// RUN: mlir-opt %s --transform-interpreter --split-input-file -canonicalize | FileCheck %s // CHECK-LABEL: func.func @fuse_unary func.func @fuse_unary(%arg0: tensor, %arg1: tensor) -> tensor { // CHECK: %[[RES:.*]] = scf.for // CHECK: scf.for // CHECK: linalg.elemwise_unary // CHECK: linalg.elemwise_binary // CHECK: return %[[RES]] %0 = linalg.elemwise_unary ins(%arg0 : tensor) outs(%arg1: tensor) -> tensor %1 = linalg.elemwise_binary ins(%0, %arg0 : tensor, tensor) outs(%arg1: tensor) -> tensor return %1 : tensor } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.elemwise_binary"]} in %arg1 : (!transform.any_op) -> !transform.any_op %1, %loops:2 = transform.structured.fuse %0 {tile_sizes = [32, 32], tile_interchange = [0, 1]} : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op) transform.yield } } // ----- // CHECK-LABEL: func.func @fuse_unary func.func @fuse_unary(%arg0: tensor, %arg1: tensor) -> tensor { // CHECK: %[[PARTIAL_RES:.*]] = scf.for // CHECK: scf.for // CHECK: linalg.elemwise_unary // CHECK: linalg.elemwise_binary // CHECK: %[[RES:.*]] = scf.for {{.*}}%[[PARTIAL_RES]] // CHECK: scf.for // CHECK: linalg.elemwise_unary // CHECK: linalg.elemwise_binary // CHECK: return %[[RES]] %0 = linalg.elemwise_unary ins(%arg0 : tensor) outs(%arg1: tensor) -> tensor %1 = linalg.elemwise_binary ins(%0, %arg0 : tensor, tensor) outs(%arg1: tensor) -> tensor return %1 : tensor } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.elemwise_binary"]} in %arg1 : (!transform.any_op) -> !transform.any_op %1, %loops:2 = transform.structured.fuse %0 {tile_sizes = [32, 32], tile_interchange = [0, 1]} : (!transform.any_op) -> (!transform.any_op, !transform.op<"scf.for">, !transform.any_op) transform.loop.peel %loops#0 : (!transform.op<"scf.for">) -> (!transform.any_op, !transform.any_op) transform.yield } } // ----- // CHECK-LABEL: func.func @interchange_reduction // CHECK-SAME: (%[[INPUT:.+]]: tensor<12x7x25xf32>) func.func @interchange_reduction(%input: tensor<12x7x25xf32>) -> tensor<12x25xf32> { %five = arith.constant 5.0 : f32 %init = tensor.empty() : tensor<12x25xf32> // CHECK-DAG: %[[INIT:.+]] = tensor.empty() // CHECK-DAG: %[[C5:.+]] = arith.constant 5 : index // CHECK-DAG: %[[C7:.+]] = arith.constant 7 : index // CHECK-DAG: %[[C4:.+]] = arith.constant 4 : index // CHECK: %[[RES:.*]] = scf.for %[[IV0:.+]] = %{{.+}} to %{{.+}} step %[[C5]] iter_args(%[[FOR_ARG0:.+]] = %[[INIT]]) // CHECK: scf.for %[[IV1:.+]] = %{{.+}} to %{{.+}} step %[[C7]] iter_args(%[[FOR_ARG1:.+]] = %[[FOR_ARG0]]) // CHECK: %[[OUT_SLICE0:.+]] = tensor.extract_slice %[[INPUT]][%[[IV0]], 0, %[[IV1]]] // CHECK: %[[OUT_SLICE1:.+]] = tensor.extract_slice %[[FOR_ARG1]][%[[IV0]], %[[IV1]]] // CHECK: %[[FILL:.+]] = linalg.fill {{.+}} outs(%[[OUT_SLICE1]] : tensor) // CHECK: scf.for %[[IV2:.+]] = %{{.+}} to %{{.+}} step %[[C4]] iter_args(%[[FOR_ARG2:.+]] = %[[FILL]]) // CHECK: %[[IN_SLICE:.+]] = tensor.extract_slice %[[OUT_SLICE0]] // CHECK: %[[OUT_SLICE2:.+]] = tensor.extract_slice %[[FOR_ARG2]][0, 0] // CHECK: linalg.generic {{.