// RUN: mlir-opt --transform-interpreter -split-input-file -verify-diagnostics %s | FileCheck %s #map = affine_map<()[s0] -> (-s0 + 12, 7)> // CHECK-LABEL: @static_sizes_output_divisible func.func @static_sizes_output_divisible(%arg0: tensor<24x12xf32>, %arg1: tensor<12x25xf32>, %arg2: tensor<24x25xf32>, %iv0 : index, %iv1 : index, %iv2 : index) -> tensor<24x25xf32> { %0 = affine.min #map()[%iv2] // CHECK: %[[T0:.*]] = tensor.extract_slice % // CHECK: %[[T1:.*]] = tensor.extract_slice % // CHECK: %[[T2:.*]] = tensor.extract_slice % %1 = tensor.extract_slice %arg0[%iv0, %iv2] [4, %0] [1, 1] : tensor<24x12xf32> to tensor<4x?xf32> %2 = tensor.extract_slice %arg1[%iv2, %iv1] [%0, 5] [1, 1] : tensor<12x25xf32> to tensor %3 = tensor.extract_slice %arg2[%iv0, %iv1] [4, 5] [1, 1] : tensor<24x25xf32> to tensor<4x5xf32> // CHECK-DAG: %[[CST:.*]] = arith.constant 0. // CHECK: %[[T3:.*]] = tensor.pad %[[T0]] nofold // CHECK: tensor.yield %[[CST]] // CHECK: %[[T4:.*]] = tensor.pad %[[T1]] nofold // CHECK: %[[T5:.*]] = linalg.matmul // CHECK-SAME: ins(%[[T3]], %[[T4]] : tensor<4x7xf32>, tensor<7x5xf32>) // CHECK-SAME: outs(%[[T2]] : tensor<4x5xf32>) // CHECK: %[[T6:.*]] = tensor.extract_slice %[[T5]] // CHECK: %[[T7:.*]] = bufferization.materialize_in_destination %[[T6]] in %[[T2]] %4 = linalg.matmul ins(%1, %2 : tensor<4x?xf32>, tensor) outs(%3 : tensor<4x5xf32>) -> tensor<4x5xf32> %5 = tensor.insert_slice %4 into %arg2[%iv0, %iv1] [4, 5] [1, 1] : tensor<4x5xf32> into tensor<24x25xf32> func.return %5 : tensor<24x25xf32> } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op %padded, %pad, %copy_back = transform.structured.pad %0 { padding_values=[0.0 : f32, 0.0 : f32, 0.0 : f32], padding_dimensions=[0, 1, 2], pack_paddings=[1, 1, 0] } : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.op<"bufferization.materialize_in_destination">) %p = transform.num_associations %copy_back : (!transform.op<"bufferization.materialize_in_destination">) -> !transform.param // expected-remark @below {{1}} transform.debug.emit_param_as_remark %p : !transform.param transform.yield } } // ----- #map = affine_map<()[s0] -> (-s0 + 12, 7)> // CHECK-LABEL: @pad_to_multiple func.func @pad_to_multiple(%arg0: tensor<24x12xf32>, %arg1: tensor<12x25xf32>, %arg2: tensor<24x25xf32>, %iv0 : index, %iv1 : index, %iv2 : index) -> tensor<24x25xf32> { %0 = affine.min #map()[%iv2] %1 = tensor.extract_slice %arg0[%iv0, %iv2] [4, %0] [1, 1] : tensor<24x12xf32> to tensor<4x?xf32> %2 = tensor.extract_slice %arg1[%iv2, %iv1] [%0, 5] [1, 1] : tensor<12x25xf32> to tensor %3 = tensor.extract_slice %arg2[%iv0, %iv1] [4, 5] [1, 1] : tensor<24x25xf32> to tensor<4x5xf32> // CHECK: linalg.matmul // CHECK-SAME: ins(%{{.*}}, %{{.*}} : tensor<4x7xf32>, tensor<7x6xf32>) // CHECK-SAME: outs(%{{.*}} : tensor<4x6xf32>) %4 = linalg.matmul ins(%1, %2 : tensor<4x?xf32>, tensor) outs(%3 : tensor<4x5xf32>) -> tensor<4x5xf32> %5 = tensor.insert_slice %4 into %arg2[%iv0, %iv1] [4, 5] [1, 1] : tensor<4x5xf32> into tensor<24x25xf32> func.return %5 : tensor<24x25xf32> } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op %padded, %pad, %copy_back = transform.structured.pad %0 { padding_values=[0.0 : f32, 0.0 : f32, 0.0 : f32], padding_dimensions=[0, 1, 2], pad_to_multiple_of=[2, 2, 1], pack_paddings=[1, 1, 0] } : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op) transform.yield } } // ----- #map = affine_map<()[s0] -> (-s0 + 12, 7)> // CHECK-LABEL: @static_sizes_output_divisible_on_empty_op func.func @static_sizes_output_divisible_on_empty_op(%arg0: tensor<24x12xf32>, %arg1: tensor<12x25xf32>, %arg2: tensor<24x25xf32>, %iv0: index, %iv1: index, %iv2: index) -> tensor<24x25xf32> { %0 = affine.min #map()[%iv2] // CHECK: %[[T0:.