<1> : vector<2xi64>, strides = dense<2> : vector<2xi64>} ins(%input, %filter: memref<1x96x113x113xf32>, memref<96x3x3xf32>) outs(%output: memref<1x96x56x56xf32>) return } func.func @depthwise_conv_2d_nhwc_hwcm_tensor_dilated(%input: tensor<2x8x9x2xf32>, %filter: tensor<2x2x2x3xf32>) -> tensor<2x6x7x2x3xf32> { %zero = arith.constant 0.000000e+00 : f32 %init = tensor.empty() : tensor<2x6x7x2x3xf32> %fill = linalg.fill ins(%zero : f32) outs(%init : tensor<2x6x7x2x3xf32>) -> tensor<2x6x7x2x3xf32> // CHECK: %{{.+}} = linalg.depthwise_conv_2d_nhwc_hwcm // CHECK-SAME: {dilations = dense<2> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} // CHECK-SAME: ins(%{{.+}}, %{{.+}} : tensor<2x8x9x2xf32>, tensor<2x2x2x3xf32>) // CHECK-SAME: outs(%{{.+}} : tensor<2x6x7x2x3xf32>) %0 = linalg.depthwise_conv_2d_nhwc_hwcm { dilations = dense<2> : tensor<2xi64>, strides = dense<1> : tensor<2xi64> } ins(%input, %filter : tensor<2x8x9x2xf32>, tensor<2x2x2x3xf32>) outs(%fill : tensor<2x6x7x2x3xf32>) -> tensor<2x6x7x2x3xf32> return %0 : tensor<2x6x7x2x3xf32> } // CHECK-LABEL: func @depthwise_conv_2d_nhwc_hwcm_memref_dilated func.func @depthwise_conv_2d_nhwc_hwcm_memref_dilated(%input: memref<2x8x9x2xf32>, %filter: memref<2x2x2x3xf32>, %output: memref<2x6x7x2x3xf32>) { // CHECK: linalg.depthwise_conv_2d_nhwc_hwcm // CHECK-SAME: {dilations = dense<2> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} // CHECK-SAME: ins(%{{.+}}, %{{.+}} : memref<2x8x9x2xf32>, memref<2x2x2x3xf32>) // CHECK-SAME: outs(%{{.+}} : memref<2x6x7x2x3xf32>) linalg.depthwise_conv_2d_nhwc_hwcm { dilations = dense<2> : tensor<2xi64>, strides = dense<1> : tensor<2xi64> } ins(%input, %filter : memref<2x8x9x2xf32>, memref<2x2x2x3xf32>) outs(%output : memref<2x6x7x2x3xf32>) return } // ----- // CHECK-LABEL: func @depthwise_conv_2d_input_nhwc_filter_default_attributes func.func @depthwise_conv_2d_input_nhwc_filter_default_attributes(%input: memref<1x113x113x96xf32>, %filter: memref<3x3x96xf32>, %output: memref<1x56x56x96xf32>) { // CHECK: linalg.depthwise_conv_2d_nhwc_hwc // CHECK-NOT: strides = // CHECK-NOT: dilations = linalg.depthwise_conv_2d_nhwc_hwc ins(%input, %filter: memref<1x113x113x96xf32>, memref<3x3x96xf32>) outs(%output: memref<1x56x56x96xf32>) return } // ----- func.func @depthwise_conv_2d_input_nhwc_filter_wrong_stride_element_type_properties(%input: memref<1x113x113x96xf32>, %filter: memref<3x3x96xf32>, %output: memref<1x56x56x96xf32>) { // expected-error @+1 {{invalid properties {dilations = dense<1> : vector<2xi64>, operandSegmentSizes = array, strides = dense<2.000000e+00> : vector<2xf32>} for op linalg.depthwise_conv_2d_nhwc_hwc: Invalid attribute `strides` in property conversion: dense<2.000000e+00> : vector<2xf32>}} linalg.depthwise_conv_2d_nhwc_hwc <{dilations = dense<1> : vector<2xi64>, strides = dense<2.0> : vector<2xf32>}> ins(%input, %filter: memref<1x113x113x96xf32>, memref<3x3x96xf32>) outs(%output: memref<1x56x56x96xf32>) return } // ----- func.func @depthwise_conv_2d_input_nhwc_filter_wrong_stride_element_type(%input: memref<1x113x113x96xf32>, %filter: memref<3x3x96xf32>, %output: memref<1x56x56x96xf32>) { // expected-error @+1 {{op attribute 'strides' failed to satisfy constraint: 64-bit signless int elements attribute of shape [2]}} linalg.depthwise_conv_2d_nhwc_hwc {dilations = dense<1> : vector<2xi64>, strides = dense<2.0> : vector<2xf32>} ins(%input, %filter: memref<1x113x113x96xf32>, memref<3x3x96xf32>) outs(%output: memref<1x56x56x96xf32>) return } // ----- func.func @depthwise_conv_2d_input_nhwc_filter_wrong_stride_size(%input: memref<1x113x113x96xf32>, %filter: memref<3x3x96xf32>, %output: memref<1x56x56x96xf32>) { // expected-error @+1 {{op attribute 'strides' failed to satisfy constraint: 64-bit signless int elements attribute of shape [2]}} linalg.depthwise_conv_2d_nhwc_hwc {dilations = dense<1> : vector<2xi64>, strides = dense<2> : vector<3xi64> } ins(%input, %filter: memref<1x113x113x96xf32>, memref<3x3x96xf32>) outs(%output: memref<1x56x56x96xf32>) return } // ----- // CHECK-LABEL: func @depthwise_conv_3d_ndhwc_dhwcm func.func @depthwise_conv_3d_ndhwc_dhwcm(%input: tensor<2x6x13x12x6xf32>, %filter: tensor<2x1x3x6x6xf32>) -> tensor<2x3x13x4x6x6xf32> { %zero = arith.constant 0.000000e+00 : f32 %init = tensor.empty() : tensor<2x3x13x4x6x6xf32> %fill = linalg.fill ins(%zero : f32) outs(%init : tensor<2x3x13x4x6x6xf32>) -> tensor<2x3x13x4x6x6xf32> // CHECK: depthwise_conv_3d_ndhwc_dhwcm %0 = linalg.depthwise_conv_3d_ndhwc_dhwcm {dilations = dense<1> : tensor<3xi64>, strides = dense<[2, 1, 3]> : tensor<3xi64>} ins(%input, %filter : tensor<2x6x13x12x6xf32>, tensor<2x1x3x6x6xf32>) outs(%fill : tensor<2x3x13x4x6x6xf32>) -> tensor<2x3x13x4x6x6xf32> return %0 : tensor<2x3x13x4x6x6xf32> } // ----- // CHECK-LABEL: func @depthwise_conv_3d_ndhwc_dhwc func.func @depthwise_conv_3d_ndhwc_dhwc(%input: tensor<2x6x13x12x6xf32>, %filter: tensor<2x1x3x6xf32>) -> tensor<2x3x13x4x6xf32> { %zero = arith.constant 0.000000e+00 : f32 %init = tensor.empty() : tensor<2x3x13x4x6xf32> %fill = linalg.fill ins(%zero : f32) outs(%init : tensor<2x3x13x4x6xf32>) -> tensor<2x3x13x4x6xf32> // CHECK: depthwise_conv_3d_ndhwc_dhwc %0 = linalg.depthwise_conv_3d_ndhwc_dhwc {dilations = dense<1> : tensor<3xi64>, strides = dense<[2, 1, 3]> : tensor<3xi64>} ins(%input, %filter : tensor<2x6x13x12x6xf32>, tensor<2x1x3x6xf32>) outs(%fill : tensor<2x3x13x4x6xf32>) -> tensor<2x3x13x4x6xf32> return %0 : tensor<2x3x13x4x6xf32> } // ----- // CHECK-LABEL: func @depthwise_conv_3d_ncdhw_cdhw func.func @depthwise_conv_3d_ncdhw_cdhw(%input: tensor<2x6x6x13x12xf32>, %filter: tensor<6x2x1x3xf32>) -> tensor<2x6x3x13x4xf32> { %zero = arith.constant 0.000000e+00 : f32 %init = tensor.empty() : tensor<2x6x3x13x4xf32> %fill = linalg.fill ins(%zero : f32) outs(%init : tensor<2x6x3x13x4xf32>) -> tensor<2x6x3x13x4xf32> // CHECK: depthwise_conv_3d_ncdhw_cdhw %0 = linalg.depthwise_conv_3d_ncdhw_cdhw {dilations = dense<1> : tensor<3xi64>, strides = dense<[2, 1, 3]> : tensor<3xi64>} ins(%input, %filter : tensor<2x6x6x13x12xf32>, tensor<6x2x1x3xf32>) outs(%fill : tensor<2x6x3x13x4xf32>) -> tensor<2x6x3x13x4xf32> return %0 : tensor<2x6x3x13x4xf32> } // ----- // CHECK-LABEL: func @conv_1d_nwc_wcf func.func @conv_1d_nwc_wcf(%input: tensor, %filter: tensor, %init: tensor) -> tensor { // CHECK: %{{.+}} = linalg.conv_1d_nwc_wcf // CHECK-SAME: dilations = dense<1> : tensor<1xi64> // CHECK-SAME: strides = dense<1> : tensor<1xi64> // CHECK-SAME: ins(%{{.+}}, %{{.+}} : tensor, tensor) // CHECK-SAME: outs(%{{.+}} : tensor) -> tensor %0 = linalg.conv_1d_nwc_wcf {dilations = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} ins (%input, %filter: tensor, tensor) outs (%init: tensor) -> tensor return %0 : tensor } // ----- // CHECK-LABEL: func @conv_1d_nwc_wcf func.func @conv_1d_nwc_wcf(%input: memref, %filter: memref, %output: memref) { // CHECK: linalg.conv_1d_nwc_wcf // CHECK-SAME: dilations = dense<1> : tensor<1xi64> // CHECK-SAME: strides = dense<1> : tensor<1xi64> // CHECK-SAME: ins(%{{.+}}, %{{.+}} : memref, memref) // CHECK-SAME: outs(%{{.+}} : memref) linalg.conv_1d_nwc_wcf {dilations = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} ins (%input, %filter: memref, memref) outs (%output: memref) return } // ----- // CHECK-LABEL: func @conv_1d_ncw_fcw func.func @conv_1d_ncw_fcw(%input: tensor, %filter: tensor, %init: tensor) -> tensor { // CHECK: %{{.+}} = linalg.conv_1d_ncw_fcw // CHECK-SAME: dilations = dense<1> : tensor<1xi64> // CHECK-SAME: strides = dense<1> : tensor<1xi64> // CHECK-SAME: ins(%{{.+}}, %{{.+}} : tensor, tensor) // CHECK-SAME: outs(%{{.