// RUN: mlir-opt -transform-interpreter -split-input-file -verify-diagnostics -allow-unregistered-dialect %s | FileCheck %s !tt = tensor<8xf16> // CHECK-LABEL: func @copy_1d_8xf16 func.func @copy_1d_8xf16(%t0: !tt, %out: !tt) -> !tt { /// Too little data for all threads, needs predication, while keeping most /// minor transfer size -> 1 thread. // CHECK: scf.forall {{.*}} in (1) {{.*}} // CHECK: linalg.copy {{.*}} -> tensor<8xf16> // CHECK: {mapping = [#gpu.thread]} %0 = linalg.copy ins(%t0: !tt) outs(%out: !tt) -> !tt return %0 : !tt } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.copy"]} in %arg1 : (!transform.any_op) -> !transform.any_op transform.structured.gpu.map_copy_to_threads %0 total_num_threads = 32 desired_bit_alignment = 128 : (!transform.any_op) -> (!transform.op<"scf.forall">, !transform.op<"linalg.copy">) transform.yield } } // ----- !tt = tensor<8xf16> !tin = tensor // CHECK-LABEL: func @pad_1d_8xf16 func.func @pad_1d_8xf16(%t0: !tin, %sz: index) -> !tt { %cst = arith.constant 0.0 : f16 /// Too little data for all threads, needs predication, while keeping most /// minor transfer size -> 1 thread. // CHECK: scf.forall {{.*}} in (1) {{.*}} // CHECK: %[[padded:.*]] = tensor.pad {{.*}} // CHECK: tensor.cast %[[padded]] : tensor to tensor<8xf16> // CHECK: {mapping = [#gpu.thread]} %0 = tensor.pad %t0 low[0] high[%sz] { ^bb0(%arg0: index): tensor.yield %cst : f16 } : !tin to !tt return %0 : !tt } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["tensor.pad"]} in %arg1 : (!transform.any_op) -> !transform.any_op transform.structured.gpu.map_copy_to_threads %0 total_num_threads = 32 desired_bit_alignment = 128 : (!transform.any_op) -> (!transform.op<"scf.forall">, !transform.op<"tensor.pad">) transform.yield } } // ----- !tt = tensor<16xf16> // CHECK-LABEL: func @copy_1d_16xf16 func.func @copy_1d_16xf16(%t0: !tt, %out: !tt) -> !tt { /// Too little data for all threads, needs predication, while keeping most /// minor transfer size -> 2 threads. // CHECK: scf.forall {{.*}} in (2) {{.*}} // CHECK: linalg.copy {{.*}} -> tensor<8xf16> // CHECK: {mapping = [#gpu.thread]} %0 = linalg.copy ins(%t0: !tt) outs(%out: !tt) -> !tt return %0 : !tt } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.copy"]} in %arg1 : (!transform.any_op) -> !transform.any_op transform.structured.gpu.map_copy_to_threads %0 total_num_threads = 32 desired_bit_alignment = 128 : (!transform.any_op) -> (!transform.op<"scf.forall">, !transform.op<"linalg.copy">) transform.yield } } // ----- !tt = tensor<20xf16> // CHECK-LABEL: func @copy_1d_20xf16 func.func @copy_1d_20xf16(%t0: !tt, %out: !tt) -> !tt { /// Too little data for all threads, needs predication, while keeping most /// minor transfer size -> 5 threads. // CHECK: scf.forall {{.*}} in (5) {{.*}} // CHECK: linalg.copy {{.*}} -> tensor<4xf16> // CHECK: {mapping = [#gpu.thread]} %0 = linalg.copy ins(%t0: !tt) outs(%out: !tt) -> !tt return %0 : !tt } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.copy"]} in %arg1 : (!transform.any_op) -> !transform.any_op transform.structured.gpu.map_copy_to_threads %0 total_num_threads = 32 desired_bit_alignment = 128 : (!transform.any_op) -> (!transform.op<"scf.forall">, !transform.op<"linalg.copy">) transform.yield } } // ----- !tt = tensor<20xf16> // CHECK-LABEL: func @copy_1d_20xf16 func.func @copy_1d_20xf16(%t0: !tt, %out: !tt) -> !tt { /// Too little data for all threads, needs predication, while keeping most /// minor transfer size -> 5 threads. // CHECK: scf.forall {{.*}} in (5) {{.*}} // CHECK: linalg.copy {{.