// RUN: mlir-opt %s -transform-interpreter -cse -verify-diagnostics -split-input-file | FileCheck %s // CHECK-LABEL: func.func @pack( func.func @pack(%arg0: tensor<129x47x16x16xf32>, %arg1: tensor<17x2x16x16x32x8xf32>) -> tensor<17x2x16x16x32x8xf32> { %cst_0 = arith.constant 0.0 : f32 // tensor.pack is lowered to tensor.pad + tensor.expand_shape + linalg.transpose // CHECK: tensor.pad {{.*}} low[0, 0, 0, 0] // CHECK: : tensor<129x47x16x16xf32> to tensor<136x64x16x16xf32> // CHECK: tensor.expand_shape %{{.*}} [{{.*}}[0, 1], [2, 3], [4], [5]] // CHECK-SAME: : tensor<136x64x16x16xf32> into tensor<17x8x2x32x16x16xf32> // CHECK: linalg.transpose // CHECK-SAME: ins(%{{.*}} : tensor<17x8x2x32x16x16xf32>) // CHECK-SAME: outs(%{{.*}} : tensor<17x2x16x16x32x8xf32>) // CHECK-SAME: permutation = [0, 2, 4, 5, 3, 1] %pack = tensor.pack %arg0 padding_value(%cst_0 : f32) inner_dims_pos = [1, 0] inner_tiles = [32, 8] into %arg1 : tensor<129x47x16x16xf32> -> tensor<17x2x16x16x32x8xf32> return %pack : tensor<17x2x16x16x32x8xf32> } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%module_op: !transform.any_op {transform.readonly}) { %pack = transform.structured.match ops{["tensor.pack"]} in %module_op : (!transform.any_op) -> !transform.op<"tensor.pack"> transform.structured.lower_pack %pack : (!transform.op<"tensor.pack">) -> (!transform.op<"tensor.pad">, !transform.op<"tensor.expand_shape">, !transform.op<"linalg.transpose">) transform.yield } } // ----- // CHECK-LABEL: func.func @pack( func.func @pack(%arg0: tensor<128x8xf32>, %arg1: tensor<8x8x16x1xf32>) -> tensor<8x8x16x1xf32> { // tensor.pack is lowered to tensor.pad + tensor.expand_shape + linalg.transpose // CHECK: tensor.pad {{.*}} low[0, 0] // CHECK: : tensor<128x8xf32> to tensor<128x8xf32> // CHECK: tensor.expand_shape %{{.*}} [{{.*}}[0, 1], [2, 3]] // CHECK-SAME: : tensor<128x8xf32> into tensor<8x16x8x1xf32> // CHECK: linalg.transpose // CHECK-SAME: ins(%{{.*}} : tensor<8x16x8x1xf32>) // CHECK-SAME: outs(%{{.*}} : tensor<8x8x16x1xf32>) // CHECK-SAME: permutation = [0, 2, 1, 3] %pack = tensor.pack %arg0 inner_dims_pos = [0, 1] inner_tiles = [16, 1] into %arg1 : tensor<128x8xf32> -> tensor<8x8x16x1xf32> return %pack : tensor<8x8x16x1xf32> } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%module_op: !transform.any_op {transform.readonly}) { %pack = transform.structured.match ops{["tensor.pack"]} in %module_op : (!transform.any_op) -> !transform.op<"tensor.pack"> transform.structured.lower_pack %pack : (!transform.op<"tensor.pack">) -> (!transform.op<"tensor.pad">, !transform.op<"tensor.expand_shape">, !transform.op<"linalg.transpose">) transform.yield } } // ----- // CHECK-LABEL: func.func @pack_as_pad( func.func @pack_as_pad(%arg0: tensor<129x47x16x16xf32>, %arg1: tensor<1x1x1x1x136x64x16x16xf32>) -> tensor<1x1x1x1x136x64x16x16xf32> { %cst_0 = arith.constant 0.0 : f32 // tensor.pack is lowered to tensor.pad + tensor.insert_slice // CHECK: %[[PAD:.*]] = tensor.pad {{.*}} low[0, 0, 0, 0] // CHECK: : tensor<129x47x16x16xf32> to tensor<136x64x16x16xf32> // CHECK: %[[EMPTY:.*]] = tensor.empty() : tensor<1x1x1x1x136x64x16x16xf32> // CHECK: %[[RES:.