+}} : tensor) -> tensor %0 = linalg.conv_1d_ncw_fcw {dilations = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} ins (%input, %filter: tensor, tensor) outs (%init: tensor) -> tensor return %0 : tensor } // ----- // CHECK-LABEL: func @conv_1d_ncw_fcw func.func @conv_1d_ncw_fcw(%input: memref, %filter: memref, %output: memref) { // CHECK: linalg.conv_1d_ncw_fcw // CHECK-SAME: dilations = dense<1> : tensor<1xi64> // CHECK-SAME: strides = dense<1> : tensor<1xi64> // CHECK-SAME: ins(%{{.+}}, %{{.+}} : memref, memref) // CHECK-SAME: outs(%{{.+}} : memref) linalg.conv_1d_ncw_fcw {dilations = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} ins (%input, %filter: memref, memref) outs (%output: memref) return } // ----- // CHECK-LABEL: func @conv_2d_nhwc_hwcf func.func @conv_2d_nhwc_hwcf(%input: tensor, %filter: tensor, %init: tensor) -> tensor { // CHECK: %{{.+}} = linalg.conv_2d_nhwc_hwcf // CHECK-SAME: dilations = dense<1> : tensor<2xi64> // CHECK-SAME: strides = dense<1> : tensor<2xi64> // CHECK-SAME: ins(%{{.+}}, %{{.+}} : tensor, tensor) // CHECK-SAME: outs(%{{.+}} : tensor) -> tensor %0 = linalg.conv_2d_nhwc_hwcf {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins (%input, %filter: tensor, tensor) outs (%init: tensor) -> tensor return %0 : tensor } // ----- // CHECK-LABEL: func @conv_2d_ngchw_fgchw func.func @conv_2d_ngchw_fgchw(%input: tensor, %filter: tensor, %init: tensor) -> tensor { // CHECK: %{{.+}} = linalg.conv_2d_ngchw_fgchw // CHECK-SAME: dilations = dense<1> : tensor<2xi64> // CHECK-SAME: strides = dense<1> : tensor<2xi64> // CHECK-SAME: ins(%{{.+}}, %{{.+}} : tensor, tensor) // CHECK-SAME: outs(%{{.+}} : tensor) -> tensor %0 = linalg.conv_2d_ngchw_fgchw {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins (%input, %filter: tensor, tensor) outs (%init: tensor) -> tensor return %0 : tensor } // ----- // CHECK-LABEL: func @conv_2d_nhwc_fhwc func.func @conv_2d_nhwc_fhwc(%input: tensor, %filter: tensor, %init: tensor) -> tensor { // CHECK: %{{.+}} = linalg.conv_2d_nhwc_fhwc // CHECK-SAME: dilations = dense<1> : tensor<2xi64> // CHECK-SAME: strides = dense<1> : tensor<2xi64> // CHECK-SAME: ins(%{{.+}}, %{{.+}} : tensor, tensor) // CHECK-SAME: outs(%{{.+}} : tensor) -> tensor %0 = linalg.conv_2d_nhwc_fhwc {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins (%input, %filter: tensor, tensor) outs (%init: tensor) -> tensor return %0 : tensor } // ----- // CHECK-LABEL: func @conv_2d_nhwc_fhwc_static func.func @conv_2d_nhwc_fhwc_static(%input: tensor, %filter: tensor<64x3x3x32xf32>, %init: tensor) -> tensor { // CHECK: %{{.+}} = linalg.conv_2d_nhwc_fhwc // CHECK-SAME: dilations = dense<1> : tensor<2xi64> // CHECK-SAME: strides = dense<1> : tensor<2xi64> // CHECK-SAME: ins(%{{.+}}, %{{.+}} : tensor, tensor<64x3x3x32xf32>) // CHECK-SAME: outs(%{{.+}} : tensor) -> tensor %0 = linalg.conv_2d_nhwc_fhwc {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins (%input, %filter: tensor, tensor<64x3x3x32xf32>) outs (%init: tensor) -> tensor return %0 : tensor } // ----- // CHECK-LABEL: func @conv_2d_nhwc_hwcf func.func @conv_2d_nhwc_hwcf(%input: memref, %filter: memref, %output: memref) { // CHECK: linalg.conv_2d_nhwc_hwcf // CHECK-SAME: dilations = dense<1> : tensor<2xi64> // CHECK-SAME: strides = dense<1> : tensor<2xi64> // CHECK-SAME: ins(%{{.+}}, %{{.+}} : memref, memref) // CHECK-SAME: outs(%{{.+}} : memref) linalg.conv_2d_nhwc_hwcf {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins (%input, %filter: memref, memref) outs (%output: memref) return } // ----- // CHECK-LABEL: func @conv_2d_ngchw_fgchw func.func @conv_2d_ngchw_fgchw(%input: memref, %filter: memref, %output: memref) { // CHECK: linalg.conv_2d_ngchw_fgchw // CHECK-SAME: dilations = dense<1> : tensor<2xi64> // CHECK-SAME: strides = dense<1> : tensor<2xi64> // CHECK-SAME: ins(%{{.+}}, %{{.+}} : memref, memref) // CHECK-SAME: outs(%{{.+}} : memref) linalg.conv_2d_ngchw_fgchw {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins (%input, %filter: memref, memref) outs (%output: memref) return } // ----- // CHECK-LABEL: func @conv_2d_ngchw_fgchw_dimensions func.func @conv_2d_ngchw_fgchw_dimensions(%input: tensor<1x5x3x32x32xf32>, %filter: tensor<2x5x3x3x3xf32>, %init: tensor<1x5x2x30x30xf32>) -> tensor<1x5x2x30x30xf32> { // CHECK: linalg.conv_2d_ngchw_fgchw // CHECK-SAME: dilations = dense<1> : tensor<2xi64> // CHECK-SAME: strides = dense<1> : tensor<2xi64> // CHECK-SAME: ins(%{{.+}}, %{{.+}} : tensor<1x5x3x32x32xf32>, tensor<2x5x3x3x3xf32>) // CHECK-SAME: outs(%{{.+}} : tensor<1x5x2x30x30xf32>) -> tensor<1x5x2x30x30xf32> %0 = linalg.conv_2d_ngchw_fgchw {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins (%input, %filter: tensor<1x5x3x32x32xf32>, tensor<2x5x3x3x3xf32>) outs (%init: tensor<1x5x2x30x30xf32>) -> tensor<1x5x2x30x30xf32> return %0 : tensor<1x5x2x30x30xf32> } // ----- // CHECK-LABEL: func @conv_2d_ngchw_gfchw func.func @conv_2d_ngchw_gfchw(%input: tensor<1x5x3x32x32xf32>, %filter: tensor<5x2x3x3x3xf32>, %init: tensor<1x5x2x30x30xf32>) -> tensor<1x5x2x30x30xf32> { // CHECK: linalg.conv_2d_ngchw_gfchw // CHECK-SAME: dilations = dense<1> : tensor<2xi64> // CHECK-SAME: strides = dense<1> : tensor<2xi64> // CHECK-SAME: ins(%{{.+}}, %{{.+}} : tensor<1x5x3x32x32xf32>, tensor<5x2x3x3x3xf32>) // CHECK-SAME: outs(%{{.+}} : tensor<1x5x2x30x30xf32>) -> tensor<1x5x2x30x30xf32> %0 = linalg.conv_2d_ngchw_gfchw {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins (%input, %filter: tensor<1x5x3x32x32xf32>, tensor<5x2x3x3x3xf32>) outs (%init: tensor<1x5x2x30x30xf32>) -> tensor<1x5x2x30x30xf32> return %0 : tensor<1x5x2x30x30xf32> } // ----- // CHECK-LABEL: func @conv_3d_ndhwc_dhwcf func.func @conv_3d_ndhwc_dhwcf(%input: tensor, %filter: tensor, %init: tensor) -> tensor { // CHECK: %{{.+}} = linalg.conv_3d_ndhwc_dhwcf // CHECK-SAME: dilations = dense<1> : tensor<3xi64> // CHECK-SAME: strides = dense<1> : tensor<3xi64> // CHECK-SAME: ins(%{{.+}}, %{{.+}} : tensor, tensor) // CHECK-SAME: outs(%{{.+}} : tensor) -> tensor %0 = linalg.conv_3d_ndhwc_dhwcf {dilations = dense<1> : tensor<3xi64>, strides = dense<1> : tensor<3xi64>} ins (%input, %filter: tensor, tensor) outs (%init: tensor) -> tensor return %0 : tensor } // ----- // CHECK-LABEL: func @conv_3d_ndhwc_dhwcf func.func @conv_3d_ndhwc_dhwcf(%input: memref, %filter: memref, %output: memref) { // CHECK: linalg.conv_3d_ndhwc_dhwcf // CHECK-SAME: dilations = dense<1> : tensor<3xi64> // CHECK-SAME: strides = dense<1> : tensor<3xi64> // CHECK-SAME: ins(%{{.+}}, %{{.+}} : memref, memref) // CHECK-SAME: outs(%{{.+}} : memref) linalg.conv_3d_ndhwc_dhwcf {dilations = dense<1> : tensor<3xi64>, strides = dense<1> : tensor<3xi64>} ins (%input, %filter: memref, memref) outs (%output: memref) return } // ----- // CHECK-LABEL: func @conv_3d_ncdhw_fcdhw func.func @conv_3d_ncdhw_fcdhw(%input: tensor, %filter: tensor, %init: tensor) -> tensor { // CHECK: %{{.+}} = linalg.conv_3d_ncdhw_fcdhw // CHECK-SAME: dilations = dense<1> : tensor<3xi64> // CHECK-SAME: strides = dense<1> : tensor<3xi64> // CHECK-SAME: ins(%{{.+}}, %{{.+}} : tensor, tensor) // CHECK-SAME: outs(%{{.+}} : tensor) -> tensor %0 = linalg.conv_3d_ncdhw_fcdhw {dilations = dense<1> : tensor<3xi64>, strides = dense<1> : tensor<3xi64>} ins (%input, %filter: tensor, tensor) outs (%init: tensor) -> tensor return %0 : tensor } // ----- // CHECK-LABEL: func @conv_3d_ncdhw_fcdhw func.func @conv_3d_ncdhw_fcdhw(%input: memref, %filter: memref, %output: memref) { // CHECK: linalg.conv_3d_ncdhw_fcdhw // CHECK-SAME: dilations = dense<1> : tensor<3xi64> // CHECK-SAME: strides = dense<1> : tensor<3xi64> // CHECK-SAME: ins(%{{.+}}, %{{.