+}} ins(%[[IN_SLICE]] : tensor) outs(%[[OUT_SLICE2]] : tensor) // CHECK: return %[[RES]] %fill = linalg.fill ins(%five : f32) outs(%init : tensor<12x25xf32>) -> tensor<12x25xf32> %0 = linalg.generic { indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d1, d2)>, affine_map<(d0, d1, d2) -> (d0, d2)>], iterator_types = ["parallel", "reduction", "parallel"] } ins(%input : tensor<12x7x25xf32>) outs(%fill : tensor<12x25xf32>) { ^bb0(%arg0: f32, %arg1: f32): %2 = arith.addf %arg0, %arg1 : f32 linalg.yield %2 : f32 } -> tensor<12x25xf32> func.return %0 : tensor<12x25xf32> } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op %1, %loops:2 = transform.structured.fuse %0 {tile_sizes = [5, 0, 7], tile_interchange = [0, 2, 1]} : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op) %2, %loops_2 = transform.structured.tile_using_for %1 [0, 4] : (!transform.any_op) -> (!transform.any_op, !transform.any_op) transform.yield } } // ----- // CHECK-LABEL: func.func @unpack_elemwise // CHECK: %[[RES:.*]] = scf.for // CHECK: scf.for // CHECK: tensor.unpack // CHECK: linalg.elemwise_unary // CHECK: return %[[RES]] func.func @unpack_elemwise(%arg0: tensor<16x48x8x8xf32>, %arg1: tensor<128x384xf32>) -> tensor<128x384xf32> { %0 = tensor.empty() : tensor<128x384xf32> %1 = tensor.unpack %arg0 inner_dims_pos = [0, 1] inner_tiles = [8, 8] into %0 : tensor<16x48x8x8xf32> -> tensor<128x384xf32> %2 = linalg.elemwise_unary ins(%1: tensor<128x384xf32>) outs(%arg1: tensor<128x384xf32>) -> tensor<128x384xf32> return %2 : tensor<128x384xf32> } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.elemwise_unary"]} in %arg1 : (!transform.any_op) -> !transform.any_op %1, %loops:2 = transform.structured.fuse %0 {tile_sizes = [16, 32], tile_interchange = [0, 1]} : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op) transform.yield } } // ----- // CHECK-LABEL: func.func @pack_elemwise // CHECK: %[[RES:.*]] = scf.for // CHECK: scf.for // CHECK: tensor.pack // CHECK: linalg.elemwise_unary // CHECK: return %[[RES]] func.func @pack_elemwise(%arg0: tensor<128x384xf32>, %arg1: tensor<16x48x8x8xf32>) -> tensor<16x48x8x8xf32> { %0 = tensor.empty() : tensor<16x48x8x8xf32> %1 = tensor.pack %arg0 inner_dims_pos = [0, 1] inner_tiles = [8, 8] into %0 : tensor<128x384xf32> -> tensor<16x48x8x8xf32> %2 = linalg.elemwise_unary ins(%1: tensor<16x48x8x8xf32>) outs(%arg1: tensor<16x48x8x8xf32>) -> tensor<16x48x8x8xf32> return %2 : tensor<16x48x8x8xf32> } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.elemwise_unary"]} in %arg1 : (!transform.any_op) -> !transform.any_op %1, %loops:2 = transform.structured.fuse %0 {tile_sizes = [3, 5, 0, 0]} : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op) transform.yield } } // ----- // CHECK-LABEL: func.func @nofuse_pack_elemwise // CHECK: tensor.pack // CHECK: %[[RES:.*]] = scf.for // CHECK: scf.for // CHECK: linalg.elemwise_unary // CHECK: return %[[RES]] func.func @nofuse_pack_elemwise(%arg0: tensor<128x384xf32>, %arg1: tensor<16x48x8x8xf32>) -> tensor<16x48x8x8xf32> { %0 = tensor.empty() : tensor<16x48x8x8xf32> %1 = tensor.pack %arg0 inner_dims_pos = [0, 1] inner_tiles = [8, 8] into %0 : tensor<128x384xf32> -> tensor<16x48x8x8xf32> %2 = linalg.elemwise_unary ins(%1: tensor<16x48x8x8xf32>) outs(%arg1: tensor<16x48x8x8xf32>) -> tensor<16x48x8x8xf32> return %2 : tensor<16x48x8x8xf32> } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.elemwise_unary"]} in %arg1 : (!transform.any_op) -> !transform.any_op %1, %loops:3 = transform.structured.fuse %0 {tile_sizes = [3, 5, 2, 0]} : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op, !transform.any_op) transform.yield } }