*]] = tensor.insert_slice %[[PAD]] into %[[EMPTY]] // offsets. // CHECK-SAME: [0, 0, 0, 0, 0, 0, 0, 0] // sizes. // CHECK-SAME: [1, 1, 1, 1, 136, 64, 16, 16] // strides multipliers. // CHECK-SAME: [1, 1, 1, 1, 1, 1, 1, 1] // CHECK-SAME: : tensor<136x64x16x16xf32> into tensor<1x1x1x1x136x64x16x16xf32> // CHECK: return %[[RES]] %pack = tensor.pack %arg0 padding_value(%cst_0 : f32) inner_dims_pos = [0, 1, 2, 3] inner_tiles = [136, 64, 16, 16] into %arg1 : tensor<129x47x16x16xf32> -> tensor<1x1x1x1x136x64x16x16xf32> return %pack : tensor<1x1x1x1x136x64x16x16xf32> } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%module_op: !transform.any_op {transform.readonly}) { %pack = transform.structured.match ops{["tensor.pack"]} in %module_op : (!transform.any_op) -> !transform.op<"tensor.pack"> transform.structured.lower_pack %pack : (!transform.op<"tensor.pack">) -> (!transform.op<"tensor.pad">, !transform.op<"tensor.expand_shape">, !transform.op<"linalg.transpose">) transform.yield } } // ----- // Check that we don't lower the following pack as a pad. // Although all the outer most dimensions in the resulting shape are 1s, // some of the original dimensions are not part of the inner_dims_pos, hence // some transpose needs to happen. // CHECK-LABEL: func.func @pack_not_a_pad( func.func @pack_not_a_pad(%arg0: tensor<129x47x16x16xf32>, %arg1: tensor<1x1x16x16x136x64xf32>) -> tensor<1x1x16x16x136x64xf32> { %cst_0 = arith.constant 0.0 : f32 // CHECK: tensor.pad {{.*}} low[0, 0, 0, 0] // CHECK: : tensor<129x47x16x16xf32> to tensor<136x64x16x16xf32> // CHECK: tensor.expand_shape %{{.*}} [{{.*}}[0, 1], [2, 3], [4], [5]] // CHECK-SAME: : tensor<136x64x16x16xf32> into tensor<1x136x1x64x16x16xf32> // CHECK: linalg.transpose // CHECK-SAME: ins(%{{.*}} : tensor<1x136x1x64x16x16xf32>) // CHECK-SAME: outs(%{{.*}} : tensor<1x1x16x16x136x64xf32>) // CHECK-SAME: permutation = [0, 2, 4, 5, 1, 3] %pack = tensor.pack %arg0 padding_value(%cst_0 : f32) inner_dims_pos = [0, 1] inner_tiles = [136, 64] into %arg1 : tensor<129x47x16x16xf32> -> tensor<1x1x16x16x136x64xf32> return %pack : tensor<1x1x16x16x136x64xf32> } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%module_op: !transform.any_op {transform.readonly}) { %pack = transform.structured.match ops{["tensor.pack"]} in %module_op : (!transform.any_op) -> !transform.op<"tensor.pack"> transform.structured.lower_pack %pack : (!transform.op<"tensor.pack">) -> (!transform.op<"tensor.pad">, !transform.op<"tensor.expand_shape">, !transform.op<"linalg.transpose">) transform.yield } } // ----- // CHECK-LABEL: func.func @unpack( func.func @unpack(%arg0: tensor<17x2x16x16x32x8xf32>, %arg1: tensor<129x47x16x16xf32>) -> tensor<129x47x16x16xf32> { %cst_0 = arith.constant 0.0 : f32 // CHECK-SAME: %[[ARG0:.*]]: tensor<17x2x16x16x32x8xf32>, %[[ARG1:.*]]: tensor<129x47x16x16xf32> // CHECK: %[[EMPTY:.*]] = tensor.empty() : tensor<17x8x2x32x16x16xf32> // CHECK: %[[TRAN:.*]] = linalg.transpose // CHECK-SAME: ins(%[[ARG0]] : tensor<17x2x16x16x32x8xf32>) // CHECK-SAME: outs(%[[EMPTY]] : tensor<17x8x2x32x16x16xf32>) // CHECK-SAME: permutation = [0, 5, 1, 4, 2, 3] // CHECK: %[[CLP:.*]] = tensor.collapse_shape %[[TRAN]] {{\[}}[0, 1], [2, 3], [4], [5]] // CHECK-SAME: : tensor<17x8x2x32x16x16xf32> into tensor<136x64x16x16xf32> // CHECK: %[[SLICE:.