+}} : memref, memref) // CHECK-SAME: outs(%{{.+}} : memref) linalg.conv_3d_ncdhw_fcdhw {dilations = dense<1> : tensor<3xi64>, strides = dense<1> : tensor<3xi64>} ins (%input, %filter: memref, memref) outs (%output: memref) return } // ----- // CHECK-LABEL: func @pooling_nhwc_sum_tensor // CHECK: %{{.+}} = linalg.pooling_nhwc_sum // CHECK-SAME: dilations = dense<1> : tensor<2xi64> // CHECK-SAME: strides = dense<1> : tensor<2xi64> // CHECK-SAME: ins(%{{.+}}, %{{.+}} : tensor<1x4x4x1xf32>, tensor<3x3xf32>) // CHECK-SAME: outs(%{{.+}} : tensor<1x2x2x1xf32>) -> tensor<1x2x2x1xf32> func.func @pooling_nhwc_sum_tensor(%input: tensor<1x4x4x1xf32>) -> tensor<1x2x2x1xf32> { %fake = tensor.empty() : tensor<3x3xf32> %init = tensor.empty() : tensor<1x2x2x1xf32> %cst = arith.constant 0.000000e+00 : f32 %fill = linalg.fill ins(%cst : f32) outs(%init : tensor<1x2x2x1xf32>) -> tensor<1x2x2x1xf32> %res = linalg.pooling_nhwc_sum {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%input, %fake: tensor<1x4x4x1xf32>, tensor<3x3xf32>) outs(%fill: tensor<1x2x2x1xf32>) -> tensor<1x2x2x1xf32> return %res : tensor<1x2x2x1xf32> } // ----- // CHECK-LABEL: func @pooling_nwc_sum_tensor // CHECK: %{{.+}} = linalg.pooling_nwc_sum // CHECK-SAME: dilations = dense<1> : tensor<1xi64> // CHECK-SAME: strides = dense<1> : tensor<1xi64> // CHECK-SAME: ins(%{{.+}}, %{{.+}} : tensor<1x4x1xf32>, tensor<3xf32>) // CHECK-SAME: outs(%{{.+}} : tensor<1x2x1xf32>) -> tensor<1x2x1xf32> func.func @pooling_nwc_sum_tensor(%input: tensor<1x4x1xf32>) -> tensor<1x2x1xf32> { %fake = tensor.empty() : tensor<3xf32> %init = tensor.empty() : tensor<1x2x1xf32> %cst = arith.constant 0.000000e+00 : f32 %fill = linalg.fill ins(%cst : f32) outs(%init : tensor<1x2x1xf32>) -> tensor<1x2x1xf32> %res = linalg.pooling_nwc_sum {dilations = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} ins(%input, %fake: tensor<1x4x1xf32>, tensor<3xf32>) outs(%fill: tensor<1x2x1xf32>) -> tensor<1x2x1xf32> return %res : tensor<1x2x1xf32> } // ----- // CHECK-LABEL: func @pooling_nhwc_sum // CHECK: linalg.pooling_nhwc_sum // CHECK-SAME: dilations = dense<1> : tensor<2xi64> // CHECK-SAME: strides = dense<1> : tensor<2xi64> // CHECK-SAME: ins(%{{.+}}, %{{.+}} : memref<1x4x4x1xf32>, memref<3x3xf32>) // CHECK-SAME: outs(%{{.+}} : memref<1x2x2x1xf32>) func.func @pooling_nhwc_sum(%input: memref<1x4x4x1xf32>, %fake: memref<3x3xf32>, %output: memref<1x2x2x1xf32>) { linalg.pooling_nhwc_sum {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%input, %fake: memref<1x4x4x1xf32>, memref<3x3xf32>) outs(%output: memref<1x2x2x1xf32>) return } // ----- // CHECK-LABEL: func @pooling_nwc_sum // CHECK: linalg.pooling_nwc_sum // CHECK-SAME: dilations = dense<1> : tensor<1xi64> // CHECK-SAME: strides = dense<1> : tensor<1xi64> // CHECK-SAME: ins(%{{.+}}, %{{.+}} : memref<1x4x1xf32>, memref<3xf32>) // CHECK-SAME: outs(%{{.+}} : memref<1x2x1xf32>) func.func @pooling_nwc_sum(%input: memref<1x4x1xf32>, %fake: memref<3xf32>, %output: memref<1x2x1xf32>) { linalg.pooling_nwc_sum {dilations = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} ins(%input, %fake: memref<1x4x1xf32>, memref<3xf32>) outs(%output: memref<1x2x1xf32>) return } // ----- // CHECK-LABEL: func @pooling_nchw_sum_tensor // CHECK: %{{.+}} = linalg.pooling_nchw_sum // CHECK-SAME: dilations = dense<1> : tensor<2xi64> // CHECK-SAME: strides = dense<1> : tensor<2xi64> // CHECK-SAME: ins(%{{.+}}, %{{.+}} : tensor<1x1x4x4xf32>, tensor<3x3xf32>) // CHECK-SAME: outs(%{{.+}} : tensor<1x1x2x2xf32>) -> tensor<1x1x2x2xf32> func.func @pooling_nchw_sum_tensor(%input: tensor<1x1x4x4xf32>) -> tensor<1x1x2x2xf32> { %fake = tensor.empty() : tensor<3x3xf32> %init = tensor.empty() : tensor<1x1x2x2xf32> %cst = arith.constant 0.000000e+00 : f32 %fill = linalg.fill ins(%cst : f32) outs(%init : tensor<1x1x2x2xf32>) -> tensor<1x1x2x2xf32> %res = linalg.pooling_nchw_sum {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%input, %fake: tensor<1x1x4x4xf32>, tensor<3x3xf32>) outs(%fill: tensor<1x1x2x2xf32>) -> tensor<1x1x2x2xf32> return %res : tensor<1x1x2x2xf32> } // ----- // CHECK-LABEL: func @pooling_ncw_sum_tensor // CHECK: %{{.+}} = linalg.pooling_ncw_sum // CHECK-SAME: dilations = dense<1> : tensor<1xi64> // CHECK-SAME: strides = dense<1> : tensor<1xi64> // CHECK-SAME: ins(%{{.+}}, %{{.+}} : tensor<1x1x4xf32>, tensor<3xf32>) // CHECK-SAME: outs(%{{.+}} : tensor<1x1x2xf32>) -> tensor<1x1x2xf32> func.func @pooling_ncw_sum_tensor(%input: tensor<1x1x4xf32>) -> tensor<1x1x2xf32> { %fake = tensor.empty() : tensor<3xf32> %init = tensor.empty() : tensor<1x1x2xf32> %cst = arith.constant 0.000000e+00 : f32 %fill = linalg.fill ins(%cst : f32) outs(%init : tensor<1x1x2xf32>) -> tensor<1x1x2xf32> %res = linalg.pooling_ncw_sum {dilations = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} ins(%input, %fake: tensor<1x1x4xf32>, tensor<3xf32>) outs(%fill: tensor<1x1x2xf32>) -> tensor<1x1x2xf32> return %res : tensor<1x1x2xf32> } // ----- // CHECK-LABEL: func @pooling_nchw_sum // CHECK: linalg.pooling_nchw_sum // CHECK-SAME: dilations = dense<1> : tensor<2xi64> // CHECK-SAME: strides = dense<1> : tensor<2xi64> // CHECK-SAME: ins(%{{.+}}, %{{.+}} : memref<1x1x4x4xf32>, memref<3x3xf32>) // CHECK-SAME: outs(%{{.+}} : memref<1x1x2x2xf32>) func.func @pooling_nchw_sum(%input: memref<1x1x4x4xf32>, %fake: memref<3x3xf32>, %output: memref<1x1x2x2xf32>) { linalg.pooling_nchw_sum {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%input, %fake: memref<1x1x4x4xf32>, memref<3x3xf32>) outs(%output: memref<1x1x2x2xf32>) return } // ----- // CHECK-LABEL: func @pooling_ncw_sum // CHECK: linalg.pooling_ncw_sum // CHECK-SAME: dilations = dense<1> : tensor<1xi64> // CHECK-SAME: strides = dense<1> : tensor<1xi64> // CHECK-SAME: ins(%{{.+}}, %{{.+}} : memref<1x1x4xf32>, memref<3xf32>) // CHECK-SAME: outs(%{{.+}} : memref<1x1x2xf32>) func.func @pooling_ncw_sum(%input: memref<1x1x4xf32>, %fake: memref<3xf32>, %output: memref<1x1x2xf32>) { linalg.pooling_ncw_sum {dilations = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} ins(%input, %fake: memref<1x1x4xf32>, memref<3xf32>) outs(%output: memref<1x1x2xf32>) return } // ----- // CHECK-LABEL: func @pooling_nhwc_max_tensor // CHECK: %{{.+}} = linalg.pooling_nhwc_max // CHECK-SAME: dilations = dense<1> : tensor<2xi64> // CHECK-SAME: strides = dense<1> : tensor<2xi64> // CHECK-SAME: ins(%{{.+}}, %{{.+}} : tensor<1x4x4x1xf32>, tensor<3x3xf32>) // CHECK-SAME: outs(%{{.+}} : tensor<1x2x2x1xf32>) -> tensor<1x2x2x1xf32> func.func @pooling_nhwc_max_tensor(%input: tensor<1x4x4x1xf32>) -> tensor<1x2x2x1xf32> { %fake = tensor.empty() : tensor<3x3xf32> %init = tensor.empty() : tensor<1x2x2x1xf32> %cst = arith.constant 0.000000e+00 : f32 %fill = linalg.fill ins(%cst : f32) outs(%init : tensor<1x2x2x1xf32>) -> tensor<1x2x2x1xf32> %res = linalg.pooling_nhwc_max {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%input, %fake: tensor<1x4x4x1xf32>, tensor<3x3xf32>) outs(%fill: tensor<1x2x2x1xf32>) -> tensor<1x2x2x1xf32> return %res : tensor<1x2x2x1xf32> } // ----- // CHECK-LABEL: func @pooling_nwc_max_tensor // CHECK: %{{.+}} = linalg.pooling_nwc_max // CHECK-SAME: dilations = dense<1> : tensor<1xi64> // CHECK-SAME: strides = dense<1> : tensor<1xi64> // CHECK-SAME: ins(%{{.+}}, %{{.+}} : tensor<1x4x1xf32>, tensor<3xf32>) // CHECK-SAME: outs(%{{.