// RUN: mlir-opt -transform-interpreter -split-input-file -verify-diagnostics -allow-unregistered-dialect %s | FileCheck %s #map = affine_map<(d0, d1) -> (d0, d1)> #map1 = affine_map<(d0, d1) -> (d0)> #reduction_2d_trait = { indexing_maps = [#map, #map1], iterator_types = ["parallel", "reduction"] } // CHECK-DAG: #[[$PACKED_MAP_0:.*]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)> // CHECK-DAG: #[[$PACKED_MAP_1:.*]] = affine_map<(d0, d1, d2) -> (d0)> // CHECK-LABEL: @reduction_2d_static // CHECK-SAME: %[[T0:.+]]: tensor<3x7xf16>, // CHECK-SAME: %[[T1:.+]]: tensor<3xf16> func.func @reduction_2d_static(%t0: tensor<3x7xf16>, %t1: tensor<3xf16>) -> tensor<3xf16> { // CHECK: %[[EMPTY:.*]] = tensor.empty() : tensor<3x2x4xf16> // CHECK: %[[PACKED:.*]] = tensor.pack %[[T0]] padding_value(%{{.*}} : f16) // CHECK-SAME: inner_dims_pos = [1] inner_tiles = [4] into %[[EMPTY]] : tensor<3x7xf16> -> tensor<3x2x4xf16> // CHECK-NOT: tensor.pack // CHECK: linalg.generic // CHECK-SAME: indexing_maps = [#[[$PACKED_MAP_0]], #[[$PACKED_MAP_1]]] // CHECK-SAME: iterator_types = ["parallel", "reduction", "reduction"] // CHECK-SAME: ins(%{{.*}} : tensor<3x2x4xf16>) // CHECK-SAME: outs(%{{.*}} : tensor<3xf16>) %2 = linalg.generic #reduction_2d_trait ins(%t0 : tensor<3x7xf16>) outs(%t1 : tensor<3xf16>) { ^bb0(%in: f16, %out: f16): %3 = arith.addf %in, %out : f16 linalg.yield %3 : f16 } -> tensor<3xf16> // CHECK-NOT: tensor.unpack return %2 : tensor<3xf16> } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op transform.structured.pack %0 packed_sizes = [0, 4] : (!transform.any_op) -> (!transform.op<"linalg.generic">) transform.yield } } // ----- #map = affine_map<(d0, d1) -> (d0, d1)> #map1 = affine_map<(d0, d1) -> (d1)> #col_reduction_2d_trait = { indexing_maps = [#map, #map1], iterator_types = ["reduction", "parallel"] } // CHECK-DAG: #[[$PACKED_MAP_0:.*]] = affine_map<(d0, d1, d2) -> (d1, d0, d2)> // CHECK-DAG: #[[$PACKED_MAP_1:.*]] = affine_map<(d0, d1, d2) -> (d1)> // CHECK-LABEL: @col_reduction_2d_static // CHECK-SAME: %[[T0:.+]]: tensor<7x3xf16>, // CHECK-SAME: %[[T1:.+]]: tensor<3xf16> func.func @col_reduction_2d_static(%t0: tensor<7x3xf16>, %t1: tensor<3xf16>) -> tensor<3xf16> { // CHECK: %[[EMPTY:.*]] = tensor.empty() : tensor<3x2x4xf16> // CHECK: %[[PACKED:.*]] = tensor.pack %[[T0]] padding_value(%{{.*}} : f16) // CHECK-SAME: outer_dims_perm = [1, 0] inner_dims_pos = [0] inner_tiles = [4] into %[[EMPTY]] : tensor<7x3xf16> -> tensor<3x2x4xf16> // CHECK-NOT: tensor.pack // CHECK: linalg.generic // CHECK-SAME: indexing_maps = [#[[$PACKED_MAP_0]], #[[$PACKED_MAP_1]]] // CHECK-SAME: iterator_types = ["reduction", "parallel", "reduction"] // CHECK-SAME: ins(%{{.*}} : tensor<3x2x4xf16>) // CHECK-SAME: outs(%{{.