*]] = tensor.extract_slice %[[CLP]][0, 0, 0, 0] [129, 47, 16, 16] [1, 1, 1, 1] // CHECK-SAME: : tensor<136x64x16x16xf32> to tensor<129x47x16x16xf32> // CHECK: linalg.copy ins(%[[SLICE]] : tensor<129x47x16x16xf32>) // CHECK-SAME: outs(%[[ARG1]] : tensor<129x47x16x16xf32>) %unpack = tensor.unpack %arg0 inner_dims_pos = [1, 0] inner_tiles = [32, 8] into %arg1 : tensor<17x2x16x16x32x8xf32> -> tensor<129x47x16x16xf32> return %unpack : tensor<129x47x16x16xf32> } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%module_op: !transform.any_op {transform.readonly}) { %unpack = transform.structured.match ops{["tensor.unpack"]} in %module_op : (!transform.any_op) -> !transform.op<"tensor.unpack"> transform.structured.lower_unpack %unpack : (!transform.op<"tensor.unpack">) -> (!transform.op<"tensor.empty">, !transform.op<"linalg.transpose">, !transform.op<"tensor.collapse_shape">, !transform.op<"tensor.extract_slice">) transform.yield } } // ----- // When an unpack is a plain 'unpad', lower it to a simple extract_slice. // CHECK-LABEL: func.func @unpack_as_pad( func.func @unpack_as_pad(%arg0: tensor<1x1x1x1x136x64x16x16xf32>, %arg1: tensor<129x47x16x16xf32>) -> tensor<129x47x16x16xf32> { %cst_0 = arith.constant 0.0 : f32 // CHECK-SAME: %[[ARG0:[^:]*]]: tensor<1x1x1x1x136x64x16x16xf32> // CHECK: %[[RES:.*]] = tensor.extract_slice %[[ARG0]] // offsets. // CHECK-SAME: [0, 0, 0, 0, 0, 0, 0, 0] // sizes. // CHECK-SAME: [1, 1, 1, 1, 129, 47, 16, 16] // strides multiplers. // CHECK-SAME: [1, 1, 1, 1, 1, 1, 1, 1] // CHECK-SAME: : tensor<1x1x1x1x136x64x16x16xf32> to tensor<129x47x16x16xf32> %pack = tensor.unpack %arg0 inner_dims_pos = [0, 1, 2, 3] inner_tiles = [136, 64, 16, 16] into %arg1 : tensor<1x1x1x1x136x64x16x16xf32> -> tensor<129x47x16x16xf32> return %pack : tensor<129x47x16x16xf32> } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%module_op: !transform.any_op {transform.readonly}) { %unpack = transform.structured.match ops{["tensor.unpack"]} in %module_op : (!transform.any_op) -> !transform.op<"tensor.unpack"> transform.structured.lower_unpack %unpack : (!transform.op<"tensor.unpack">) -> (!transform.op<"tensor.empty">, !transform.op<"linalg.transpose">, !transform.op<"tensor.collapse_shape">, !transform.op<"tensor.extract_slice">) transform.yield } } // ----- // CHECK-LABEL: func.func @pack_with_outer_dims_perm( func.func @pack_with_outer_dims_perm(%src: tensor<100x200x128x256xi32>, %dest: tensor<200x4x16x100x16x32xi32>) -> tensor<200x4x16x100x16x32xi32> { // CHECK: tensor.pad {{.*}} low[0, 0, 0, 0] // CHECK: : tensor<100x200x128x256xi32> to tensor<100x200x128x256xi32> // CHECK: tensor.expand_shape %{{.*}} [{{.*}}[0], [1], [2, 3], [4, 5]] // CHECK-SAME: : tensor<100x200x128x256xi32> into tensor<100x200x4x32x16x16xi32> // CHECK: linalg.transpose // CHECK-SAME: ins(%{{.*}} : tensor<100x200x4x32x16x16xi32>) // CHECK-SAME: outs(%{{.*}} : tensor<200x4x16x100x16x32xi32>) // CHECK-SAME: permutation = [1, 2, 4, 0, 5, 3] %0 = tensor.pack %src outer_dims_perm = [1, 2, 3, 0] inner_dims_pos = [3, 2] inner_tiles = [16, 32] into %dest : tensor<100x200x128x256xi32> -> tensor<200x4x16x100x16x32xi32> return %0 : tensor<200x4x16x100x16x32xi32> } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%module_op: !transform.any_op {transform.readonly}) { %pack = transform.structured.match ops{["tensor.pack"]} in %module_op : (!transform.any_op) -> !transform.op<"tensor.pack"> transform.structured.lower_pack %pack : (!transform.op<"tensor.pack">) -> (!transform.op<"tensor.pad">, !transform.op<"tensor.expand_shape">, !transform.op<"linalg.transpose">) transform.yield } } // ----- // CHECK-LABEL: func.func @pack_with_pad( func.func @pack_with_pad(%src: tensor<4225x12xf32>, %dest: tensor<265x16x16x1xf32>) -> tensor<265x16x16x1xf32> { // CHECK: tensor.pad {{.