+}} : tensor<1x2x1xf32>) -> tensor<1x2x1xf32> func.func @pooling_nwc_max_tensor(%input: tensor<1x4x1xf32>) -> tensor<1x2x1xf32> { %fake = tensor.empty() : tensor<3xf32> %init = tensor.empty() : tensor<1x2x1xf32> %cst = arith.constant 0.000000e+00 : f32 %fill = linalg.fill ins(%cst : f32) outs(%init : tensor<1x2x1xf32>) -> tensor<1x2x1xf32> %res = linalg.pooling_nwc_max {dilations = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} ins(%input, %fake: tensor<1x4x1xf32>, tensor<3xf32>) outs(%fill: tensor<1x2x1xf32>) -> tensor<1x2x1xf32> return %res : tensor<1x2x1xf32> } // ----- // CHECK-LABEL: func @pooling_nchw_max_tensor // CHECK: %{{.+}} = linalg.pooling_nchw_max // CHECK-SAME: dilations = dense<1> : tensor<2xi64> // CHECK-SAME: strides = dense<1> : tensor<2xi64> // CHECK-SAME: ins(%{{.+}}, %{{.+}} : tensor<1x1x4x4xf32>, tensor<3x3xf32>) // CHECK-SAME: outs(%{{.+}} : tensor<1x1x2x2xf32>) -> tensor<1x1x2x2xf32> func.func @pooling_nchw_max_tensor(%input: tensor<1x1x4x4xf32>) -> tensor<1x1x2x2xf32> { %fake = tensor.empty() : tensor<3x3xf32> %init = tensor.empty() : tensor<1x1x2x2xf32> %cst = arith.constant 0.000000e+00 : f32 %fill = linalg.fill ins(%cst : f32) outs(%init : tensor<1x1x2x2xf32>) -> tensor<1x1x2x2xf32> %res = linalg.pooling_nchw_max {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%input, %fake: tensor<1x1x4x4xf32>, tensor<3x3xf32>) outs(%fill: tensor<1x1x2x2xf32>) -> tensor<1x1x2x2xf32> return %res : tensor<1x1x2x2xf32> } // ----- // CHECK-LABEL: func @pooling_ncw_max_tensor // CHECK: %{{.+}} = linalg.pooling_ncw_max // CHECK-SAME: dilations = dense<1> : tensor<1xi64> // CHECK-SAME: strides = dense<1> : tensor<1xi64> // CHECK-SAME: ins(%{{.+}}, %{{.+}} : tensor<1x1x4xf32>, tensor<3xf32>) // CHECK-SAME: outs(%{{.+}} : tensor<1x1x2xf32>) -> tensor<1x1x2xf32> func.func @pooling_ncw_max_tensor(%input: tensor<1x1x4xf32>) -> tensor<1x1x2xf32> { %fake = tensor.empty() : tensor<3xf32> %init = tensor.empty() : tensor<1x1x2xf32> %cst = arith.constant 0.000000e+00 : f32 %fill = linalg.fill ins(%cst : f32) outs(%init : tensor<1x1x2xf32>) -> tensor<1x1x2xf32> %res = linalg.pooling_ncw_max {dilations = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} ins(%input, %fake: tensor<1x1x4xf32>, tensor<3xf32>) outs(%fill: tensor<1x1x2xf32>) -> tensor<1x1x2xf32> return %res : tensor<1x1x2xf32> } // ----- // CHECK-LABEL: func @pooling_nhwc_max // CHECK: linalg.pooling_nhwc_max // CHECK-SAME: dilations = dense<1> : tensor<2xi64> // CHECK-SAME: strides = dense<1> : tensor<2xi64> // CHECK-SAME: ins(%{{.+}}, %{{.+}} : memref<1x4x4x1xf32>, memref<3x3xf32>) // CHECK-SAME: outs(%{{.+}} : memref<1x2x2x1xf32>) func.func @pooling_nhwc_max(%input: memref<1x4x4x1xf32>, %fake: memref<3x3xf32>, %output: memref<1x2x2x1xf32>) { linalg.pooling_nhwc_max {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%input, %fake: memref<1x4x4x1xf32>, memref<3x3xf32>) outs(%output: memref<1x2x2x1xf32>) return } // ----- // CHECK-LABEL: func @pooling_nwc_max // CHECK: linalg.pooling_nwc_max // CHECK-SAME: dilations = dense<1> : tensor<1xi64> // CHECK-SAME: strides = dense<1> : tensor<1xi64> // CHECK-SAME: ins(%{{.+}}, %{{.+}} : memref<1x4x1xf32>, memref<3xf32>) // CHECK-SAME: outs(%{{.+}} : memref<1x2x1xf32>) func.func @pooling_nwc_max(%input: memref<1x4x1xf32>, %fake: memref<3xf32>, %output: memref<1x2x1xf32>) { linalg.pooling_nwc_max {dilations = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} ins(%input, %fake: memref<1x4x1xf32>, memref<3xf32>) outs(%output: memref<1x2x1xf32>) return } // ----- // CHECK-LABEL: func @pooling_nhwc_i8_max_tensor // CHECK: %{{.+}} = linalg.pooling_nhwc_max // CHECK-SAME: dilations = dense<1> : tensor<2xi64> // CHECK-SAME: strides = dense<1> : tensor<2xi64> // CHECK-SAME: ins(%{{.+}}, %{{.+}} : tensor<1x4x4x1xi8>, tensor<3x3xi8>) // CHECK-SAME: outs(%{{.+}} : tensor<1x2x2x1xi8>) -> tensor<1x2x2x1xi8> func.func @pooling_nhwc_i8_max_tensor(%input: tensor<1x4x4x1xi8>) -> tensor<1x2x2x1xi8> { %fake = tensor.empty() : tensor<3x3xi8> %init = tensor.empty() : tensor<1x2x2x1xi8> %cst = arith.constant 0 : i8 %fill = linalg.fill ins(%cst : i8) outs(%init : tensor<1x2x2x1xi8>) -> tensor<1x2x2x1xi8> %res = linalg.pooling_nhwc_max {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%input, %fake: tensor<1x4x4x1xi8>, tensor<3x3xi8>) outs(%fill: tensor<1x2x2x1xi8>) -> tensor<1x2x2x1xi8> return %res : tensor<1x2x2x1xi8> } // ----- // CHECK-LABEL: func @pooling_nwc_i8_max_tensor // CHECK: %{{.+}} = linalg.pooling_nwc_max // CHECK-SAME: dilations = dense<1> : tensor<1xi64> // CHECK-SAME: strides = dense<1> : tensor<1xi64> // CHECK-SAME: ins(%{{.+}}, %{{.+}} : tensor<1x4x1xi8>, tensor<3xi8>) // CHECK-SAME: outs(%{{.+}} : tensor<1x2x1xi8>) -> tensor<1x2x1xi8> func.func @pooling_nwc_i8_max_tensor(%input: tensor<1x4x1xi8>) -> tensor<1x2x1xi8> { %fake = tensor.empty() : tensor<3xi8> %init = tensor.empty() : tensor<1x2x1xi8> %cst = arith.constant 0 : i8 %fill = linalg.fill ins(%cst : i8) outs(%init : tensor<1x2x1xi8>) -> tensor<1x2x1xi8> %res = linalg.pooling_nwc_max {dilations = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} ins(%input, %fake: tensor<1x4x1xi8>, tensor<3xi8>) outs(%fill: tensor<1x2x1xi8>) -> tensor<1x2x1xi8> return %res : tensor<1x2x1xi8> } // ----- // CHECK-LABEL: func @pooling_nhwc_i8_max // CHECK: linalg.pooling_nhwc_max // CHECK-SAME: dilations = dense<1> : tensor<2xi64> // CHECK-SAME: strides = dense<1> : tensor<2xi64> // CHECK-SAME: ins(%{{.+}}, %{{.+}} : memref<1x4x4x1xi8>, memref<3x3xi8>) // CHECK-SAME: outs(%{{.+}} : memref<1x2x2x1xi8>) func.func @pooling_nhwc_i8_max(%input: memref<1x4x4x1xi8>, %fake: memref<3x3xi8>, %output: memref<1x2x2x1xi8>) { linalg.pooling_nhwc_max {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%input, %fake: memref<1x4x4x1xi8>, memref<3x3xi8>) outs(%output: memref<1x2x2x1xi8>) return } // ----- // CHECK-LABEL: func @pooling_nwc_i8_max // CHECK: linalg.pooling_nwc_max // CHECK-SAME: dilations = dense<1> : tensor<1xi64> // CHECK-SAME: strides = dense<1> : tensor<1xi64> // CHECK-SAME: ins(%{{.+}}, %{{.+}} : memref<1x4x1xi8>, memref<3xi8>) // CHECK-SAME: outs(%{{.+}} : memref<1x2x1xi8>) func.func @pooling_nwc_i8_max(%input: memref<1x4x1xi8>, %fake: memref<3xi8>, %output: memref<1x2x1xi8>) { linalg.pooling_nwc_max {dilations = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} ins(%input, %fake: memref<1x4x1xi8>, memref<3xi8>) outs(%output: memref<1x2x1xi8>) return } // ----- // CHECK-LABEL: func @pooling_nhwc_i16_max_tensor // CHECK: %{{.+}} = linalg.pooling_nhwc_max // CHECK-SAME: dilations = dense<1> : tensor<2xi64> // CHECK-SAME: strides = dense<1> : tensor<2xi64> // CHECK-SAME: ins(%{{.+}}, %{{.+}} : tensor<1x4x4x1xi16>, tensor<3x3xi16>) // CHECK-SAME: outs(%{{.+}} : tensor<1x2x2x1xi16>) -> tensor<1x2x2x1xi16> func.func @pooling_nhwc_i16_max_tensor(%input: tensor<1x4x4x1xi16>) -> tensor<1x2x2x1xi16> { %fake = tensor.empty() : tensor<3x3xi16> %init = tensor.empty() : tensor<1x2x2x1xi16> %cst = arith.constant 0 : i16 %fill = linalg.fill ins(%cst : i16) outs(%init : tensor<1x2x2x1xi16>) -> tensor<1x2x2x1xi16> %res = linalg.pooling_nhwc_max {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%input, %fake: tensor<1x4x4x1xi16>, tensor<3x3xi16>) outs(%fill: tensor<1x2x2x1xi16>) -> tensor<1x2x2x1xi16> return %res : tensor<1x2x2x1xi16> } // ----- // CHECK-LABEL: func @pooling_nwc_i16_max_tensor // CHECK: %{{.+}} = linalg.pooling_nwc_max // CHECK-SAME: dilations = dense<1> : tensor<1xi64> // CHECK-SAME: strides = dense<1> : tensor<1xi64> // CHECK-SAME: ins(%{{.+}}, %{{.+}} : tensor<1x4x1xi16>, tensor<3xi16>) // CHECK-SAME: outs(%{{.