// RUN: mlir-opt --transform-interpreter -canonicalize -split-input-file --verify-diagnostics %s | FileCheck %s func.func @pad_and_hoist_rhs( %arg0: tensor<24x12xf32>, %arg1: tensor<12x25xf32>, %arg2: tensor<24x25xf32>) -> tensor<24x25xf32> { // expected-note @below {{payload operation}} %0 = linalg.matmul ins(%arg0, %arg1 : tensor<24x12xf32>, tensor<12x25xf32>) outs(%arg2 : tensor<24x25xf32>) -> tensor<24x25xf32> func.return %0 : tensor<24x25xf32> } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %matmul = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op %matmul_l1, %loops_l1 = transform.structured.tile_using_for %matmul [5] : (!transform.any_op) -> (!transform.any_op, !transform.any_op) %matmul_padded, %0, %copy_back = transform.structured.pad %matmul_l1 { padding_values=[0.0: f32, 0.0 : f32, 0.0 : f32], padding_dimensions=[0, 1, 2], copy_back_op = "none" } : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op) // In this case, the pad op is actually empty: we only tile the first dimension // and it does not have an impact on the RHS operand. // expected-error @below {{incompatible payload operation name}} %pad = transform.get_producer_of_operand %matmul_padded[1] : (!transform.any_op) -> !transform.op<"tensor.pad"> // We do not even reach this transform op. transform.structured.hoist_pad %pad by 1 loops : (!transform.op<"tensor.pad">) -> !transform.any_op transform.yield } } // ----- func.func @pad_and_hoist_init( %arg0: tensor<24x12xf32>, %arg1: tensor<12x25xf32>, %arg2: tensor<24x25xf32>) -> tensor<24x25xf32> { // expected-note @below {{when applied to this op}} %0 = linalg.matmul ins(%arg0, %arg1 : tensor<24x12xf32>, tensor<12x25xf32>) outs(%arg2 : tensor<24x25xf32>) -> tensor<24x25xf32> func.return %0 : tensor<24x25xf32> } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %matmul = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op %matmul_l1, %loops_l1 = transform.structured.tile_using_for %matmul [5] : (!transform.any_op) -> (!transform.any_op, !transform.any_op) %matmul_padded, %0, %copy_back = transform.structured.pad %matmul_l1 { padding_values=[0.0: f32, 0.0 : f32, 0.0 : f32], padding_dimensions=[0, 1, 2], copy_back_op = "none" } : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op) %pad = transform.get_producer_of_operand %matmul_padded[2] : (!transform.any_op) -> !transform.op<"tensor.pad"> // We do not know yet how to hoist the init. // expected-error @below {{transform.structured.hoist_pad failed to apply}} transform.structured.hoist_pad %pad by 1 loops : (!transform.op<"tensor.pad">) -> !transform.any_op transform.yield } } // ----- // CHECK-LABEL: pad_and_hoist_lhs( func.func @pad_and_hoist_lhs( %arg0: tensor<24x12xf32>, %arg1: tensor<12x25xf32>, %arg2: tensor<24x25xf32>) -> tensor<24x25xf32> { // CHECK: %[[PACKED:.*]] = scf.for %{{.*}} -> (tensor<5x5x12xf32>) { // CHECK: tensor.pad %{{.*}} // CHECK: : tensor to tensor<5x12xf32> // CHECK: tensor.insert_slice %{{.*}} into %{{.*}}[%{{.*}}, 0, 0] [1, 5, 12] [1, 1, 1] // CHECK-SAME: : tensor<5x12xf32> into tensor<5x5x12xf32> // CHECK: scf.for %{{.*}} -> (tensor<24x25xf32>) { // CHECK: %[[PADDED:.*]] = tensor.extract_slice %[[PACKED]][%{{.*}}, 0, 0] [1, 5, 12] [1, 1, 1] // CHECK-SAME: : tensor<5x5x12xf32> to tensor<5x12xf32> // CHECK: linalg.matmul ins(%[[PADDED]] %0 = linalg.matmul ins(%arg0, %arg1 : tensor<24x12xf32>, tensor<12x25xf32>) outs(%arg2 : tensor<24x25xf32>) -> tensor<24x25xf32> func.return %0 : tensor<24x25xf32> } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %matmul = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op %matmul_l1, %loops_l1 = transform.structured.tile_using_for %matmul [5] : (!transform.any_op) -> (!transform.any_op, !transform.any_op) %matmul_padded, %0, %copy_back = transform.structured.pad %matmul_l1 { padding_values=[0.0: f32, 0.0 : f32, 0.0 : f32], padding_dimensions=[0, 1, 2], copy_back_op = "none" } : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op) %pad = transform.get_producer_of_operand %matmul_padded[0] : (!transform.any_op) -> !transform.any_op transform.structured.hoist_pad %pad by 1 loops : (!transform.any_op) -> !transform.any_op transform.yield } } // ----- // CHECK-LABEL: pad_and_hoist_lhs_transpose func.func @pad_and_hoist_lhs_transpose( %arg0: tensor<24x12xf32>, %arg1: tensor<12x25xf32>, %arg2: tensor<24x25xf32>) -> tensor<24x25xf32> { // CHECK: %[[PACKED:.