*}} low[0, 0] // CHECK: : tensor<4225x12xf32> to tensor<4240x16xf32> // CHECK: tensor.expand_shape %{{.*}} {{\[}}[0, 1], [2, 3]] // CHECK-SAME: : tensor<4240x16xf32> into tensor<265x16x16x1xf32> // CHECK: linalg.transpose // CHECK-SAME: ins(%{{[a-zA-Z0-9]*}} : tensor<265x16x16x1xf32>) // CHECK-SAME: outs(%{{[a-zA-Z0-9]*}} : tensor<265x16x16x1xf32>) // CHECK-SAME: permutation = [0, 2, 1, 3] %cst = arith.constant 0.000000e+00 : f32 %0 = tensor.pack %src padding_value(%cst : f32) inner_dims_pos = [0, 1] inner_tiles = [16, 1] into %dest : tensor<4225x12xf32> -> tensor<265x16x16x1xf32> return %0 : tensor<265x16x16x1xf32> } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%module_op: !transform.any_op {transform.readonly}) { %pack = transform.structured.match ops{["tensor.pack"]} in %module_op : (!transform.any_op) -> !transform.op<"tensor.pack"> transform.structured.lower_pack %pack : (!transform.op<"tensor.pack">) -> (!transform.op<"tensor.pad">, !transform.op<"tensor.expand_shape">, !transform.op<"linalg.transpose">) transform.yield } } // ----- // CHECK-LABEL: func.func @pack_with_pad_and_outer_dims_perm( func.func @pack_with_pad_and_outer_dims_perm(%src: tensor<100x200x127x255xi32>, %dest: tensor<200x4x16x100x16x32xi32>) -> tensor<200x4x16x100x16x32xi32> { // CHECK: tensor.pad {{.*}} low[0, 0, 0, 0] // CHECK: : tensor<100x200x127x255xi32> to tensor<100x200x128x256xi32> // CHECK: tensor.expand_shape %{{.*}} [{{.*}}[0], [1], [2, 3], [4, 5]] // CHECK-SAME: : tensor<100x200x128x256xi32> into tensor<100x200x4x32x16x16xi32> // CHECK: linalg.transpose // CHECK-SAME: ins(%{{.*}} : tensor<100x200x4x32x16x16xi32>) // CHECK-SAME: outs(%{{.*}} : tensor<200x4x16x100x16x32xi32>) // CHECK-SAME: permutation = [1, 2, 4, 0, 5, 3] %cst_0 = arith.constant 0 : i32 %0 = tensor.pack %src padding_value(%cst_0 : i32) outer_dims_perm = [1, 2, 3, 0] inner_dims_pos = [3, 2] inner_tiles = [16, 32] into %dest : tensor<100x200x127x255xi32> -> tensor<200x4x16x100x16x32xi32> return %0 : tensor<200x4x16x100x16x32xi32> } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%module_op: !transform.any_op {transform.readonly}) { %pack = transform.structured.match ops{["tensor.pack"]} in %module_op : (!transform.any_op) -> !transform.op<"tensor.pack"> transform.structured.lower_pack %pack : (!transform.op<"tensor.pack">) -> (!transform.op<"tensor.pad">, !transform.op<"tensor.expand_shape">, !transform.op<"linalg.transpose">) transform.yield } } // ----- // CHECK-DAG: #[[MAP0:.+]] = affine_map<()[s0, s1] -> (s0 * 16 - s1)> // CHECK-DAG: #[[MAP1:.+]] = affine_map<()[s0, s1] -> (s0 * 32 - s1)> // CHECK: func.func @dynamic_pack_pad_transpose_inner_and_outer_dims( // CHECK-SAME: %[[SRC:[a-zA-Z0-9]+]] func.func @dynamic_pack_pad_transpose_inner_and_outer_dims(%source: tensor) -> tensor { // CHECK-DAG: %[[C0:.+]] = arith.constant 0 : index // CHECK-DAG: %[[C1:.+]] = arith.constant 1 : index // CHECK-DAG: %[[C16:.+]] = arith.constant 16 : index // CHECK-DAG: %[[C32:.+]] = arith.constant 32 : index // CHECK-DAG: %[[D0:.+]] = tensor.dim %[[SRC]], %[[C0]] // CHECK-DAG: %[[D1:.+]] = tensor.dim %[[SRC]], %[[C1]] // CHECK-DAG: %[[OUT_D0:.+]] = arith.ceildivui %[[D1]], %[[C16]] : index // CHECK-DAG: %[[OUT_D1:.+]] = arith.ceildivui %[[D0]], %[[C32]] : index // CHECK-DAG: %[[EMPTY:.