+}} : tensor<1x2x1xi16>) -> tensor<1x2x1xi16> func.func @pooling_nwc_i16_max_tensor(%input: tensor<1x4x1xi16>) -> tensor<1x2x1xi16> { %fake = tensor.empty() : tensor<3xi16> %init = tensor.empty() : tensor<1x2x1xi16> %cst = arith.constant 0 : i16 %fill = linalg.fill ins(%cst : i16) outs(%init : tensor<1x2x1xi16>) -> tensor<1x2x1xi16> %res = linalg.pooling_nwc_max {dilations = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} ins(%input, %fake: tensor<1x4x1xi16>, tensor<3xi16>) outs(%fill: tensor<1x2x1xi16>) -> tensor<1x2x1xi16> return %res : tensor<1x2x1xi16> } // ----- // CHECK-LABEL: func @pooling_nhwc_i16_max // CHECK: linalg.pooling_nhwc_max // CHECK-SAME: dilations = dense<1> : tensor<2xi64> // CHECK-SAME: strides = dense<1> : tensor<2xi64> // CHECK-SAME: ins(%{{.+}}, %{{.+}} : memref<1x4x4x1xi16>, memref<3x3xi16>) // CHECK-SAME: outs(%{{.+}} : memref<1x2x2x1xi16>) func.func @pooling_nhwc_i16_max(%input: memref<1x4x4x1xi16>, %fake: memref<3x3xi16>, %output: memref<1x2x2x1xi16>) { linalg.pooling_nhwc_max {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%input, %fake: memref<1x4x4x1xi16>, memref<3x3xi16>) outs(%output: memref<1x2x2x1xi16>) return } // ----- // CHECK-LABEL: func @pooling_nwc_i16_max // CHECK: linalg.pooling_nwc_max // CHECK-SAME: dilations = dense<1> : tensor<1xi64> // CHECK-SAME: strides = dense<1> : tensor<1xi64> // CHECK-SAME: ins(%{{.+}}, %{{.+}} : memref<1x4x1xi16>, memref<3xi16>) // CHECK-SAME: outs(%{{.+}} : memref<1x2x1xi16>) func.func @pooling_nwc_i16_max(%input: memref<1x4x1xi16>, %fake: memref<3xi16>, %output: memref<1x2x1xi16>) { linalg.pooling_nwc_max {dilations = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} ins(%input, %fake: memref<1x4x1xi16>, memref<3xi16>) outs(%output: memref<1x2x1xi16>) return } // ----- // CHECK-LABEL: func @pooling_nhwc_i32_max_tensor // CHECK: %{{.+}} = linalg.pooling_nhwc_max // CHECK-SAME: dilations = dense<1> : tensor<2xi64> // CHECK-SAME: strides = dense<1> : tensor<2xi64> // CHECK-SAME: ins(%{{.+}}, %{{.+}} : tensor<1x4x4x1xi32>, tensor<3x3xi32>) // CHECK-SAME: outs(%{{.+}} : tensor<1x2x2x1xi32>) -> tensor<1x2x2x1xi32> func.func @pooling_nhwc_i32_max_tensor(%input: tensor<1x4x4x1xi32>) -> tensor<1x2x2x1xi32> { %fake = tensor.empty() : tensor<3x3xi32> %init = tensor.empty() : tensor<1x2x2x1xi32> %cst = arith.constant 0 : i32 %fill = linalg.fill ins(%cst : i32) outs(%init : tensor<1x2x2x1xi32>) -> tensor<1x2x2x1xi32> %res = linalg.pooling_nhwc_max {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%input, %fake: tensor<1x4x4x1xi32>, tensor<3x3xi32>) outs(%fill: tensor<1x2x2x1xi32>) -> tensor<1x2x2x1xi32> return %res : tensor<1x2x2x1xi32> } // ----- // CHECK-LABEL: func @pooling_nwc_i32_max_tensor // CHECK: %{{.+}} = linalg.pooling_nwc_max // CHECK-SAME: dilations = dense<1> : tensor<1xi64> // CHECK-SAME: strides = dense<1> : tensor<1xi64> // CHECK-SAME: ins(%{{.+}}, %{{.+}} : tensor<1x4x1xi32>, tensor<3xi32>) // CHECK-SAME: outs(%{{.+}} : tensor<1x2x1xi32>) -> tensor<1x2x1xi32> func.func @pooling_nwc_i32_max_tensor(%input: tensor<1x4x1xi32>) -> tensor<1x2x1xi32> { %fake = tensor.empty() : tensor<3xi32> %init = tensor.empty() : tensor<1x2x1xi32> %cst = arith.constant 0 : i32 %fill = linalg.fill ins(%cst : i32) outs(%init : tensor<1x2x1xi32>) -> tensor<1x2x1xi32> %res = linalg.pooling_nwc_max {dilations = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} ins(%input, %fake: tensor<1x4x1xi32>, tensor<3xi32>) outs(%fill: tensor<1x2x1xi32>) -> tensor<1x2x1xi32> return %res : tensor<1x2x1xi32> } // ----- // CHECK-LABEL: func @pooling_nhwc_i32_max // CHECK: linalg.pooling_nhwc_max // CHECK-SAME: dilations = dense<1> : tensor<2xi64> // CHECK-SAME: strides = dense<1> : tensor<2xi64> // CHECK-SAME: ins(%{{.+}}, %{{.+}} : memref<1x4x4x1xi32>, memref<3x3xi32>) // CHECK-SAME: outs(%{{.+}} : memref<1x2x2x1xi32>) func.func @pooling_nhwc_i32_max(%input: memref<1x4x4x1xi32>, %fake: memref<3x3xi32>, %output: memref<1x2x2x1xi32>) { linalg.pooling_nhwc_max {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%input, %fake: memref<1x4x4x1xi32>, memref<3x3xi32>) outs(%output: memref<1x2x2x1xi32>) return } // ----- // CHECK-LABEL: func @pooling_nwc_i32_max // CHECK: linalg.pooling_nwc_max // CHECK-SAME: dilations = dense<1> : tensor<1xi64> // CHECK-SAME: strides = dense<1> : tensor<1xi64> // CHECK-SAME: ins(%{{.+}}, %{{.+}} : memref<1x4x1xi32>, memref<3xi32>) // CHECK-SAME: outs(%{{.+}} : memref<1x2x1xi32>) func.func @pooling_nwc_i32_max(%input: memref<1x4x1xi32>, %fake: memref<3xi32>, %output: memref<1x2x1xi32>) { linalg.pooling_nwc_max {dilations = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} ins(%input, %fake: memref<1x4x1xi32>, memref<3xi32>) outs(%output: memref<1x2x1xi32>) return } // ----- // CHECK-LABEL: func @pooling_nhwc_min_tensor // CHECK: %{{.+}} = linalg.pooling_nhwc_min // CHECK-SAME: dilations = dense<1> : tensor<2xi64> // CHECK-SAME: strides = dense<1> : tensor<2xi64> // CHECK-SAME: ins(%{{.+}}, %{{.+}} : tensor<1x4x4x1xf32>, tensor<3x3xf32>) // CHECK-SAME: outs(%{{.+}} : tensor<1x2x2x1xf32>) -> tensor<1x2x2x1xf32> func.func @pooling_nhwc_min_tensor(%input: tensor<1x4x4x1xf32>) -> tensor<1x2x2x1xf32> { %fake = tensor.empty() : tensor<3x3xf32> %init = tensor.empty() : tensor<1x2x2x1xf32> %cst = arith.constant 0.000000e+00 : f32 %fill = linalg.fill ins(%cst : f32) outs(%init : tensor<1x2x2x1xf32>) -> tensor<1x2x2x1xf32> %res = linalg.pooling_nhwc_min {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%input, %fake: tensor<1x4x4x1xf32>, tensor<3x3xf32>) outs(%fill: tensor<1x2x2x1xf32>) -> tensor<1x2x2x1xf32> return %res : tensor<1x2x2x1xf32> } // ----- // CHECK-LABEL: func @pooling_nwc_min_tensor // CHECK: %{{.+}} = linalg.pooling_nwc_min // CHECK-SAME: dilations = dense<1> : tensor<1xi64> // CHECK-SAME: strides = dense<1> : tensor<1xi64> // CHECK-SAME: ins(%{{.+}}, %{{.+}} : tensor<1x4x1xf32>, tensor<3xf32>) // CHECK-SAME: outs(%{{.+}} : tensor<1x2x1xf32>) -> tensor<1x2x1xf32> func.func @pooling_nwc_min_tensor(%input: tensor<1x4x1xf32>) -> tensor<1x2x1xf32> { %fake = tensor.empty() : tensor<3xf32> %init = tensor.empty() : tensor<1x2x1xf32> %cst = arith.constant 0.000000e+00 : f32 %fill = linalg.fill ins(%cst : f32) outs(%init : tensor<1x2x1xf32>) -> tensor<1x2x1xf32> %res = linalg.pooling_nwc_min {dilations = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} ins(%input, %fake: tensor<1x4x1xf32>, tensor<3xf32>) outs(%fill: tensor<1x2x1xf32>) -> tensor<1x2x1xf32> return %res : tensor<1x2x1xf32> } // ----- // CHECK-LABEL: func @pooling_nhwc_min // CHECK: linalg.pooling_nhwc_min // CHECK-SAME: dilations = dense<1> : tensor<2xi64> // CHECK-SAME: strides = dense<1> : tensor<2xi64> // CHECK-SAME: ins(%{{.+}}, %{{.+}} : memref<1x4x4x1xf32>, memref<3x3xf32>) // CHECK-SAME: outs(%{{.+}} : memref<1x2x2x1xf32>) func.func @pooling_nhwc_min(%input: memref<1x4x4x1xf32>, %fake: memref<3x3xf32>, %output: memref<1x2x2x1xf32>) { linalg.pooling_nhwc_min {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%input, %fake: memref<1x4x4x1xf32>, memref<3x3xf32>) outs(%output: memref<1x2x2x1xf32>) return } // ----- // CHECK-LABEL: func @pooling_nwc_min // CHECK: linalg.pooling_nwc_min // CHECK-SAME: dilations = dense<1> : tensor<1xi64> // CHECK-SAME: strides = dense<1> : tensor<1xi64> // CHECK-SAME: ins(%{{.+}}, %{{.+}} : memref<1x4x1xf32>, memref<3xf32>) // CHECK-SAME: outs(%{{.+}} : memref<1x2x1xf32>) func.func @pooling_nwc_min(%input: memref<1x4x1xf32>, %fake: memref<3xf32>, %output: memref<1x2x1xf32>) { linalg.pooling_nwc_min {dilations = dense<1> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} ins(%input, %fake: memref<1x4x1xf32>, memref<3xf32>) outs(%output: memref<1x2x1xf32>) return } // ----- // CHECK-LABEL: func @pooling_ndhwc_sum_tensor // CHECK: %{{.+}} = linalg.pooling_ndhwc_sum // CHECK-SAME: dilations = dense<1> : tensor<3xi64> // CHECK-SAME: strides = dense<1> : tensor<3xi64> // CHECK-SAME: ins(%{{.+}}, %{{.