// RUN: mlir-opt %s -transform-interpreter -split-input-file | FileCheck %s // CHECK-LABEL: func @matmul_tensors( // CHECK-SAME: %[[TA:[0-9a-z]+]]: tensor // CHECK-SAME: %[[TB:[0-9a-z]+]]: tensor // CHECK-SAME: %[[TC:[0-9a-z]+]]: tensor) -> tensor { func.func @matmul_tensors( %arg0: tensor, %arg1: tensor, %arg2: tensor) -> tensor { // CHECK: %[[TD0:.*]] = scf.for {{.*}} to {{.*}} step {{.*}} iter_args(%[[TC0:.*]] = %[[TC]]) -> (tensor) { // CHECK: %[[TD1:.*]] = scf.for {{.*}} to {{.*}} step {{.*}} iter_args(%[[TC1:.*]] = %[[TC0]]) -> (tensor) { // CHECK: %[[TD2:.*]] = scf.for {{.*}} to {{.*}} step {{.*}} iter_args(%[[TC2:.*]] = %[[TC1]]) -> (tensor) { // CHECK: %[[sTA:.*]] = tensor.extract_slice %[[TA]][{{.*}}] : tensor to tensor // CHECK: %[[sTB:.*]] = tensor.extract_slice %[[TB]][{{.*}}] : tensor to tensor // CHECK: %[[sTC:.*]] = tensor.extract_slice %[[TC2]][{{.*}}] : tensor to tensor // CHECK: %[[sTD:.*]] = linalg.matmul ins(%[[sTA]], %[[sTB]] : tensor, tensor) // CHECK-SAME: outs(%[[sTC]] : tensor) -> tensor // CHECK: %[[TD:.*]] = tensor.insert_slice %[[sTD]] into %[[TC2]][{{.*}}] : tensor into tensor // CHECK: scf.yield %[[TD]] : tensor // CHECK: scf.yield %[[TD2]] : tensor // CHECK: scf.yield %[[TD1]] : tensor %0 = linalg.matmul ins(%arg0, %arg1: tensor, tensor) outs(%arg2: tensor) -> tensor // CHECK: return %[[TD0]] : tensor return %0 : tensor } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op %1, %loops:3 = transform.structured.tile_using_for %0 [2, 3, 4] : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op, !transform.any_op) transform.yield } } // ----- // CHECK-LABEL: func @matmul_tensors_with_size_zeros( // CHECK-SAME: %[[TA:[0-9a-z]+]]: tensor // CHECK-SAME: %[[TB:[0-9a-z]+]]: tensor // CHECK-SAME: %[[TC:[0-9a-z]+]]: tensor) -> tensor { func.func @matmul_tensors_with_size_zeros( %arg0: tensor, %arg1: tensor, %arg2: tensor) -> tensor { // CHECK: %[[RES:.*]] = linalg.matmul ins(%[[TA]], %[[TB]] : tensor, tensor) // CHECK-SAME: outs(%[[TC]] : tensor) -> tensor // CHECK: return %[[RES]] %0 = linalg.matmul ins(%arg0, %arg1: tensor, tensor) outs(%arg2: tensor) -> tensor return %0 : tensor } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op %1 = transform.structured.tile_using_for %0 [0, 0, 0] : (!transform.any_op) -> (!transform.any_op) transform.yield } } // ----- func.func @generic_op_tensors( %arg0 : tensor, %arg1 : tensor) -> tensor { %c0 = arith.constant 0 : index %c1 = arith.constant 1 : index %c2 = arith.constant 2 : index %0 = tensor.dim %arg0, %c0 : tensor %1 = tensor.dim %arg0, %c1 : tensor %2 = tensor.dim %arg0, %c2 : tensor %3 = tensor.empty(%0, %1, %2) : tensor %4 = linalg.generic {indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d1, d2)>, affine_map<(d0, d1, d2) -> (d0, d2, d1)>, affine_map<(d0, d1, d2) -> (d2, d1, d0)>], iterator_types = ["parallel", "parallel", "parallel"]} ins(%arg0, %arg1 : tensor, tensor) outs(%3 : tensor) { ^bb0(%arg2 : f32, %arg3: f32, %arg4: f32): %5 = arith.addf %arg2, %arg3 : f32 linalg.yield %5 : f32 } -> tensor return %4 : tensor } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op %1, %loops:3 = transform.structured.tile_using_for %0 [2, 3, 4] : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op, !transform.any_op) transform.yield } } // CHECK-LABEL: func @generic_op_tensors // CHECK-SAME: %[[ARG0:[a-zA-Z0-9_]+]]: tensor // CHECK-SAME: %[[ARG1:[a-zA-Z0-9_]+]]: tensor // CHECK: %[[INIT:.