*}} -> tensor<4xf16> // CHECK: {mapping = [#gpu.thread]} %0 = linalg.copy ins(%t0: !tt) outs(%out: !tt) -> !tt return %0 : !tt } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.copy"]} in %arg1 : (!transform.any_op) -> !transform.any_op transform.structured.gpu.map_copy_to_threads %0 total_num_threads = 32 desired_bit_alignment = 128 : (!transform.any_op) -> (!transform.op<"scf.forall">, !transform.op<"linalg.copy">) transform.yield } } // ----- !tt = tensor<128xf16> // CHECK-LABEL: func @copy_1d_128xf16 func.func @copy_1d_128xf16(%t0: !tt, %out: !tt) -> !tt { /// Enough data for all threads and no need for predication but we must reduce /// the transfer size to 4xf16. // CHECK: scf.forall {{.*}} in (32) {{.*}} // CHECK: linalg.copy {{.*}} -> tensor<4xf16> // CHECK: {mapping = [#gpu.thread]} %0 = linalg.copy ins(%t0: !tt) outs(%out: !tt) -> !tt return %0 : !tt } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.copy"]} in %arg1 : (!transform.any_op) -> !transform.any_op transform.structured.gpu.map_copy_to_threads %0 total_num_threads = 32 desired_bit_alignment = 128 : (!transform.any_op) -> (!transform.op<"scf.forall">, !transform.op<"linalg.copy">) transform.yield } } // ----- !tt = tensor<256xf16> // CHECK-LABEL: func @copy_1d_256xf16 func.func @copy_1d_256xf16(%t0: !tt, %out: !tt) -> !tt { /// Enough data for all threads and no need for predication. // CHECK: scf.forall {{.*}} in (32) {{.*}} // CHECK: linalg.copy {{.*}} -> tensor<8xf16> // CHECK: {mapping = [#gpu.thread]} %0 = linalg.copy ins(%t0: !tt) outs(%out: !tt) -> !tt return %0 : !tt } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.copy"]} in %arg1 : (!transform.any_op) -> !transform.any_op transform.structured.gpu.map_copy_to_threads %0 total_num_threads = 32 desired_bit_alignment = 128 : (!transform.any_op) -> (!transform.op<"scf.forall">, !transform.op<"linalg.copy">) transform.yield } } // ----- !tt = tensor<16x32x64xi8> // CHECK-LABEL: func @copy_3d_16x32x64xi8 func.func @copy_3d_16x32x64xi8(%t0: !tt, %out: !tt) -> !tt { // CHECK: scf.forall {{.*}} in (1, 8, 4) {{.*}} // CHECK: linalg.copy {{.*}} -> tensor<16x4x16xi8> // CHECK: {mapping = [#gpu.thread, #gpu.thread, #gpu.thread]} %0 = linalg.copy ins(%t0: !tt) outs(%out: !tt) -> !tt return %0 : !tt } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.copy"]} in %arg1 : (!transform.any_op) -> !transform.any_op transform.structured.gpu.map_copy_to_threads %0 total_num_threads = 32 desired_bit_alignment = 128 : (!transform.any_op) -> (!transform.op<"scf.forall">, !transform.op<"linalg.copy">) transform.yield } } // ----- !tt = tensor<16x32x64xi8> // CHECK-LABEL: func @copy_3d_16x32x64xi8 func.func @copy_3d_16x32x64xi8(%t0: !tt, %out: !tt) -> !tt { // CHECK: scf.forall {{.*}} in (1, 4, 8) {{.*}} // CHECK: linalg.copy {{.*}} -> tensor<16x8x8xi8> // CHECK: {mapping = [#gpu.thread, #gpu.thread, #gpu.thread]} %0 = linalg.copy ins(%t0: !tt) outs(%out: !tt) -> !tt return %0 : !tt } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.copy"]} in %arg1 : (!transform.any_op) -> !transform.any_op transform.structured.gpu.map_copy_to_threads %0 total_num_threads = 32 desired_bit_alignment = 64 : (!transform.any_op) -> (!transform.op<"scf.forall">, !transform.op<"linalg.copy">) transform.yield } } // ----- !tt = tensor<4x8x16xi8> // CHECK-LABEL: func @copy_3d_4x8x16xi8 func.func @copy_3d_4x8x16xi8(%t0: !tt, %out: !tt) -> !tt { // CHECK: scf.forall {{.*}} in (4, 8, 1) {{.*}} // CHECK: linalg.copy {{.