+]] = tensor.empty(%[[OUT_D0]], %[[OUT_D1]]) : tensor // CHECK-DAG: %[[DEST_D0:.+]] = tensor.dim %[[EMPTY]], %[[C0]] // CHECK-DAG: %[[DEST_D1:.+]] = tensor.dim %[[EMPTY]], %[[C1]] // CHECK-DAG: %[[H1:.+]] = affine.apply #[[MAP0]]()[%[[DEST_D0]], %[[D1]]] // CHECK-DAG: %[[H0:.+]] = affine.apply #[[MAP1]]()[%[[DEST_D1]], %[[D0]]] // CHECK: %[[PAD:.+]] = tensor.pad %[[SRC]] low[0, 0] high[%[[H0]], %[[H1]]] // CHECK: : tensor to tensor // CHECK: %[[EXPAND:.+]] = tensor.expand_shape %[[PAD]] {{\[}}[0, 1], [2, 3]] // CHECK-SAME: : tensor into tensor // CHECK: %[[TRANSP:.+]] = linalg.transpose // CHECK-SAME: ins(%[[EXPAND]] : tensor) // CHECK-SAME: outs(%[[EMPTY]] : tensor) // CHECK-SAME: permutation = [2, 0, 3, 1] // CHECK: return %[[TRANSP]] %c0 = arith.constant 0 : index %c1 = arith.constant 1 : index %d0 = tensor.dim %source, %c0 : tensor %d1 = tensor.dim %source, %c1 : tensor %padding_value = arith.constant 0.0 : f32 %c16 = arith.constant 16 : index %c32 = arith.constant 32 : index %tiled_d0 = arith.ceildivui %d0, %c32 : index %tiled_d1 = arith.ceildivui %d1, %c16 : index %init_pack = tensor.empty(%tiled_d1, %tiled_d0) : tensor %pack = tensor.pack %source padding_value(%padding_value : f32) outer_dims_perm = [1, 0] inner_dims_pos = [1, 0] inner_tiles = [16, 32] into %init_pack : tensor -> tensor return %pack : tensor } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%module_op: !transform.any_op {transform.readonly}) { %pack = transform.structured.match ops{["tensor.pack"]} in %module_op : (!transform.any_op) -> !transform.op<"tensor.pack"> transform.structured.lower_pack %pack : (!transform.op<"tensor.pack">) -> (!transform.op<"tensor.pad">, !transform.op<"tensor.expand_shape">, !transform.op<"linalg.transpose">) transform.yield } } // ----- // CHECK-LABEL: func.func @pack_as_pad_with_outer_dims_perm( func.func @pack_as_pad_with_outer_dims_perm(%arg0: tensor<129x47x16x16xf32>, %arg1: tensor<1x1x1x1x136x64x16x16xf32>) -> tensor<1x1x1x1x136x64x16x16xf32> { %cst_0 = arith.constant 0.0 : f32 // tensor.pack is lowered to tensor.pad + tensor.insert_slice // CHECK: %[[PAD:.*]] = tensor.pad {{.*}} low[0, 0, 0, 0] // CHECK: : tensor<129x47x16x16xf32> to tensor<136x64x16x16xf32> // CHECK: %[[EMPTY:.*]] = tensor.empty() : tensor<1x1x1x1x136x64x16x16xf32> // CHECK: %[[RES:.*]] = tensor.insert_slice %[[PAD]] into %[[EMPTY]] // offsets. // CHECK-SAME: [0, 0, 0, 0, 0, 0, 0, 0] // sizes. // CHECK-SAME: [1, 1, 1, 1, 136, 64, 16, 16] // strides multipliers. // CHECK-SAME: [1, 1, 1, 1, 1, 1, 1, 1] // CHECK-SAME: : tensor<136x64x16x16xf32> into tensor<1x1x1x1x136x64x16x16xf32> // CHECK: return %[[RES]] %pack = tensor.pack %arg0 padding_value(%cst_0 : f32) outer_dims_perm = [1, 2, 3, 0] inner_dims_pos = [0, 1, 2, 3] inner_tiles = [136, 64, 16, 16] into %arg1 : tensor<129x47x16x16xf32> -> tensor<1x1x1x1x136x64x16x16xf32> return %pack : tensor<1x1x1x1x136x64x16x16xf32> } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%module_op: !transform.any_op {transform.readonly}) { %pack = transform.structured.match ops{["tensor.pack"]} in %module_op : (!transform.any_op) -> !transform.op<"tensor.pack"> transform.structured.lower_pack %pack : (!transform.op<"tensor.pack">) -> (!transform.op<"tensor.pad">, !transform.op<"tensor.expand_shape">, !transform.op<"linalg.transpose">) transform.yield } } // ----- // CHECK-LABEL: func.func @pack_as_pad_with_unit_dims( // CHECK: %[[SRC:.