*}} : tensor<3xf16>) %2 = linalg.generic #col_reduction_2d_trait ins(%t0 : tensor<7x3xf16>) outs(%t1 : tensor<3xf16>) { ^bb0(%in: f16, %out: f16): %3 = arith.addf %in, %out : f16 linalg.yield %3 : f16 } -> tensor<3xf16> // CHECK-NOT: tensor.unpack return %2 : tensor<3xf16> } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op %1 = transform.structured.pack %0 packed_sizes = [4, 0] : (!transform.any_op) -> (!transform.op<"linalg.generic">) %pack = transform.get_producer_of_operand %1[0] : (!transform.op<"linalg.generic">) -> (!transform.op<"tensor.pack">) %2, %pack_2, %empty_unpack_2 = transform.structured.pack_transpose %pack with_compute_op(%1) outer_perm = [1, 0] : (!transform.op<"tensor.pack">, !transform.op<"linalg.generic">) -> (!transform.op<"linalg.generic">, !transform.op<"tensor.pack">, !transform.any_op) transform.yield } } // ----- #map = affine_map<(d0, d1) -> (d0, d1)> #map1 = affine_map<(d0, d1) -> (d0)> #reduction_2d_trait = { indexing_maps = [#map, #map1], iterator_types = ["parallel", "reduction"] } // CHECK-DAG: #[[$DIV4:.*]] = affine_map<()[s0] -> (s0 ceildiv 4)> // CHECK-DAG: #[[$PACKED_MAP_0:.*]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)> // CHECK-DAG: #[[$PACKED_MAP_1:.*]] = affine_map<(d0, d1, d2) -> (d0)> // CHECK-LABEL: @reduction_2d_dynamic // CHECK-SAME: %[[T0:.+]]: tensor, // CHECK-SAME: %[[T1:.+]]: tensor func.func @reduction_2d_dynamic(%t0: tensor, %t1: tensor) -> tensor { // CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index // CHECK-DAG: %[[C1:.*]] = arith.constant 1 : index // CHECK-DAG: %[[D0:.*]] = tensor.dim %[[T0]], %[[C0]] : tensor // CHECK-DAG: %[[D1:.*]] = tensor.dim %[[T0]], %[[C1]] : tensor // CHECK: %[[D1B4:.*]] = affine.apply #[[$DIV4]]()[%[[D1]]] // CHECK: %[[EMPTY:.*]] = tensor.empty(%[[D0]], %[[D1B4]]) : tensor // CHECK: %[[PACKED:.*]] = tensor.pack %[[T0]] padding_value(%{{.*}} : f16) // CHECK-SAME: inner_dims_pos = [1] inner_tiles = [4] into %[[EMPTY]] : tensor -> tensor // CHECK-NOT: tensor.pack // CHECK: linalg.generic // CHECK-SAME: indexing_maps = [#[[$PACKED_MAP_0]], #[[$PACKED_MAP_1]]] // CHECK-SAME: iterator_types = ["parallel", "reduction", "reduction"] // CHECK-SAME: ins(%{{.*}} : tensor) // CHECK-SAME: outs(%{{.*}} : tensor) %2 = linalg.generic #reduction_2d_trait ins(%t0 : tensor) outs(%t1 : tensor) { ^bb0(%in: f16, %out: f16): %3 = arith.addf %in, %out : f16 linalg.yield %3 : f16 } -> tensor // CHECK-NOT: tensor.unpack return %2 : tensor } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op transform.structured.pack %0 packed_sizes = [0, 4] : (!transform.any_op) -> (!transform.op<"linalg.generic">) transform.yield } } // ----- #map = affine_map<(d0, d1) -> (d0, d1)> #map1 = affine_map<(d0, d1) -> (d0)> #reduction_2d_trait = { indexing_maps = [#map, #map1], iterator_types = ["parallel", "reduction"] } // CHECK-DAG: #[[$DIV3:.*]] = affine_map<()[s0] -> (s0 ceildiv 3)> // CHECK-DAG: #[[$DIV4:.*]] = affine_map<()[s0] -> (s0 ceildiv 4)> // CHECK-DAG: #[[$PACKED_MAP_0:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)> // CHECK-DAG: #[[$PACKED_MAP_1:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d2)> // CHECK-LABEL: @reduction_2d_dynamic // CHECK-SAME: %[[T0:.+]]: tensor, // CHECK-SAME: %[[T1:.+]]: tensor func.func @reduction_2d_dynamic(%t0: tensor, %t1: tensor) -> tensor { // CHECK: %[[PACKED_0:.*]] = tensor.pack %[[T0]] padding_value(%{{.*}} : f16) // CHECK-SAME: inner_dims_pos = [0, 1] inner_tiles = [3, 4] into %{{.*}} : tensor -> tensor // CHECK: %[[PACKED_1:.*]] = tensor.pack %[[T1]] padding_value(%{{.