+}} : tensor<1x4x4x4x1xf32>, tensor<3x3x3xf32>) // CHECK-SAME: outs(%{{.+}} : tensor<1x2x2x2x1xf32>) -> tensor<1x2x2x2x1xf32> func.func @pooling_ndhwc_sum_tensor(%input: tensor<1x4x4x4x1xf32>) -> tensor<1x2x2x2x1xf32> { %fake = tensor.empty() : tensor<3x3x3xf32> %init = tensor.empty() : tensor<1x2x2x2x1xf32> %cst = arith.constant 0.000000e+00 : f32 %fill = linalg.fill ins(%cst : f32) outs(%init : tensor<1x2x2x2x1xf32>) -> tensor<1x2x2x2x1xf32> %res = linalg.pooling_ndhwc_sum {dilations = dense<1> : tensor<3xi64>, strides = dense<1> : tensor<3xi64>} ins(%input, %fake: tensor<1x4x4x4x1xf32>, tensor<3x3x3xf32>) outs(%fill: tensor<1x2x2x2x1xf32>) -> tensor<1x2x2x2x1xf32> return %res : tensor<1x2x2x2x1xf32> } // ----- // CHECK-LABEL: func @pooling_ndhwc_sum // CHECK: linalg.pooling_ndhwc_sum // CHECK-SAME: dilations = dense<1> : tensor<3xi64> // CHECK-SAME: strides = dense<1> : tensor<3xi64> // CHECK-SAME: ins(%{{.+}}, %{{.+}} : memref<1x4x4x4x1xf32>, memref<3x3x3xf32>) // CHECK-SAME: outs(%{{.+}} : memref<1x2x2x2x1xf32>) func.func @pooling_ndhwc_sum(%input: memref<1x4x4x4x1xf32>, %fake: memref<3x3x3xf32>, %output: memref<1x2x2x2x1xf32>) { linalg.pooling_ndhwc_sum {dilations = dense<1> : tensor<3xi64>, strides = dense<1> : tensor<3xi64>} ins(%input, %fake: memref<1x4x4x4x1xf32>, memref<3x3x3xf32>) outs(%output: memref<1x2x2x2x1xf32>) return } // ----- // CHECK-LABEL: func @pooling_ndhwc_max_tensor // CHECK: %{{.+}} = linalg.pooling_ndhwc_max // CHECK-SAME: dilations = dense<1> : tensor<3xi64> // CHECK-SAME: strides = dense<1> : tensor<3xi64> // CHECK-SAME: ins(%{{.+}}, %{{.+}} : tensor<1x4x4x4x1xf32>, tensor<3x3x3xf32>) // CHECK-SAME: outs(%{{.+}} : tensor<1x2x2x2x1xf32>) -> tensor<1x2x2x2x1xf32> func.func @pooling_ndhwc_max_tensor(%input: tensor<1x4x4x4x1xf32>) -> tensor<1x2x2x2x1xf32> { %fake = tensor.empty() : tensor<3x3x3xf32> %init = tensor.empty() : tensor<1x2x2x2x1xf32> %cst = arith.constant 0.000000e+00 : f32 %fill = linalg.fill ins(%cst : f32) outs(%init : tensor<1x2x2x2x1xf32>) -> tensor<1x2x2x2x1xf32> %res = linalg.pooling_ndhwc_max {dilations = dense<1> : tensor<3xi64>, strides = dense<1> : tensor<3xi64>} ins(%input, %fake: tensor<1x4x4x4x1xf32>, tensor<3x3x3xf32>) outs(%fill: tensor<1x2x2x2x1xf32>) -> tensor<1x2x2x2x1xf32> return %res : tensor<1x2x2x2x1xf32> } // ----- // CHECK-LABEL: func @pooling_ndhwc_max // CHECK: linalg.pooling_ndhwc_max // CHECK-SAME: dilations = dense<1> : tensor<3xi64> // CHECK-SAME: strides = dense<1> : tensor<3xi64> // CHECK-SAME: ins(%{{.+}}, %{{.+}} : memref<1x4x4x4x1xf32>, memref<3x3x3xf32>) // CHECK-SAME: outs(%{{.+}} : memref<1x2x2x2x1xf32>) func.func @pooling_ndhwc_max(%input: memref<1x4x4x4x1xf32>, %fake: memref<3x3x3xf32>, %output: memref<1x2x2x2x1xf32>) { linalg.pooling_ndhwc_max {dilations = dense<1> : tensor<3xi64>, strides = dense<1> : tensor<3xi64>} ins(%input, %fake: memref<1x4x4x4x1xf32>, memref<3x3x3xf32>) outs(%output: memref<1x2x2x2x1xf32>) return } // ----- // CHECK-LABEL: func @pooling_ndhwc_min_tensor // CHECK: %{{.+}} = linalg.pooling_ndhwc_min // CHECK-SAME: dilations = dense<1> : tensor<3xi64> // CHECK-SAME: strides = dense<1> : tensor<3xi64> // CHECK-SAME: ins(%{{.+}}, %{{.+}} : tensor<1x4x4x4x1xf32>, tensor<3x3x3xf32>) // CHECK-SAME: outs(%{{.+}} : tensor<1x2x2x2x1xf32>) -> tensor<1x2x2x2x1xf32> func.func @pooling_ndhwc_min_tensor(%input: tensor<1x4x4x4x1xf32>) -> tensor<1x2x2x2x1xf32> { %fake = tensor.empty() : tensor<3x3x3xf32> %init = tensor.empty() : tensor<1x2x2x2x1xf32> %cst = arith.constant 0.000000e+00 : f32 %fill = linalg.fill ins(%cst : f32) outs(%init : tensor<1x2x2x2x1xf32>) -> tensor<1x2x2x2x1xf32> %res = linalg.pooling_ndhwc_min {dilations = dense<1> : tensor<3xi64>, strides = dense<1> : tensor<3xi64>} ins(%input, %fake: tensor<1x4x4x4x1xf32>, tensor<3x3x3xf32>) outs(%fill: tensor<1x2x2x2x1xf32>) -> tensor<1x2x2x2x1xf32> return %res : tensor<1x2x2x2x1xf32> } // ----- // CHECK-LABEL: func @pooling_ndhwc_min // CHECK: linalg.pooling_ndhwc_min // CHECK-SAME: dilations = dense<1> : tensor<3xi64> // CHECK-SAME: strides = dense<1> : tensor<3xi64> // CHECK-SAME: ins(%{{.+}}, %{{.+}} : memref<1x4x4x4x1xf32>, memref<3x3x3xf32>) // CHECK-SAME: outs(%{{.+}} : memref<1x2x2x2x1xf32>) func.func @pooling_ndhwc_min(%input: memref<1x4x4x4x1xf32>, %fake: memref<3x3x3xf32>, %output: memref<1x2x2x2x1xf32>) { linalg.pooling_ndhwc_min {dilations = dense<1> : tensor<3xi64>, strides = dense<1> : tensor<3xi64>} ins(%input, %fake: memref<1x4x4x4x1xf32>, memref<3x3x3xf32>) outs(%output: memref<1x2x2x2x1xf32>) return } // ----- #map0 = affine_map<(d0, d1, d2, d3, d4, d5, d6) -> (d0, d1 * 2, d2 * 2 + d5, d6)> #map1 = affine_map<(d0, d1, d2, d3, d4, d5, d6) -> (d4, d5, d6, d3)> #map2 = affine_map<(d0, d1, d2, d3, d4, d5, d6) -> (d0, d1, d2, d3)> func.func @conv_interface_wrong_input_indexing_map( %arg0 : tensor, %arg2 : tensor, %arg1 : tensor) -> tensor { // expected-error @+1 {{unexpected input index map for convolutions}} %0 = "linalg.conv_2d_nhwc_hwcf"(%arg0, %arg1, %arg2) ({ ^bb0(%arg3: f32, %arg4: f32, %arg5 : f32): %1 = "arith.mulf"(%arg3, %arg4) : (f32, f32) -> f32 %2 = "arith.addf"(%arg5, %1) : (f32, f32) -> f32 "linalg.yield"(%2) : (f32) -> () }) {dilations = dense<1> : tensor<2xi64>, linalg.memoized_indexing_maps = [#map0, #map1, #map2], operandSegmentSizes = array, strides = dense<2> : tensor<2xi64>} : (tensor, tensor, tensor) -> tensor return %0 : tensor } // ----- #map0 = affine_map<(d0, d1, d2, d3, d4, d5, d6) -> (d0, d1 + d4, d2 + d5, d6)> #map1 = affine_map<(d0, d1, d2, d3, d4, d5, d6) -> (d4, d5, d6, d3, d5 + 1)> #map2 = affine_map<(d0, d1, d2, d3, d4, d5, d6) -> (d0, d1, d2, d3)> func.func @conv_interface_wrong_num_operands( %arg0 : tensor, %arg1 : tensor, %arg2 : tensor) -> tensor { // expected-error @+1 {{expected output/filter indexing maps to be projected permutations}} %0 = "linalg.conv_2d_nhwc_hwcf"(%arg0, %arg1, %arg2) ({ ^bb0(%arg3: f32, %arg4: f32, %arg5 : f32): %1 = "arith.mulf"(%arg3, %arg4) : (f32, f32) -> f32 %2 = "arith.addf"(%arg5, %1) : (f32, f32) -> f32 "linalg.yield"(%2) : (f32) -> () }) {dilations = dense<1> : tensor<2xi64>, linalg.memoized_indexing_maps = [#map0, #map1, #map2], operandSegmentSizes = array, strides = dense<1> : tensor<2xi64>} : (tensor, tensor, tensor) -> tensor return %0 : tensor } // ----- func.func @batch_reduce_matmul(%arg0: tensor<8x128x256xf32>, %arg1: tensor<8x256x512xf32>, %arg2: tensor<128x512xf32>) -> tensor<128x512xf32> { // CHECK: %{{.+}} = linalg.batch_reduce_matmul // CHECK-SAME: ins(%{{.+}}, %{{.+}} : tensor<8x128x256xf32>, tensor<8x256x512xf32>) // CHECK-SAME: outs(%{{.+}} : tensor<128x512xf32>) -> tensor<128x512xf32> %0 = linalg.batch_reduce_matmul ins(%arg0, %arg1 : tensor<8x128x256xf32>, tensor<8x256x512xf32>) outs(%arg2: tensor<128x512xf32>) -> tensor<128x512xf32> return %0: tensor<128x512xf32> } // ----- func.func @batch_reduce_matmul(%arg0: memref, %arg1: memref, %arg2: memref) { // CHECK: linalg.batch_reduce_matmul // CHECK-SAME: ins(%{{.+}}, %{{.+}} : memref, memref) // CHECK-SAME: outs(%{{.+}} : memref) linalg.batch_reduce_matmul ins(%arg0, %arg1 : memref, memref) outs(%arg2: memref) return } // ----- // CHECK-LABEL: func @matmul_transpose_a // CHECK: linalg.matmul_transpose_a // CHECK-SAME: ins(%{{.+}}, %{{.+}} : memref<5x3xf32>, memref<5x7xf32>) // CHECK-SAME: outs(%{{.+}} : memref<3x7xf32>) func.func @matmul_transpose_a(%arg0: memref<5x3xf32>, %arg1: memref<5x7xf32>, %arg2: memref<3x7xf32>) { linalg.matmul_transpose_a ins(%arg0, %arg1 : memref<5x3xf32>, memref<5x7xf32>) outs(%arg2: memref<3x7xf32>) return } // ----- // CHECK-LABEL: func @matmul_transpose_b // CHECK: linalg.matmul_transpose_b // CHECK-SAME: ins(%{{.