+]]: tensor<3x1x1x1xf32>, // CHECK: %[[OUT:.+]]: tensor<1x1x1x1x8x1xf32>) func.func @pack_as_pad_with_unit_dims(%arg0: tensor<3x1x1x1xf32>, %arg1: tensor<1x1x1x1x8x1xf32>) -> (tensor<1x1x1x1x8x1xf32>) { %zero = arith.constant 0.0 : f32 // CHECK: %[[PAD:.+]] = tensor.pad %[[SRC]] low[0, 0, 0, 0] high[5, 0, 0, 0] { // CHECK: : tensor<3x1x1x1xf32> to tensor<8x1x1x1xf32> // CHECK: %[[EXPAND:.+]] = tensor.expand_shape %[[PAD]] [{{.*}}[0, 1], [2, 3], [4], [5]] // CHECK-SAME: tensor<8x1x1x1xf32> into tensor<1x8x1x1x1x1xf32> // CHECK: %[[TRANSPOSED:.+]] = linalg.transpose // CHECK-SAME: ins(%[[EXPAND]] : tensor<1x8x1x1x1x1xf32>) // CHECK-SAME: outs(%[[OUT]] : tensor<1x1x1x1x8x1xf32>) // CHECK-SAME: permutation = [0, 2, 4, 5, 1, 3] // CHECK: return %[[TRANSPOSED]] : tensor<1x1x1x1x8x1xf32> %pack = tensor.pack %arg0 padding_value(%zero : f32) inner_dims_pos = [0, 1] inner_tiles = [8, 1] into %arg1 : tensor<3x1x1x1xf32> -> tensor<1x1x1x1x8x1xf32> return %pack : tensor<1x1x1x1x8x1xf32> } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%module_op: !transform.any_op {transform.readonly}) { %pack = transform.structured.match ops{["tensor.pack"]} in %module_op : (!transform.any_op) -> !transform.op<"tensor.pack"> transform.structured.lower_pack %pack : (!transform.op<"tensor.pack">) -> (!transform.op<"tensor.pad">, !transform.op<"tensor.expand_shape">, !transform.op<"linalg.transpose">) transform.yield } } // ----- // Check that we can lower unpack with dynamic dimensions in the destination. // CHECK-LABEL: func.func @unpack_with_dynamic_dest( // CHECK-SAME: %[[ARG0:.*]]: tensor<32x2x49x16x16xf32>, %[[ARG1:.*]]: tensor<32x?x?xf32>) // CHECK: %[[EMPTY:.*]] = tensor.empty() : tensor<32x2x16x49x16xf32> // CHECK: %[[TRAN:.*]] = linalg.transpose // CHECK-SAME: ins(%[[ARG0]] : tensor<32x2x49x16x16xf32>) // CHECK-SAME: outs(%[[EMPTY]] : tensor<32x2x16x49x16xf32>) // CHECK-SAME: permutation = [0, 1, 3, 2, 4] // CHECK: %[[CLP:.*]] = tensor.collapse_shape %[[TRAN]] {{\[}}[0], [1, 2], [3, 4]] // CHECK-SAME: : tensor<32x2x16x49x16xf32> into tensor<32x32x784xf32> // CHECK: %[[C1:.*]] = arith.constant 1 : index // CHECK: %[[DIM1:.*]] = tensor.dim %[[ARG1]], %[[C1]] : tensor<32x?x?xf32> // CHECK: %[[C2:.*]] = arith.constant 2 : index // CHECK: %[[DIM2:.*]] = tensor.dim %[[ARG1]], %[[C2]] : tensor<32x?x?xf32> // CHECK: %[[SLICE:.*]] = tensor.extract_slice %[[CLP]][0, 0, 0] [32, %[[DIM1]], %[[DIM2]]] [1, 1, 1] // CHECK-SAME: : tensor<32x32x784xf32> to tensor<32x?x?xf32> // CHECK: linalg.copy ins(%[[SLICE]] : tensor<32x?x?xf32>) // CHECK-SAME: outs(%[[ARG1]] : tensor<32x?x?xf32>) func.func @unpack_with_dynamic_dest(%arg0: tensor<32x2x49x16x16xf32>, %arg1: tensor<32x?x?xf32>) -> tensor<32x?x?xf32> { %pack = tensor.unpack %arg0 inner_dims_pos = [1, 2] inner_tiles = [16, 16] into %arg1 : tensor<32x2x49x16x16xf32> -> tensor<32x?x?xf32> return %pack : tensor<32x?x?xf32> } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%module_op: !transform.any_op {transform.readonly}) { %unpack = transform.structured.match ops{["tensor.unpack"]} in %module_op : (!transform.any_op) -> !transform.op<"tensor.unpack"> transform.structured.lower_unpack %unpack : (!transform.op<"tensor.unpack">) -> (!transform.op<"tensor.empty">, !transform.op<"linalg.transpose">, !transform.op<"tensor.collapse_shape">, !transform.op<"tensor.extract_slice">) transform.yield } } // ----- // Check that we can lower unpack with dynamic dimensions in the input and destination. // CHECK-LABEL: func.func @unpack_with_dynamic_input_dest( // CHECK-SAME: %[[ARG0:.