*}} : f16) // CHECK-SAME: inner_dims_pos = [0] inner_tiles = [3] into %{{.*}} : tensor -> tensor // CHECK-NOT: tensor.pack // CHECK: linalg.generic // CHECK-SAME: indexing_maps = [#[[$PACKED_MAP_0]], #[[$PACKED_MAP_1]]] // CHECK-SAME: iterator_types = ["parallel", "reduction", "parallel", "reduction"] // CHECK-SAME: ins(%{{.*}} : tensor) // CHECK-SAME: outs(%{{.*}} : tensor) %2 = linalg.generic #reduction_2d_trait ins(%t0 : tensor) outs(%t1 : tensor) { ^bb0(%in: f16, %out: f16): %3 = arith.addf %in, %out : f16 linalg.yield %3 : f16 } -> tensor // CHECK: tensor.unpack %{{.*}} inner_dims_pos = [0] inner_tiles = [3] into %{{.*}} : tensor -> tensor return %2 : tensor } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op transform.structured.pack %0 packed_sizes = [3, 4] : (!transform.any_op) -> (!transform.op<"linalg.generic">) transform.yield } } // ----- // M N K m n k M K m k // CHECK-DAG: #[[$PACKED_MAP_0:.*]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, d2, d3, d5)> // K N n k // CHECK-DAG: #[[$PACKED_MAP_1:.*]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d2, d1, d4, d5)> // M N m n // CHECK-DAG: #[[$PACKED_MAP_2:.*]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d1, d0, d4, d3)> // CHECK-LABEL: @matmul // CHECK-SAME: %[[A:[0-9a-zA-Z]+]]: tensor, // CHECK-SAME: %[[B:[0-9a-zA-Z]+]]: tensor, // CHECK-SAME: %[[C:[0-9a-zA-Z]+]]: tensor func.func @matmul(%A: tensor, %B: tensor, %C: tensor) -> tensor { // CHECK: %[[PACK_A:.*]] = tensor.pack %{{.*}} inner_dims_pos = [0, 1] inner_tiles = [2, 4] // CHECK-SAME: : tensor -> tensor // CHECK: %[[PACK_B:.*]] = tensor.pack %{{.*}} inner_dims_pos = [1, 0] inner_tiles = [3, 4] // CHECK-SAME: : tensor -> tensor // CHECK: %[[PACK_C:.*]] = tensor.pack %{{.*}} outer_dims_perm = [1, 0] inner_dims_pos = [1, 0] inner_tiles = [3, 2] // CHECK-SAME: : tensor -> tensor // CHECK: linalg.generic {indexing_maps = [#[[$PACKED_MAP_0]], #[[$PACKED_MAP_1]], #[[$PACKED_MAP_2]]] // CHECK-SAME: iterator_types = ["parallel", "parallel", "reduction", "parallel", "parallel", "reduction"]} // CHECK-SAME: ins(%{{.*}} : tensor, tensor) // CHECK-SAME: outs(%{{.*}} : tensor) %0 = linalg.matmul ins(%A, %B: tensor, tensor) outs(%C: tensor) -> tensor // CHECK: tensor.unpack %{{.*}} outer_dims_perm = [1, 0] inner_dims_pos = [1, 0] inner_tiles = [3, 2] // CHECK-SAME: : tensor -> tensor return %0 : tensor } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op // M N K %1 = transform.structured.pack %0 packed_sizes = [2, 3, 4] : (!transform.any_op) -> (!transform.op<"linalg.generic">) %unpack = transform.get_consumers_of_result %1[0] : (!transform.op<"linalg.generic">) -> (!transform.op<"tensor.unpack">) %2, %pack_2, %unpack_2 = transform.structured.pack_transpose %unpack with_compute_op(%1) outer_perm = [1, 0] inner_perm = [1, 0] : (!transform.op<"tensor.unpack">, !transform.op<"linalg.generic">) -> (!transform.op<"linalg.generic">, !transform.op<"tensor.pack">, !transform.op<"tensor.unpack">) transform.yield } } // ----- // N F H W C KH KW f c // CHECK-DAG: #[[$PACKED_MAP_0:.*]] = affine_map<(d0, d1, d2, d3, d4, d5, d6, d7, d8) -> (d0, d4, d2 + d5, d3 + d6, d8)> // CHECK-DAG: #[[$PACKED_MAP_1:.