+}}, %{{.+}} : memref<3x5xf32>, memref<7x5xf32>) // CHECK-SAME: outs(%{{.+}} : memref<3x7xf32>) func.func @matmul_transpose_b(%arg0: memref<3x5xf32>, %arg1: memref<7x5xf32>, %arg2: memref<3x7xf32>) { linalg.matmul_transpose_b ins(%arg0, %arg1 : memref<3x5xf32>, memref<7x5xf32>) outs(%arg2: memref<3x7xf32>) return } // ----- // CHECK-LABEL: func @batchmatmul_transpose_a // CHECK: linalg.batch_matmul_transpose_a // CHECK-SAME: ins(%{{.+}}, %{{.+}} : memref<2x5x3xf32>, memref<2x5x7xf32>) // CHECK-SAME: outs(%{{.+}} : memref<2x3x7xf32>) func.func @batchmatmul_transpose_a(%arg0: memref<2x5x3xf32>, %arg1: memref<2x5x7xf32>, %arg2: memref<2x3x7xf32>) { linalg.batch_matmul_transpose_a ins(%arg0, %arg1 : memref<2x5x3xf32>, memref<2x5x7xf32>) outs(%arg2: memref<2x3x7xf32>) return } // ----- // CHECK-LABEL: func @batchmatmul_transpose_b // CHECK: linalg.batch_matmul_transpose_b // CHECK-SAME: ins(%{{.+}}, %{{.+}} : memref<2x3x5xf32>, memref<2x7x5xf32>) // CHECK-SAME: outs(%{{.+}} : memref<2x3x7xf32>) func.func @batchmatmul_transpose_b(%arg0: memref<2x3x5xf32>, %arg1: memref<2x7x5xf32>, %arg2: memref<2x3x7xf32>) { linalg.batch_matmul_transpose_b ins(%arg0, %arg1 : memref<2x3x5xf32>, memref<2x7x5xf32>) outs(%arg2: memref<2x3x7xf32>) return } // ----- // CHECK-LABEL: func @batch_mmt4d func.func @batch_mmt4d(%arg0: tensor<128x10x32x8x1xf32>, %arg1: tensor<128x80x32x4x1xf32>, %arg2: tensor<128x10x80x8x4xf32>) -> tensor<128x10x80x8x4xf32> { // CHECK: %{{.+}} = linalg.batch_mmt4d // CHECK-SAME: ins(%{{.+}}, %{{.+}} : tensor<128x10x32x8x1xf32>, tensor<128x80x32x4x1xf32>) // CHECK-SAME: outs(%{{.+}} : tensor<128x10x80x8x4xf32>) -> tensor<128x10x80x8x4xf32> %0 = linalg.batch_mmt4d ins(%arg0, %arg1 : tensor<128x10x32x8x1xf32>, tensor<128x80x32x4x1xf32>) outs(%arg2 : tensor<128x10x80x8x4xf32>) -> tensor<128x10x80x8x4xf32> return %0: tensor<128x10x80x8x4xf32> } // ----- // CHECK-LABEL: func @add_dynamic func.func @add_dynamic(%arg0: memref, %arg1: memref, %arg2: memref) { // CHECK: linalg.add // CHECK-SAME: ins(%{{.+}}, %{{.+}} : memref, memref) // CHECK-SAME: outs(%{{.+}} : memref) linalg.add ins(%arg0, %arg1 : memref, memref) outs(%arg2: memref) return } // ----- // CHECK-LABEL: func @add_static func.func @add_static(%arg0: memref<4x8x16xf32>, %arg1: memref<4x8x16xf32>, %arg2: memref<4x8x16xf32>) { // CHECK: linalg.add // CHECK-SAME: ins(%{{.+}}, %{{.+}} : memref<4x8x16xf32>, memref<4x8x16xf32>) // CHECK-SAME: outs(%{{.+}} : memref<4x8x16xf32>) linalg.add ins(%arg0, %arg1 : memref<4x8x16xf32>, memref<4x8x16xf32>) outs(%arg2: memref<4x8x16xf32>) return } // ----- // CHECK-LABEL: func @add_tensor func.func @add_tensor(%arg0: tensor<4x8x16xf32>, %arg1: tensor<4x8x16xf32>) -> tensor<4x8x16xf32> { %0 = tensor.empty() : tensor<4x8x16xf32> // CHECK: linalg.add // CHECK-SAME: ins(%{{.+}}, %{{.+}} : tensor<4x8x16xf32>, tensor<4x8x16xf32>) // CHECK-SAME: outs(%{{.+}} : tensor<4x8x16xf32>) %1 = linalg.add ins(%arg0, %arg1 : tensor<4x8x16xf32>, tensor<4x8x16xf32>) outs(%0: tensor<4x8x16xf32>) -> tensor<4x8x16xf32> return %1 : tensor<4x8x16xf32> } // ----- // CHECK-LABEL: func @sub_dynamic func.func @sub_dynamic(%arg0: memref, %arg1: memref, %arg2: memref) { // CHECK: linalg.sub // CHECK-SAME: ins(%{{.+}}, %{{.+}} : memref, memref) // CHECK-SAME: outs(%{{.+}} : memref) linalg.sub ins(%arg0, %arg1 : memref, memref) outs(%arg2: memref) return } // ----- // CHECK-LABEL: func @sub_static func.func @sub_static(%arg0: memref<4x8x16xf32>, %arg1: memref<4x8x16xf32>, %arg2: memref<4x8x16xf32>) { // CHECK: linalg.sub // CHECK-SAME: ins(%{{.+}}, %{{.+}} : memref<4x8x16xf32>, memref<4x8x16xf32>) // CHECK-SAME: outs(%{{.+}} : memref<4x8x16xf32>) linalg.sub ins(%arg0, %arg1 : memref<4x8x16xf32>, memref<4x8x16xf32>) outs(%arg2: memref<4x8x16xf32>) return } // ----- // CHECK-LABEL: func @sub_tensor func.func @sub_tensor(%arg0: tensor<4x8x16xf32>, %arg1: tensor<4x8x16xf32>) -> tensor<4x8x16xf32> { %0 = tensor.empty() : tensor<4x8x16xf32> // CHECK: linalg.sub // CHECK-SAME: ins(%{{.+}}, %{{.+}} : tensor<4x8x16xf32>, tensor<4x8x16xf32>) // CHECK-SAME: outs(%{{.+}} : tensor<4x8x16xf32>) %1 = linalg.sub ins(%arg0, %arg1 : tensor<4x8x16xf32>, tensor<4x8x16xf32>) outs(%0: tensor<4x8x16xf32>) -> tensor<4x8x16xf32> return %1 : tensor<4x8x16xf32> } // ----- // CHECK-LABEL: func @mul_dynamic func.func @mul_dynamic(%arg0: memref, %arg1: memref, %arg2: memref) { // CHECK: linalg.mul // CHECK-SAME: ins(%{{.+}}, %{{.+}} : memref, memref) // CHECK-SAME: outs(%{{.+}} : memref) linalg.mul ins(%arg0, %arg1 : memref, memref) outs(%arg2: memref) return } // ----- // CHECK-LABEL: func @mul_static func.func @mul_static(%arg0: memref<4x8x16xf32>, %arg1: memref<4x8x16xf32>, %arg2: memref<4x8x16xf32>) { // CHECK: linalg.mul // CHECK-SAME: ins(%{{.+}}, %{{.+}} : memref<4x8x16xf32>, memref<4x8x16xf32>) // CHECK-SAME: outs(%{{.+}} : memref<4x8x16xf32>) linalg.mul ins(%arg0, %arg1 : memref<4x8x16xf32>, memref<4x8x16xf32>) outs(%arg2: memref<4x8x16xf32>) return } // ----- // CHECK-LABEL: func @mul_tensor func.func @mul_tensor(%arg0: tensor<4x8x16xf32>, %arg1: tensor<4x8x16xf32>) -> tensor<4x8x16xf32> { %0 = tensor.empty() : tensor<4x8x16xf32> // CHECK: linalg.mul // CHECK-SAME: ins(%{{.+}}, %{{.+}} : tensor<4x8x16xf32>, tensor<4x8x16xf32>) // CHECK-SAME: outs(%{{.+}} : tensor<4x8x16xf32>) %1 = linalg.mul ins(%arg0, %arg1 : tensor<4x8x16xf32>, tensor<4x8x16xf32>) outs(%0: tensor<4x8x16xf32>) -> tensor<4x8x16xf32> return %1 : tensor<4x8x16xf32> } // ----- // CHECK-LABEL: func @div_dynamic func.func @div_dynamic(%arg0: memref, %arg1: memref, %arg2: memref) { // CHECK: linalg.div // CHECK-SAME: ins(%{{.+}}, %{{.+}} : memref, memref) // CHECK-SAME: outs(%{{.+}} : memref) linalg.div ins(%arg0, %arg1 : memref, memref) outs(%arg2: memref) return } // ----- // CHECK-LABEL: func @div_static func.func @div_static(%arg0: memref<4x8x16xf32>, %arg1: memref<4x8x16xf32>, %arg2: memref<4x8x16xf32>) { // CHECK: linalg.div // CHECK-SAME: ins(%{{.+}}, %{{.+}} : memref<4x8x16xf32>, memref<4x8x16xf32>) // CHECK-SAME: outs(%{{.+}} : memref<4x8x16xf32>) linalg.div ins(%arg0, %arg1 : memref<4x8x16xf32>, memref<4x8x16xf32>) outs(%arg2: memref<4x8x16xf32>) return } // ----- // CHECK-LABEL: func @div_tensor func.func @div_tensor(%arg0: tensor<4x8x16xf32>, %arg1: tensor<4x8x16xf32>) -> tensor<4x8x16xf32> { %0 = tensor.empty() : tensor<4x8x16xf32> // CHECK: linalg.div // CHECK-SAME: ins(%{{.+}}, %{{.+}} : tensor<4x8x16xf32>, tensor<4x8x16xf32>) // CHECK-SAME: outs(%{{.+}} : tensor<4x8x16xf32>) %1 = linalg.div ins(%arg0, %arg1 : tensor<4x8x16xf32>, tensor<4x8x16xf32>) outs(%0: tensor<4x8x16xf32>) -> tensor<4x8x16xf32> return %1 : tensor<4x8x16xf32> } // ----- // CHECK-LABEL: func @div_unsigned_dynamic func.func @div_unsigned_dynamic(%arg0: memref, %arg1: memref, %arg2: memref) { // CHECK: linalg.div_unsigned // CHECK-SAME: ins(%{{.+}}, %{{.+}} : memref, memref) // CHECK-SAME: outs(%{{.+}} : memref) linalg.div_unsigned ins(%arg0, %arg1 : memref, memref) outs(%arg2: memref) return } // ----- // CHECK-LABEL: func @div_unsigned_static func.func @div_unsigned_static(%arg0: memref<4x8x16xi32>, %arg1: memref<4x8x16xi32>, %arg2: memref<4x8x16xi32>) { // CHECK: linalg.div_unsigned // CHECK-SAME: ins(%{{.+}}, %{{.+}} : memref<4x8x16xi32>, memref<4x8x16xi32>) // CHECK-SAME: outs(%{{.+}} : memref<4x8x16xi32>) linalg.div_unsigned ins(%arg0, %arg1 : memref<4x8x16xi32>, memref<4x8x16xi32>) outs(%arg2: memref<4x8x16xi32>) return } // ----- // CHECK-LABEL: func @div_unsigned_tensor func.func @div_unsigned_tensor(%arg0: tensor<4x8x16xi32>, %arg1: tensor<4x8x16xi32>) -> tensor<4x8x16xi32> { %0 = tensor.empty() : tensor<4x8x16xi32> // CHECK: linalg.div_unsigned // CHECK-SAME: ins(%{{.