*]]: tensor, %[[ARG1:.*]]: tensor) // CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index // CHECK-DAG: %[[C1:.*]] = arith.constant 1 : index // CHECK-DAG: %[[DIM00:.*]] = tensor.dim %[[ARG0]], %[[C0]] // CHECK-DAG: %[[DIM01:.*]] = tensor.dim %[[ARG0]], %[[C1]] // CHECK: %[[EMPTY:.*]] = tensor.empty(%[[DIM00]], %[[DIM01]]) : tensor // CHECK: %[[TRAN:.*]] = linalg.transpose // CHECK-SAME: ins(%[[ARG0]] : tensor) // CHECK-SAME: outs(%[[EMPTY]] : tensor) // CHECK-SAME: permutation = [0, 2, 1, 3] // CHECK: %[[CLP:.*]] = tensor.collapse_shape %[[TRAN]] {{\[}}[0, 1], [2, 3]] // CHECK-SAME: : tensor into tensor // CHECK: %[[DIM10:.*]] = tensor.dim %[[ARG1]], %[[C0]] : tensor // CHECK: %[[DIM11:.*]] = tensor.dim %[[ARG1]], %[[C1]] : tensor // CHECK: %[[SLICE:.*]] = tensor.extract_slice %[[CLP]][0, 0] [%[[DIM10]], %[[DIM11]]] [1, 1] // CHECK-SAME: : tensor to tensor // CHECK: linalg.copy ins(%[[SLICE]] : tensor) // CHECK-SAME: outs(%[[ARG1]] : tensor) func.func @unpack_with_dynamic_input_dest(%arg0: tensor, %arg1: tensor) -> tensor { %unpack = tensor.unpack %arg0 inner_dims_pos = [0, 1] inner_tiles = [8, 16] into %arg1 : tensor -> tensor return %unpack : tensor } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%module_op: !transform.any_op {transform.readonly}) { %unpack = transform.structured.match ops{["tensor.unpack"]} in %module_op : (!transform.any_op) -> !transform.op<"tensor.unpack"> transform.structured.lower_unpack %unpack : (!transform.op<"tensor.unpack">) -> (!transform.op<"tensor.empty">, !transform.op<"linalg.transpose">, !transform.op<"tensor.collapse_shape">, !transform.op<"tensor.extract_slice">) transform.yield } } // ----- // Check that we can lower unpack with dynamic dimensions in the input, destination, inner_tiles. // CHECK-LABEL: func.func @unpack_fully_dynamic( // CHECK-SAME: %[[ARG0:.*]]: tensor, %[[ARG1:.*]]: tensor, %[[ARG2:.*]]: index, %[[ARG3:.*]]: index) // CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index // CHECK-DAG: %[[C1:.*]] = arith.constant 1 : index // CHECK-DAG: %[[C2:.*]] = arith.constant 2 : index // CHECK-DAG: %[[C3:.*]] = arith.constant 3 : index // CHECK-DAG: %[[DIM00:.*]] = tensor.dim %[[ARG0]], %[[C0]] // CHECK-DAG: %[[DIM01:.*]] = tensor.dim %[[ARG0]], %[[C1]] // CHECK-DAG: %[[DIM02:.*]] = tensor.dim %[[ARG0]], %[[C2]] // CHECK-DAG: %[[DIM03:.*]] = tensor.dim %[[ARG0]], %[[C3]] // CHECK: %[[EMPTY:.*]] = tensor.empty(%[[DIM00]], %[[DIM02]], %[[DIM01]], %[[DIM03]]) : tensor // CHECK: %[[TRAN:.*]] = linalg.transpose // CHECK-SAME: ins(%[[ARG0]] : tensor) // CHECK-SAME: outs(%[[EMPTY]] : tensor) // CHECK-SAME: permutation = [0, 2, 1, 3] // CHECK: %[[CLP:.*]] = tensor.collapse_shape %[[TRAN]] {{\[}}[0, 1], [2, 3]] // CHECK-SAME: : tensor into tensor // CHECK: %[[DIM10:.*]] = tensor.dim %[[ARG1]], %[[C0]] : tensor // CHECK: %[[DIM11:.*]] = tensor.dim %[[ARG1]], %[[C1]] : tensor // CHECK: %[[SLICE:.