*]] = affine_map<(d0, d1, d2, d3, d4, d5, d6, d7, d8) -> (d1, d4, d5, d6, d7, d8)> // CHECK-DAG: #[[$PACKED_MAP_2:.*]] = affine_map<(d0, d1, d2, d3, d4, d5, d6, d7, d8) -> (d0, d1, d2, d3, d7)> // CHECK-LABEL: @conv_2d_nchw_fchw // CHECK-SAME: %[[INPUT:.+]]: tensor<14x512x28x28xf32>, // CHECK-SAME: %[[FILTER:.+]]: tensor<1024x512x1x1xf32> // CHECK-SAME: %[[INIT:.+]]: tensor<14x1024x28x28xf32> func.func @conv_2d_nchw_fchw(%i: tensor<14x512x28x28xf32>, %f: tensor<1024x512x1x1xf32>, %o: tensor<14x1024x28x28xf32>) -> tensor<14x1024x28x28xf32> { // CHECK: %[[PACK_INPUT:.*]] = tensor.pack %{{.*}} inner_dims_pos = [1] inner_tiles = [8] // CHECK-SAME: : tensor<14x512x28x28xf32> -> tensor<14x64x28x28x8xf32> // CHECK: %[[PACK_FILTER:.*]] = tensor.pack %{{.*}} inner_dims_pos = [0, 1] inner_tiles = [4, 8] // CHECK-SAME: : tensor<1024x512x1x1xf32> -> tensor<256x64x1x1x4x8xf32> // CHECK: %[[PACK_INPUT:.*]] = tensor.pack %{{.*}} inner_dims_pos = [1] inner_tiles = [4] // CHECK-SAME: : tensor<14x1024x28x28xf32> -> tensor<14x256x28x28x4xf32> // CHECK: linalg.generic {indexing_maps = [#[[$PACKED_MAP_0]], #[[$PACKED_MAP_1]], #[[$PACKED_MAP_2]]] // CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel", "parallel", "reduction", "reduction", "reduction", "parallel", "reduction"]} // CHECK-SAME: ins(%{{.*}} : tensor<14x64x28x28x8xf32>, tensor<256x64x1x1x4x8xf32>) // CHECK-SAME: outs(%{{.*}} : tensor<14x256x28x28x4xf32>) %0 = linalg.conv_2d_nchw_fchw ins(%i, %f: tensor<14x512x28x28xf32>, tensor<1024x512x1x1xf32>) outs(%o: tensor<14x1024x28x28xf32>) -> tensor<14x1024x28x28xf32> // CHECK: tensor.unpack %{{.*}} inner_dims_pos = [1] inner_tiles = [4] // CHECK-SAME: : tensor<14x256x28x28x4xf32> -> tensor<14x1024x28x28xf32> return %0: tensor<14x1024x28x28xf32> } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match interface{LinalgOp} in %arg1 : (!transform.any_op) -> !transform.any_op // N F H W C KH KW %1 = transform.structured.pack %0 packed_sizes = [0, 4, 0, 0, 8, 0, 0] : (!transform.any_op) -> (!transform.op<"linalg.generic">) transform.yield } } // ----- // N H W F KH KW C f c // CHECK-DAG: #[[$PACKED_MAP_0:.*]] = affine_map<(d0, d1, d2, d3, d4, d5, d6, d7, d8) -> (d0, d1 + d4, d2 + d5, d6, d8)> // CHECK-DAG: #[[$PACKED_MAP_1:.*]] = affine_map<(d0, d1, d2, d3, d4, d5, d6, d7, d8) -> (d4, d5, d6, d3, d7, d8)> // CHECK-DAG: #[[$PACKED_MAP_2:.*]] = affine_map<(d0, d1, d2, d3, d4, d5, d6, d7, d8) -> (d0, d1, d2, d3, d7)> // CHECK-LABEL: @conv_2d_nhwc_hwcf // CHECK-SAME: %[[INPUT:.+]]: tensor, // CHECK-SAME: %[[FILTER:.+]]: tensor<1x?x?x?xf32> // CHECK-SAME: %[[INIT:.+]]: tensor func.func @conv_2d_nhwc_hwcf(%input: tensor, %filter: tensor<1x?x?x?xf32>, %init: tensor) -> tensor { // CHECK: %[[PACK_INPUT:.*]] = tensor.pack %{{.*}} inner_dims_pos = [3] inner_tiles = [6] // CHECK-SAME: : tensor -> tensor // CHECK: %[[PACK_FILTER:.*]] = tensor.pack %{{.*}} inner_dims_pos = [3, 2] inner_tiles = [4, 6] // CHECK-SAME: : tensor<1x?x?x?xf32> -> tensor<1x?x?x?x4x6xf32> // CHECK: %[[PACK_OUTPUT:.*]] = tensor.pack %{{.