*}} -> tensor<1x1x16xi8> // CHECK: {mapping = [#gpu.thread, #gpu.thread, #gpu.thread]} %0 = linalg.copy ins(%t0: !tt) outs(%out: !tt) -> !tt return %0 : !tt } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.copy"]} in %arg1 : (!transform.any_op) -> !transform.any_op transform.structured.gpu.map_copy_to_threads %0 total_num_threads = 32 desired_bit_alignment = 128 : (!transform.any_op) -> (!transform.op<"scf.forall">, !transform.op<"linalg.copy">) transform.yield } } // ----- !tt = tensor<4x8x16xi8> // CHECK-LABEL: func @copy_3d_4x8x16xi8 func.func @copy_3d_4x8x16xi8(%t0: !tt, %out: !tt) -> !tt { // CHECK: scf.forall {{.*}} in (1, 2, 16) {{.*}} // CHECK: linalg.copy {{.*}} -> tensor<4x4x1xi8> // CHECK: {mapping = [#gpu.thread, #gpu.thread, #gpu.thread]} %0 = linalg.copy ins(%t0: !tt) outs(%out: !tt) -> !tt return %0 : !tt } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.copy"]} in %arg1 : (!transform.any_op) -> !transform.any_op transform.structured.gpu.map_copy_to_threads %0 total_num_threads = 32 desired_bit_alignment = 8 : (!transform.any_op) -> (!transform.op<"scf.forall">, !transform.op<"linalg.copy">) transform.yield } } // ----- !tt = tensor<3x5x7xi8> // CHECK-LABEL: func @copy_3d_3x5x7xi8 func.func @copy_3d_3x5x7xi8(%t0: !tt, %out: !tt) -> !tt { // Best effort greedy mapping: first 7, then skip 5 (as 7*5 overflows 32), then // take 3. // DP mapping: 7 mandated most minor, then skip 5 (as 7*5 overflows 32), then // take 3. // CHECK: scf.forall {{.*}} in (3, 1, 7) {{.*}} // CHECK: linalg.copy {{.*}} -> tensor<1x5x1xi8> // CHECK: {mapping = [#gpu.thread, #gpu.thread, #gpu.thread]} %0 = linalg.copy ins(%t0: !tt) outs(%out: !tt) -> !tt return %0 : !tt } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.copy"]} in %arg1 : (!transform.any_op) -> !transform.any_op transform.structured.gpu.map_copy_to_threads %0 total_num_threads = 32 desired_bit_alignment = 8 : (!transform.any_op) -> (!transform.op<"scf.forall">, !transform.op<"linalg.copy">) transform.yield } } // ----- !tt = tensor<16x15x5xi8> // CHECK-LABEL: func @copy_3d_16x15x5xi8 func.func @copy_3d_16x15x5xi8(%t0: !tt, %out: !tt) -> !tt { // DP mapping: 5 mandated most minor, then 3 to allow 8 on the outermost. // CHECK: scf.forall {{.*}} in (8, 3, 5) {{.*}} // CHECK: linalg.copy {{.*}} -> tensor<2x5x1xi8> // CHECK: {mapping = [#gpu.thread, #gpu.thread, #gpu.thread]} %0 = linalg.copy ins(%t0: !tt) outs(%out: !tt) -> !tt return %0 : !tt } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.copy"]} in %arg1 : (!transform.any_op) -> !transform.any_op transform.structured.gpu.map_copy_to_threads %0 total_num_threads = 128 desired_bit_alignment = 8 : (!transform.any_op) -> (!transform.op<"scf.forall">, !transform.op<"linalg.copy">) transform.yield } } // ----- !tt = tensor<16x15x40xi8> // CHECK-LABEL: func @copy_3d_16x15x40xi8 func.func @copy_3d_16x15x40xi8(%t0: !tt, %out: !tt) -> !tt { // DP mapping: 5 mandated most minor, then 3 to allow 8 on the outermost. // CHECK: scf.forall {{.*}} in (8, 3, 5) {{.*}} // CHECK: linalg.copy {{.*}} -> tensor<2x5x8xi8> // CHECK: {mapping = [#gpu.thread, #gpu.thread, #gpu.thread]} %0 = linalg.copy ins(%t0: !tt) outs(%out: !tt) -> !tt return %0 : !tt } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.copy"]} in %arg1 : (!transform.any_op) -> !transform.any_op transform.structured.gpu.map_copy_to_threads %0 total_num_threads = 128 desired_bit_alignment = 64 : (!transform.any_op) -> (!transform.op<"scf.forall">, !transform.op<"linalg.copy">) transform.yield } } //////////////////////////////////////////////////////////////////////////////// // Tests below are expected to fail. //////////////////////////////////////////////////////////////////////////////// // ----- !tt = tensor<1024xf16> // NO-CHECK-LABEL-ON-EXPECTED-ERROR func.func @copy_1d_1024xf16(%t0: !tt, %out: !tt) -> !tt { /// Too much data for all threads, we do not try to recover here, this is the /// job of higher-level transformations to select better tile sizes and number /// of threads. // expected-note @below {{target op}} %0 = linalg.copy ins(%t0: !tt) outs(%out: !tt) -> !tt return %0 : !tt } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.copy"]} in %arg1 : (!transform.any_op) -> !transform.any_op // expected-error @below {{too few threads to map copy op to threads on the most minor dimension, given alignment and vector size constraints}} transform.structured.gpu.map_copy_to_threads %0 total_num_threads = 32 desired_bit_alignment = 128 : (!transform.any_op) -> (!transform.op<"scf.forall">, !transform.op<"linalg.copy">) transform.yield } } // ----- !tt = tensor<257xf16> // NO-CHECK-LABEL-ON-EXPECTED-ERROR func.func @copy_1d_257xf16(%t0: !tt, %out: !tt) -> !tt { /// Too much data for all threads, we do not try to recover here, this is the /// job of higher-level transformations to select better tile sizes and number /// of threads. // expected-note @below {{target op}} %0 = linalg.copy ins(%t0: !tt) outs(%out: !tt) -> !tt return %0 : !tt } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.copy"]} in %arg1 : (!transform.any_op) -> !transform.any_op // expected-error @below {{too few threads to map copy op to threads on the most minor dimension, given alignment and vector size constraints}} transform.structured.gpu.map_copy_to_threads %0 total_num_threads = 32 desired_bit_alignment = 128 : (!transform.any_op) -> (!transform.op<"scf.forall">, !transform.op<"linalg.copy">) transform.yield } } // ----- !tt = tensor<512xi8> // NO-CHECK-LABEL-ON-EXPECTED-ERROR func.func @copy_1d_512xi8(%t0: !tt, %out: !tt) -> !tt { /// Too much data for all threads given the forced alignment to 8b, /// we do not try to recover here, this is the job of higher-level /// transformations to select better tile sizes and number of threads. // expected-note @below {{target op}} %0 = linalg.copy ins(%t0: !tt) outs(%out: !tt) -> !tt return %0 : !tt } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.copy"]} in %arg1 : (!transform.any_op) -> !transform.any_op // expected-error @below {{too few threads to map copy op to threads on the most minor dimension, given alignment and vector size constraints}} transform.structured.gpu.map_copy_to_threads %0 total_num_threads = 32 desired_bit_alignment = 8 : (!transform.any_op) -> (!transform.op<"scf.forall">, !transform.op<"linalg.copy">) transform.yield } } // ----- !tt = tensor<16x32x64xi8> // NO-CHECK-LABEL-ON-EXPECTED-ERROR func.func @copy_3d_16x32x64xi8(%t0: !tt, %out: !tt) -> !tt { /// Too much data for all threads given the forced alignment to 8b, /// we do not try to recover here, this is the job of higher-level /// transformations to select better tile sizes and number of threads. // expected-note @below {{target op}} %0 = linalg.copy ins(%t0: !tt) outs(%out: !tt) -> !tt return %0 : !tt } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.copy"]} in %arg1 : (!transform.any_op) -> !transform.any_op // expected-error @below {{too few threads to map copy op to threads on the most minor dimension, given alignment and vector size constraints}} transform.structured.gpu.map_copy_to_threads %0 total_num_threads = 32 desired_bit_alignment = 8 : (!transform.any_op) -> (!transform.op<"scf.forall">, !transform.op<"linalg.copy">) transform.yield } }