*]] = scf.for %{{.*}} -> (tensor<5x12x5xf32>) { // CHECK: tensor.pad %{{.*}} // CHECK: : tensor to tensor<5x12xf32> // CHECK: linalg.generic // CHECK: -> tensor<12x5xf32> // CHECK: tensor.insert_slice %{{.*}} into %{{.*}}[%{{.*}}, 0, 0] [1, 12, 5] [1, 1, 1] // CHECK-SAME: : tensor<12x5xf32> into tensor<5x12x5xf32> // CHECK: scf.for %{{.*}} -> (tensor<24x25xf32>) { // CHECK: %[[PADDED:.*]] = tensor.extract_slice %[[PACKED]][%{{.*}}, 0, 0] [1, 12, 5] [1, 1, 1] // CHECK-SAME: : tensor<5x12x5xf32> to tensor<12x5xf32> // CHECK: %[[TRANSPOSED:.*]] = linalg.generic // CHECK: -> tensor<5x12xf32> // CHECK: linalg.matmul ins(%[[TRANSPOSED]] %0 = linalg.matmul ins(%arg0, %arg1 : tensor<24x12xf32>, tensor<12x25xf32>) outs(%arg2 : tensor<24x25xf32>) -> tensor<24x25xf32> func.return %0 : tensor<24x25xf32> } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %matmul = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op %matmul_l1, %loops_l1 = transform.structured.tile_using_for %matmul [5] : (!transform.any_op) -> (!transform.any_op, !transform.any_op) %matmul_padded, %0, %copy_back = transform.structured.pad %matmul_l1 { padding_values=[0.0: f32, 0.0 : f32, 0.0 : f32], padding_dimensions=[0, 1, 2], copy_back_op = "none" } : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op) %pad = transform.get_producer_of_operand %matmul_padded[0] : (!transform.any_op) -> !transform.any_op transform.structured.hoist_pad %pad by 1 loops, transpose by [1, 0] : (!transform.any_op) -> !transform.any_op transform.yield } } // ----- // CHECK-LABEL: pad_and_hoist_init func.func @pad_and_hoist_init( %arg0: tensor<24x12xf32>, %arg1: tensor<12x25xf32>, %arg2: tensor<24x25xf32>) -> tensor<24x25xf32> { // CHECK: scf.for %{{.*}} -> (tensor<24x25xf32>) { // CHECK: %[[PADDED:.*]] = tensor.pad %{{.*}} // CHECK: : tensor to tensor<5x25xf32> // CHECK: %[[SCF_YIELD:.*]] = scf.for %{{.*}} iter_args(%[[INNER_PADDED:[0-9a-zA-Z]*]] = %[[PADDED]]) -> (tensor<5x25xf32>) // CHECK: %[[RES:.*]] = linalg.matmul {{.*}} outs(%[[INNER_PADDED]] // CHECK-SAME: : tensor<5x25xf32> // CHECK: scf.yield %[[RES]] : tensor<5x25xf32> // CHECK: %[[EXTRACTED:.*]] = tensor.extract_slice %[[SCF_YIELD]][%{{.*}}, 0] [%{{.*}}, 25] [1, 1] // CHECK-SAME: : tensor<5x25xf32> to tensor // CHECK: tensor.insert_slice %[[EXTRACTED]] into %{{.*}}[%{{.*}}, 0] [%{{.*}}, 25] [1, 1] // CHECK-SAME: : tensor into tensor<24x25xf32> %0 = linalg.matmul ins(%arg0, %arg1 : tensor<24x12xf32>, tensor<12x25xf32>) outs(%arg2 : tensor<24x25xf32>) -> tensor<24x25xf32> func.return %0 : tensor<24x25xf32> } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %matmul = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op %matmul_l1, %loops_l1:2 = transform.structured.tile_using_for %matmul [5, 0, 7] : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op) %matmul_padded, %0, %copy_back = transform.structured.pad %matmul_l1 { padding_values=[0.0: f32, 0.0 : f32, 0.0 : f32], padding_dimensions=[0, 1, 2], copy_back_op = "none" } : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op) %pad = transform.get_producer_of_operand %matmul_padded[2] : (!transform.any_op) -> !transform.op<"tensor.pad"> transform.structured.hoist_pad %pad by 1 loops : (!transform.op<"tensor.pad">) -> !transform.any_op transform.yield } }