+}}, %{{.+}} : tensor<4x8x16xi32>, tensor<4x8x16xi32>) // CHECK-SAME: outs(%{{.+}} : tensor<4x8x16xi32>) %1 = linalg.div_unsigned ins(%arg0, %arg1 : tensor<4x8x16xi32>, tensor<4x8x16xi32>) outs(%0: tensor<4x8x16xi32>) -> tensor<4x8x16xi32> return %1 : tensor<4x8x16xi32> } // ----- // CHECK-LABEL: func @exp_dynamic func.func @exp_dynamic(%arg0: memref, %arg1: memref) { // CHECK: linalg.exp // CHECK-SAME: ins(%{{.+}} : memref) outs(%{{.+}} : memref) linalg.exp ins(%arg0 : memref) outs(%arg1: memref) return } // ----- // CHECK-LABEL: func @exp_static func.func @exp_static(%arg0: memref<4x8x16xf32>, %arg1: memref<4x8x16xf32>) { // CHECK: linalg.exp // CHECK-SAME: ins(%{{.+}} : memref<4x8x16xf32>) outs(%{{.+}} : memref<4x8x16xf32>) linalg.exp ins(%arg0 : memref<4x8x16xf32>) outs(%arg1: memref<4x8x16xf32>) return } // ----- // CHECK-LABEL: func @exp_tensor func.func @exp_tensor(%arg0: tensor<4x8x16xf32>) -> tensor<4x8x16xf32> { %0 = tensor.empty() : tensor<4x8x16xf32> // CHECK: linalg.exp // CHECK-SAME: ins(%{{.+}} : tensor<4x8x16xf32>) outs(%{{.+}} : tensor<4x8x16xf32>) %1 = linalg.exp ins(%arg0 : tensor<4x8x16xf32>) outs(%0: tensor<4x8x16xf32>) -> tensor<4x8x16xf32> return %1 : tensor<4x8x16xf32> } // ----- // CHECK-LABEL: func @log_dynamic func.func @log_dynamic(%arg0: memref, %arg1: memref) { // CHECK: linalg.log // CHECK-SAME: ins(%{{.+}} : memref) outs(%{{.+}} : memref) linalg.log ins(%arg0 : memref) outs(%arg1: memref) return } // ----- // CHECK-LABEL: func @log_static func.func @log_static(%arg0: memref<4x8x16xf32>, %arg1: memref<4x8x16xf32>) { // CHECK: linalg.log // CHECK-SAME: ins(%{{.+}} : memref<4x8x16xf32>) outs(%{{.+}} : memref<4x8x16xf32>) linalg.log ins(%arg0 : memref<4x8x16xf32>) outs(%arg1: memref<4x8x16xf32>) return } // ----- // CHECK-LABEL: func @log_tensor func.func @log_tensor(%arg0: tensor<4x8x16xf32>) -> tensor<4x8x16xf32> { %0 = tensor.empty() : tensor<4x8x16xf32> // CHECK: linalg.log // CHECK-SAME: ins(%{{.+}} : tensor<4x8x16xf32>) outs(%{{.+}} : tensor<4x8x16xf32>) %1 = linalg.log ins(%arg0 : tensor<4x8x16xf32>) outs(%0: tensor<4x8x16xf32>) -> tensor<4x8x16xf32> return %1 : tensor<4x8x16xf32> } // ----- // CHECK-LABEL: func @abs_dynamic func.func @abs_dynamic(%arg0: memref, %arg1: memref) { // CHECK: linalg.abs // CHECK-SAME: ins(%{{.+}} : memref) outs(%{{.+}} : memref) linalg.abs ins(%arg0 : memref) outs(%arg1: memref) return } // ----- // CHECK-LABEL: func @abs_static func.func @abs_static(%arg0: memref<4x8x16xf32>, %arg1: memref<4x8x16xf32>) { // CHECK: linalg.abs // CHECK-SAME: ins(%{{.+}} : memref<4x8x16xf32>) outs(%{{.+}} : memref<4x8x16xf32>) linalg.abs ins(%arg0 : memref<4x8x16xf32>) outs(%arg1: memref<4x8x16xf32>) return } // ----- // CHECK-LABEL: func @abs_tensor func.func @abs_tensor(%arg0: tensor<4x8x16xf32>) -> tensor<4x8x16xf32> { %0 = tensor.empty() : tensor<4x8x16xf32> // CHECK: linalg.abs // CHECK-SAME: ins(%{{.+}} : tensor<4x8x16xf32>) outs(%{{.+}} : tensor<4x8x16xf32>) %1 = linalg.abs ins(%arg0 : tensor<4x8x16xf32>) outs(%0: tensor<4x8x16xf32>) -> tensor<4x8x16xf32> return %1 : tensor<4x8x16xf32> } // ----- // CHECK-LABEL: func @ceil_dynamic func.func @ceil_dynamic(%arg0: memref, %arg1: memref) { // CHECK: linalg.ceil // CHECK-SAME: ins(%{{.+}} : memref) outs(%{{.+}} : memref) linalg.ceil ins(%arg0 : memref) outs(%arg1: memref) return } // ----- // CHECK-LABEL: func @ceil_static func.func @ceil_static(%arg0: memref<4x8x16xf32>, %arg1: memref<4x8x16xf32>) { // CHECK: linalg.ceil // CHECK-SAME: ins(%{{.+}} : memref<4x8x16xf32>) outs(%{{.+}} : memref<4x8x16xf32>) linalg.ceil ins(%arg0 : memref<4x8x16xf32>) outs(%arg1: memref<4x8x16xf32>) return } // ----- // CHECK-LABEL: func @ceil_tensor func.func @ceil_tensor(%arg0: tensor<4x8x16xf32>) -> tensor<4x8x16xf32> { %0 = tensor.empty() : tensor<4x8x16xf32> // CHECK: linalg.ceil // CHECK-SAME: ins(%{{.+}} : tensor<4x8x16xf32>) outs(%{{.+}} : tensor<4x8x16xf32>) %1 = linalg.ceil ins(%arg0 : tensor<4x8x16xf32>) outs(%0: tensor<4x8x16xf32>) -> tensor<4x8x16xf32> return %1 : tensor<4x8x16xf32> } // ----- // CHECK-LABEL: func @floor_dynamic func.func @floor_dynamic(%arg0: memref, %arg1: memref) { // CHECK: linalg.floor // CHECK-SAME: ins(%{{.+}} : memref) outs(%{{.+}} : memref) linalg.floor ins(%arg0 : memref) outs(%arg1: memref) return } // ----- // CHECK-LABEL: func @floor_static func.func @floor_static(%arg0: memref<4x8x16xf32>, %arg1: memref<4x8x16xf32>) { // CHECK: linalg.floor // CHECK-SAME: ins(%{{.+}} : memref<4x8x16xf32>) outs(%{{.+}} : memref<4x8x16xf32>) linalg.floor ins(%arg0 : memref<4x8x16xf32>) outs(%arg1: memref<4x8x16xf32>) return } // ----- // CHECK-LABEL: func @floor_tensor func.func @floor_tensor(%arg0: tensor<4x8x16xf32>) -> tensor<4x8x16xf32> { %0 = tensor.empty() : tensor<4x8x16xf32> // CHECK: linalg.floor // CHECK-SAME: ins(%{{.+}} : tensor<4x8x16xf32>) outs(%{{.+}} : tensor<4x8x16xf32>) %1 = linalg.floor ins(%arg0 : tensor<4x8x16xf32>) outs(%0: tensor<4x8x16xf32>) -> tensor<4x8x16xf32> return %1 : tensor<4x8x16xf32> } // ----- // CHECK-LABEL: func @negf_dynamic func.func @negf_dynamic(%arg0: memref, %arg1: memref) { // CHECK: linalg.negf // CHECK-SAME: ins(%{{.+}} : memref) outs(%{{.+}} : memref) linalg.negf ins(%arg0 : memref) outs(%arg1: memref) return } // ----- // CHECK-LABEL: func @negf_static func.func @negf_static(%arg0: memref<4x8x16xf32>, %arg1: memref<4x8x16xf32>) { // CHECK: linalg.negf // CHECK-SAME: ins(%{{.+}} : memref<4x8x16xf32>) outs(%{{.+}} : memref<4x8x16xf32>) linalg.negf ins(%arg0 : memref<4x8x16xf32>) outs(%arg1: memref<4x8x16xf32>) return } // ----- // CHECK-LABEL: func @negf_tensor func.func @negf_tensor(%arg0: tensor<4x8x16xf32>) -> tensor<4x8x16xf32> { %0 = tensor.empty() : tensor<4x8x16xf32> // CHECK: linalg.negf // CHECK-SAME: ins(%{{.+}} : tensor<4x8x16xf32>) outs(%{{.+}} : tensor<4x8x16xf32>) %1 = linalg.negf ins(%arg0 : tensor<4x8x16xf32>) outs(%0: tensor<4x8x16xf32>) -> tensor<4x8x16xf32> return %1 : tensor<4x8x16xf32> } // ----- // CHECK-LABEL: func @max_dynamic func.func @max_dynamic(%arg0: memref, %arg1: memref, %arg2: memref) { // CHECK: linalg.max // CHECK-SAME: ins(%{{.+}}, %{{.+}} : memref, memref) // CHECK-SAME: outs(%{{.+}} : memref) linalg.max ins(%arg0, %arg1 : memref, memref) outs(%arg2: memref) return } // ----- // CHECK-LABEL: func @max_static func.func @max_static(%arg0: memref<4x8x16xf32>, %arg1: memref<4x8x16xf32>, %arg2: memref<4x8x16xf32>) { // CHECK: linalg.max // CHECK-SAME: ins(%{{.+}}, %{{.+}} : memref<4x8x16xf32>, memref<4x8x16xf32>) // CHECK-SAME: outs(%{{.+}} : memref<4x8x16xf32>) linalg.max ins(%arg0, %arg1 : memref<4x8x16xf32>, memref<4x8x16xf32>) outs(%arg2: memref<4x8x16xf32>) return } // ----- // CHECK-LABEL: func @max_tensor func.func @max_tensor(%arg0: tensor<4x8x16xf32>, %arg1: tensor<4x8x16xf32>) -> tensor<4x8x16xf32> { %0 = tensor.empty() : tensor<4x8x16xf32> // CHECK: linalg.max // CHECK-SAME: ins(%{{.+}}, %{{.+}} : tensor<4x8x16xf32>, tensor<4x8x16xf32>) // CHECK-SAME: outs(%{{.+}} : tensor<4x8x16xf32>) %1 = linalg.max ins(%arg0, %arg1 : tensor<4x8x16xf32>, tensor<4x8x16xf32>) outs(%0: tensor<4x8x16xf32>) -> tensor<4x8x16xf32> return %1 : tensor<4x8x16xf32> } // ----- // CHECK-LABEL: func @fill_tensor func.func @fill_tensor(%f: f32, %v: vector<2x4xf32>) -> (tensor, tensor>) { %e0 = tensor.empty() : tensor %0 = linalg.fill ins(%f : f32) outs(%e0 : tensor) -> tensor %e1 = tensor.empty() : tensor> %1 = linalg.fill ins(%v : vector<2x4xf32>) outs(%e1 : tensor>) -> tensor> return %0, %1: tensor, tensor> }