*}} inner_dims_pos = [3] inner_tiles = [4] // CHECK-SAME: : tensor -> tensor // CHECK: linalg.generic {indexing_maps = [#[[$PACKED_MAP_0]], #[[$PACKED_MAP_1]], #[[$PACKED_MAP_2]]] // CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel", "parallel", "reduction", "reduction", "reduction", "parallel", "reduction"]} // CHECK-SAME: ins(%{{.*}} : tensor, tensor<1x?x?x?x4x6xf32>) // CHECK-SAME: outs(%{{.*}} : tensor) %0 = linalg.conv_2d_nhwc_hwcf ins (%input, %filter: tensor, tensor<1x?x?x?xf32>) outs (%init: tensor) -> tensor // CHECK: tensor.unpack %{{.*}} inner_dims_pos = [3] inner_tiles = [4] // CHECK-SAME: : tensor -> tensor return %0 : tensor } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match interface{LinalgOp} in %arg1 : (!transform.any_op) -> !transform.any_op // N H W F KH KW C %1 = transform.structured.pack %0 packed_sizes = [0, 0, 0, 4, 0, 0, 6] : (!transform.any_op) -> (!transform.op<"linalg.generic">) transform.yield } } // ----- // CHECK-DAG: affine_map<()[s0, s1] -> (s0 ceildiv s1)> // M N K n k M K k // CHECK-DAG: #[[$PACKED_MAP_0:.*]] = affine_map<(d0, d1, d2, d3, d4) -> (d0, d2, d4)> // K N n k // CHECK-DAG: #[[$PACKED_MAP_1:.*]] = affine_map<(d0, d1, d2, d3, d4) -> (d2, d1, d3, d4)> // M N n // CHECK-DAG: #[[$PACKED_MAP_2:.*]] = affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d3)> // CHECK-LABEL: @matmul_dynamic_pack_size // CHECK-SAME: %[[A:[0-9a-zA-Z]+]]: tensor, // CHECK-SAME: %[[B:[0-9a-zA-Z]+]]: tensor, // CHECK-SAME: %[[C:[0-9a-zA-Z]+]]: tensor func.func @matmul_dynamic_pack_size(%A: tensor, %B: tensor, %C: tensor) -> tensor { // CHECK: %[[TS:.*]] = "some_tile_size"() : () -> index %sz = "some_tile_size"() : () -> (index) // CHECK: %[[PACK_A:.*]] = tensor.pack %[[A]] {{.*}} inner_dims_pos = [1] inner_tiles = [%[[TS]]] // CHECK-SAME: : tensor -> tensor // CHECK: %[[PACK_B:.*]] = tensor.pack %[[B]] {{.*}} inner_dims_pos = [1, 0] inner_tiles = [%[[TS]], %[[TS]]] // CHECK-SAME: : tensor -> tensor // CHECK: %[[PACK_C:.*]] = tensor.pack %[[C]] {{.*}} inner_dims_pos = [1] inner_tiles = [%[[TS]]] // CHECK-SAME: : tensor -> tensor // CHECK: linalg.generic {indexing_maps = [#[[$PACKED_MAP_0]], #[[$PACKED_MAP_1]], #[[$PACKED_MAP_2]]] // CHECK-SAME: iterator_types = ["parallel", "parallel", "reduction", "parallel", "reduction"]} // CHECK-SAME: ins(%{{.*}} : tensor, tensor) // CHECK-SAME: outs(%{{.*}} : tensor) %0 = linalg.matmul ins(%A, %B: tensor, tensor) outs(%C: tensor) -> tensor // CHECK: tensor.unpack %{{.*}} inner_dims_pos = [1] inner_tiles = [%[[TS]]] into %[[C]] // CHECK-SAME: : tensor -> tensor return %0 : tensor } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op %sz = transform.structured.match ops{["some_tile_size"]} in %arg1 : (!transform.any_op) -> !transform.any_op %1 = transform.structured.pack %0 packed_sizes = [0, %sz : !transform.any_op, %sz : !transform.any_op] : (!transform.any_op) -> (!transform.op<"linalg.generic">) transform.yield } } // ----- func.func @conv_cant_pack(%i: tensor<14x512x28x28xf32>, %f: tensor<1024x512x1x1xf32>, %o: tensor<14x1024x28x28xf32>) -> tensor<14x1024x28x28xf32> { %0 = linalg.conv_2d_nchw_fchw ins(%i, %f: tensor<14x512x28x28xf32>, tensor<1024x512x1x1xf32>) outs(%o: tensor<14x1024x28x28xf32>) -> tensor<14x1024x28x28xf32> return %0: tensor<14x1024x28x28xf32> } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match interface{LinalgOp} in %arg1 : (!transform.any_op) -> !transform.any_op // N F H W C KH KW // expected-error @below {{data tiling failed}} %1 = transform.structured.pack %0 packed_sizes = [0, 0, 4, 0, 0, 0, 0] : (!transform.any_op) -> (!transform.op<"linalg.generic">) transform.yield } } // ----- func.func @matmul(%A: tensor, %B: tensor, %C: tensor) -> (tensor, tensor) { %0 = linalg.matmul ins(%A, %B: tensor, tensor) outs(%C: tensor) -> tensor %1 = linalg.matmul ins(%A, %B: tensor, tensor) outs(%C: tensor) -> tensor return %0, %1 : tensor, tensor } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op // expected-error @below {{requires target to map to exactly 1 LinalgOp (got 2)}} %1 = transform.structured.pack %0 packed_sizes = [2, 3, 4] : (!transform.any_op) -> (!transform.op<"linalg.generic">) transform.yield } } // ----- func.func @matmul(%A: tensor, %B: tensor, %C: tensor) -> tensor { %0 = linalg.matmul ins(%A, %B: tensor, tensor) outs(%C: tensor) -> tensor return %0 : tensor } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op // expected-error @below {{requires number of packed sizes match the number of loops (2 vs 3)}} %1 = transform.structured.pack %0 packed_sizes = [2, 3] : (!transform.any_op) -> (!transform.op<"linalg.generic">) transform.yield } } // ----- func.func @no_single_packing_op(%source: tensor<128x256xf32>, %dest: tensor<4x16x32x16xf32>) { %0 = tensor.pack %source inner_dims_pos = [0, 1] inner_tiles = [32, 16] into %dest : tensor<128x256xf32> -> tensor<4x16x32x16xf32> %1 = tensor.unpack %0 inner_dims_pos = [0, 1] inner_tiles = [32, 16] into %source : tensor<4x16x32x16xf32> -> tensor<128x256xf32> %2 = tensor.pack %source inner_dims_pos = [0, 1] inner_tiles = [32, 16] into %dest : tensor<128x256xf32> -> tensor<4x16x32x16xf32> return } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["tensor.pack"]} in %arg1 : (!transform.any_op) -> !transform.any_op %1 = transform.structured.match ops{["tensor.unpack"]} in %arg1 : (!transform.any_op) -> !transform.any_op // expected-error @below {{requires target to map to exactly 1 packing op and 1 packed op (got 2 and 1)}} transform.structured.pack_transpose %0 with_compute_op(%1) inner_perm = [0] : (!transform.any_op, !transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op) transform.yield } } // ----- func.func @no_single_pack_unpack(%source: tensor<128x256xf32>, %dest: tensor<4x16x32x16xf32>) { %0 = arith.constant 0 : index %1 = tensor.empty() : tensor return } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["arith.constant"]} in %arg1 : (!transform.any_op) -> !transform.any_op %1 = transform.structured.match ops{["tensor.empty"]} in %arg1 : (!transform.any_op) -> !transform.any_op // expected-error @below {{requires target to map to a tensor.pack or tensor.unpack}} transform.structured.pack_transpose %0 with_compute_op(%1) inner_perm = [0] : (!transform.any_op, !transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op) transform.yield } } // ----- func.func @no_linalg_target(%source: tensor<128x256xf32>, %dest: tensor<4x16x32x16xf32>) { %0 = tensor.pack %source inner_dims_pos = [0, 1] inner_tiles = [32, 16] into %dest : tensor<128x256xf32> -> tensor<4x16x32x16xf32> %1 = arith.constant 0 : index return } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["tensor.pack"]} in %arg1 : (!transform.any_op) -> !transform.any_op %1 = transform.structured.match ops{["arith.constant"]} in %arg1 : (!transform.any_op) -> !transform.any_op // expected-error @below {{requires a LinalgOp target}} transform.structured.pack_transpose %0 with_compute_op(%1) inner_perm = [0] : (!transform.any_op, !transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op) transform.yield } } // ----- func.func @no_single_use_by_linalg(%source: tensor<128x256xf32>, %dest: tensor<4x16x32x16xf32>) { %0 = tensor.pack %source inner_dims_pos = [0, 1] inner_tiles = [32, 16] into %dest : tensor<128x256xf32> -> tensor<4x16x32x16xf32> %f0 = arith.constant 0.0 : f32 %1 = tensor.empty() : tensor %2 = linalg.fill ins(%f0: f32) outs(%1 : tensor) -> tensor return } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["tensor.pack"]} in %arg1 : (!transform.any_op) -> !transform.any_op %1 = transform.structured.match ops{["linalg.fill"]} in %arg1 : (!transform.any_op) -> !transform.any_op // expected-error @below {{not a single use by the LinalgOp target}} transform.structured.pack_transpose %0 with_compute_op(%1) inner_perm = [0] : (!transform.any_op, !transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op) transform.yield } } // ----- func.func @not_produced_by_linalg(%source: tensor<128x256xf32>, %dest: tensor<4x16x32x16xf32>) { %a = tensor.pack %source inner_dims_pos = [0, 1] inner_tiles = [32, 16] into %dest : tensor<128x256xf32> -> tensor<4x16x32x16xf32> %b = tensor.unpack %a inner_dims_pos = [0, 1] inner_tiles = [32, 16] into %source : tensor<4x16x32x16xf32> -> tensor<128x256xf32> %f0 = arith.constant 0.0 : f32 %1 = tensor.empty() : tensor %2 = linalg.fill ins(%f0: f32) outs(%1 : tensor) -> tensor return } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["tensor.unpack"]} in %arg1 : (!transform.any_op) -> !transform.any_op %1 = transform.structured.match ops{["linalg.fill"]} in %arg1 : (!transform.any_op) -> !transform.any_op // expected-error @below {{not produced by the LinalgOp target}} transform.structured.pack_transpose %0 with_compute_op(%1) inner_perm = [0] : (!transform.any_op, !transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op) transform.yield } } // ----- func.func @no_matching_pack(%source: tensor<16xf32>) { %f0 = arith.constant 0.0 : f32 %1 = tensor.empty() : tensor<4x4xf32> %2 = linalg.fill ins(%f0: f32) outs(%1 : tensor<4x4xf32>) -> tensor<4x4xf32> %b = tensor.unpack %2 inner_dims_pos = [0] inner_tiles = [4] into %source : tensor<4x4xf32> -> tensor<16xf32> return } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["tensor.unpack"]} in %arg1 : (!transform.any_op) -> !transform.any_op %1 = transform.structured.match ops{["linalg.fill"]} in %arg1 : (!transform.any_op) -> !transform.any_op // expected-error @below {{could not find matching pack op}} transform.structured.pack_transpose %0 with_compute_op(%1) inner_perm = [0] : (!transform.any_op, !transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op) transform.yield } } // ----- func.func @invalid_outer_perm(%A: tensor, %B: tensor, %C: tensor) -> tensor { %0 = linalg.matmul ins(%A, %B: tensor, tensor) outs(%C: tensor) -> tensor return %0 : tensor } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op %1 = transform.structured.pack %0 packed_sizes = [2, 3, 4] : (!transform.any_op) -> (!transform.op<"linalg.generic">) %unpack = transform.get_consumers_of_result %1[0] : (!transform.op<"linalg.generic">) -> (!transform.op<"tensor.unpack">) %2, %pack_2, %unpack_2 = // expected-error @below {{invalid outer_perm}} transform.structured.pack_transpose %unpack with_compute_op(%1) outer_perm = [1] : (!transform.op<"tensor.unpack">, !transform.op<"linalg.generic">) -> (!transform.op<"linalg.generic">, !transform.op<"tensor.pack">, !transform.op<"tensor.unpack">) transform.yield } } // ----- func.func @invalid_inner_perm(%A: tensor, %B: tensor, %C: tensor) -> tensor { %0 = linalg.matmul ins(%A, %B: tensor, tensor) outs(%C: tensor) -> tensor return %0 : tensor } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op %1 = transform.structured.pack %0 packed_sizes = [2, 3, 4] : (!transform.any_op) -> (!transform.op<"linalg.generic">) %unpack = transform.get_consumers_of_result %1[0] : (!transform.op<"linalg.generic">) -> (!transform.op<"tensor.unpack">) %2, %pack_2, %unpack_2 = // expected-error @below {{invalid inner_perm}} transform.structured.pack_transpose %unpack with_compute_op(%1) inner_perm = [1] : (!transform.op<"tensor.unpack">, !transform.op<"linalg.generic">) -> (!transform.op<"linalg.generic">, !transform.op<"tensor.pack">, !transform.op<"tensor.unpack">) transform.yield } } // ----- func.func @no_padding_on_packs(%A: tensor<32x32xf32>, %B: tensor<32x32xf32>, %C: tensor<32x32xf32>) -> tensor<32x32xf32> { %0 = linalg.matmul ins(%A, %B: tensor<32x32xf32>, tensor<32x32xf32>) outs(%C: tensor<32x32xf32>) -> tensor<32x32xf32> return %0 : tensor<32x32xf32> } // CHECK-LABEL: no_padding_on_packs // CHECK: tensor.pack %{{.+}} inner_dims_pos = [0, 1] inner_tiles = [4, 8] // CHECK-SAME: into %{{.+}} : tensor<32x32xf32> -> tensor<8x4x4x8xf32> // CHECK: tensor.pack %{{.+}} outer_dims_perm = [1, 0] // CHECK-SAME: inner_dims_pos = [0, 1] inner_tiles = [8, 8] // CHECK-SAME: into %{{.+}} : tensor<32x32xf32> -> tensor<4x4x8x8xf32> // CHECK: tensor.pack %{{.+}} inner_dims_pos = [0, 1] inner_tiles = [4, 8] // CHECK-SAME: into %{{.+}} : tensor<32x32xf32> -> tensor<8x4x4x8xf32> module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op %1 = transform.structured.pack %0 packed_sizes = [4, 8, 8] : (!transform.any_op) -> (!transform.op<"linalg.generic">) %pack = transform.get_producer_of_operand %1[1] : (!transform.op<"linalg.generic">) -> (!transform.op<"tensor.pack">) %2, %pack_2, %empty_unpack_2 = transform.structured.pack_transpose %pack with_compute_op(%1) outer_perm = [1, 0] inner_perm = [1, 0] : (!transform.op<"tensor.pack">, !transform.op<"linalg.generic">) -> (!transform.op<"linalg.generic">, !transform.op<"tensor.pack">, !transform.any_op) transform.yield } }