*]] = tensor.extract_slice %[[CLP]][0, 0] [%[[DIM10]], %[[DIM11]]] [1, 1] // CHECK-SAME: : tensor to tensor // CHECK: linalg.copy ins(%[[SLICE]] : tensor) // CHECK-SAME: outs(%[[ARG1]] : tensor) func.func @unpack_fully_dynamic(%source: tensor, %dest: tensor, %tile_n : index, %tile_m : index) -> tensor { %0 = tensor.unpack %source inner_dims_pos = [0, 1] inner_tiles = [%tile_n, %tile_m] into %dest : tensor -> tensor return %0 : tensor } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%module_op: !transform.any_op {transform.readonly}) { %unpack = transform.structured.match ops{["tensor.unpack"]} in %module_op : (!transform.any_op) -> !transform.op<"tensor.unpack"> transform.structured.lower_unpack %unpack : (!transform.op<"tensor.unpack">) -> (!transform.op<"tensor.empty">, !transform.op<"linalg.transpose">, !transform.op<"tensor.collapse_shape">, !transform.op<"tensor.extract_slice">) transform.yield } } // ----- // Check that we can lower unpack "as unpad" with dynamic dims. // CHECK-LABEL: func.func @unpack_as_pad_dynamic( // CHECK-SAME: %[[ARG0:.*]]: tensor<1x1x1x1x?x?x?x?xf32>, %[[ARG1:.*]]: tensor // CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index // CHECK-DAG: %[[C1:.*]] = arith.constant 1 : index // CHECK-DAG: %[[C2:.*]] = arith.constant 2 : index // CHECK-DAG: %[[C3:.*]] = arith.constant 3 : index // CHECK-DAG: %[[DIM0:.*]] = tensor.dim %[[ARG1]], %[[C0]] // CHECK-DAG: %[[DIM1:.*]] = tensor.dim %[[ARG1]], %[[C1]] // CHECK-DAG: %[[DIM2:.*]] = tensor.dim %[[ARG1]], %[[C2]] // CHECK-DAG: %[[DIM3:.*]] = tensor.dim %[[ARG1]], %[[C3]] // CHECK: %[[RES:.*]] = tensor.extract_slice %[[ARG0]] // offsets. // CHECK-SAME: [0, 0, 0, 0, 0, 0, 0, 0] // sizes. // CHECK-SAME: [1, 1, 1, 1, %[[DIM0]], %[[DIM1]], %[[DIM2]], %[[DIM3]]] // strides multiplers. // CHECK-SAME: [1, 1, 1, 1, 1, 1, 1, 1] // CHECK-SAME: : tensor<1x1x1x1x?x?x?x?xf32> to tensor func.func @unpack_as_pad_dynamic(%arg0: tensor<1x1x1x1x?x?x?x?xf32>, %arg1: tensor) -> tensor { %pack = tensor.unpack %arg0 inner_dims_pos = [0, 1, 2, 3] inner_tiles = [136, 64, 16, 16] into %arg1 : tensor<1x1x1x1x?x?x?x?xf32> -> tensor return %pack : tensor } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%module_op: !transform.any_op {transform.readonly}) { %unpack = transform.structured.match ops{["tensor.unpack"]} in %module_op : (!transform.any_op) -> !transform.op<"tensor.unpack"> transform.structured.lower_unpack %unpack : (!transform.op<"tensor.unpack">) -> (!transform.op<"tensor.empty">, !transform.op<"linalg.transpose">, !transform.op<"tensor.collapse_shape">, !transform.op<"tensor.extract_slice">) transform.yield } } // ----- // At the moment, we cannot lower tensor.unpack with outer_dims_perm. func.func @diagnostic_unpack(%arg0: tensor<32x64xf32>, %arg1: tensor<2x4x32x8xf32>) -> tensor<32x64xf32> { // expected-note @below {{target payload op}} %unpack = tensor.unpack %arg1 outer_dims_perm = [1, 0] inner_dims_pos = [1, 0] inner_tiles = [32, 8] into %arg0 : tensor<2x4x32x8xf32> -> tensor<32x64xf32> return %unpack : tensor<32x64xf32> } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%module_op: !transform.any_op {transform.readonly}) { %unpack = transform.structured.match ops{["tensor.unpack"]} in %module_op : (!transform.any_op) -> !transform.op<"tensor.unpack"> // expected-error @below {{cannot lower to transpose + collapse + extract}} transform.structured.lower_unpack %unpack : (!transform.op<"tensor.unpack">) -> (!transform.op<"tensor.empty">, !transform.op<"linalg.transpose">, !transform.op<"tensor.collapse_shape">, !transform.op<"tensor.extract_slice">) transform.yield } }