+]] = tensor.empty // CHECK: %[[TD0:.+]] = scf.for %{{.+}} to %{{.+}} step %{{.+}} iter_args(%[[TC0:.+]] = %[[INIT]]) -> (tensor) { // CHECK: %[[TD1:.+]] = scf.for %{{.+}} to %{{.+}} step %{{.+}} iter_args(%[[TC1:.+]] = %[[TC0]]) -> (tensor) { // CHECK: %[[TD2:.+]] = scf.for %{{.+}} to %{{.+}} step %{{.+}} iter_args(%[[TC2:.+]] = %[[TC1]]) -> (tensor) { // CHECK: %[[STARG0:.+]] = tensor.extract_slice %[[ARG0]][{{.+}}] : tensor to tensor // CHECK: %[[STARG1:.+]] = tensor.extract_slice %[[ARG1]][{{.+}}] : tensor to tensor // CHECK: %[[STARG2:.+]] = tensor.extract_slice %[[TC2]][{{.+}}] : tensor to tensor // CHECK: %[[STRETURN:.+]] = linalg.generic // CHECK-SAME: ins(%[[STARG0]], %[[STARG1]] : tensor, tensor) // CHECK-SAME: outs(%[[STARG2]] : tensor) // CHECK: %[[TD:.+]] = tensor.insert_slice %[[STRETURN]] into %[[TC2]] // CHECK: scf.yield %[[TD]] // CHECK: } // CHECK: scf.yield %[[TD2]] // CHECK: } // CHECK: scf.yield %[[TD1]] // CHECK: } // CHECK: return %[[TD0]] // ----- // CHECK-DAG: #[[MAP0:.*]] = affine_map<(d0)[s0] -> (2, -d0 + s0)> // CHECK: fold_extract_slice // CHECK-SAME: %[[ARG0:[0-9a-zA-Z]*]]: tensor // CHECK-SAME: %[[ARG1:[0-9a-zA-Z]*]]: tensor func.func @fold_extract_slice( %arg0 : tensor, %arg1 : tensor, %arg2 : tensor) -> tensor { // CHECK: %[[C0:.*]] = arith.constant 0 %c0 = arith.constant 0 : index // CHECK: %[[DIM:.*]] = tensor.dim %[[ARG1]], %[[C0]] %0 = tensor.dim %arg1, %c0 : tensor %1 = tensor.extract_slice %arg0[3, 4] [%0, 42] [1, 1] : tensor to tensor // CHECK: %[[E:.*]] = tensor.extract_slice %[[ARG0]][3, 4] [%[[DIM]], 42] [1, 1] : tensor to tensor // CHECK: scf.for %[[IV0:[0-9a-zA-Z]*]] = // CHECK: %[[SIZE0:.*]] = affine.min #[[MAP0]](%[[IV0]])[%[[DIM]] // CHECK: scf.for %[[IV1:[0-9a-zA-Z]*]] = // Fold the existing extract slice op into the one created by the tiling. // CHECK: %[[T0:.*]] = tensor.extract_slice %[[E]] // CHECK-SAME: %[[IV0]], %[[IV1]] // CHECK-SAME: %[[SIZE0]], 3 // CHECK-SAME: 1, 1 // CHECK: {{.*}} = linalg.generic {{.*}} ins(%[[T0]] %2 = linalg.generic {indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d1)>, affine_map<(d0, d1, d2) -> (d0, d1, d2)>, affine_map<(d0, d1, d2) -> (d0, d1)>], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1, %arg2 : tensor, tensor) outs(%arg1 : tensor) { ^bb0(%arg3 : f32, %arg4: f32, %arg5: f32): %5 = arith.addf %arg3, %arg5 : f32 linalg.yield %5 : f32 } -> tensor return %2 : tensor } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op %1, %loops:3 = transform.structured.tile_using_for %0 [2, 3, 4] : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op, !transform.any_op) transform.yield } }