*]] = tensor.empty // CHECK: %[[T1:.*]] = tensor.empty // CHECK: %[[T2:.*]] = tensor.empty %1 = tensor.empty(%0) : tensor<4x?xf32> %2 = tensor.empty(%0) : tensor %3 = tensor.empty() : tensor<4x5xf32> // CHECK-DAG: %[[CST:.*]] = arith.constant 0. // CHECK: %[[T3:.*]] = tensor.pad %[[T0]] nofold // CHECK: tensor.yield %[[CST]] // CHECK: %[[T4:.*]] = tensor.pad %[[T1]] nofold // CHECK: %[[T5:.*]] = linalg.matmul // CHECK-SAME: ins(%[[T3]], %[[T4]] : tensor<4x7xf32>, tensor<7x5xf32>) // CHECK-SAME: outs(%[[T2]] : tensor<4x5xf32>) %4 = linalg.matmul ins(%1, %2 : tensor<4x?xf32>, tensor) outs(%3 : tensor<4x5xf32>) -> tensor<4x5xf32> %5 = tensor.insert_slice %4 into %arg2[%iv0, %iv1] [4, 5] [1, 1] : tensor<4x5xf32> into tensor<24x25xf32> func.return %5 : tensor<24x25xf32> } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op %padded, %pad, %copy_back = transform.structured.pad %0 { padding_values=[0.0 : f32, 0.0 : f32, 0.0 : f32], padding_dimensions=[0, 1, 2], pack_paddings=[1, 1, 0] } : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op) transform.yield } } // ----- func.func @pad(%arg0: tensor<24x12xf32>, %arg1: tensor<12x25xf32>, %arg2: tensor<24x25xf32>) -> tensor<24x25xf32> { // expected-note @below {{when applied to this op}} %0 = linalg.matmul ins(%arg0, %arg1 : tensor<24x12xf32>, tensor<12x25xf32>) outs(%arg2 : tensor<24x25xf32>) -> tensor<24x25xf32> func.return %0 : tensor<24x25xf32> } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op // expected-error @below {{op expects a padding value of type 'f32', got 0 : i32}} %padded, %pad, %copy_back = transform.structured.pad %0 { padding_values=[0: i32, 0.0 : f32, 0.0 : f32], padding_dimensions=[0, 1, 2], pack_paddings=[1, 1, 0] } : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op) transform.yield } } // ----- func.func @pad(%arg0: tensor<24x12xf32>, %arg1: tensor<12x25xf32>, %arg2: tensor<24x25xf32>) -> tensor<24x25xf32> { // expected-note @below {{when applied to this op}} %0 = linalg.matmul ins(%arg0, %arg1 : tensor<24x12xf32>, tensor<12x25xf32>) outs(%arg2 : tensor<24x25xf32>) -> tensor<24x25xf32> func.return %0 : tensor<24x25xf32> } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op // expected-error @below {{expects a padding that parses to 'f32', got "{foo}"}} %padded, %pad, %copy_back = transform.structured.pad %0 { padding_values=["{foo}", 0.0 : f32, 0.0 : f32], padding_dimensions=[0, 1, 2], pack_paddings=[1, 1, 0] } : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op) transform.yield } } // ----- // CHECK-LABEL: @pad( func.func @pad(%arg0: tensor<24x12xf32>, %arg1: tensor<12x25xf32>, %arg2: tensor<24x25xf32>) -> tensor<24x25xf32> { // This is attached to an error that is silenceable and is not reported by this transform // {{when applied to this op}} %0 = linalg.matmul ins(%arg0, %arg1 : tensor<24x12xf32>, tensor<12x25xf32>) outs(%arg2 : tensor<24x25xf32>) -> tensor<24x25xf32> func.return %0 : tensor<24x25xf32> } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op // This error is silenceable and is not reported by this transform // {{transform.structured.pad failed to apply}} %padded, %pad, %copy_back = transform.structured.pad %0 { padding_values=[0.0 : f32, 0.0 : f32, 0.0 : f32], padding_dimensions=[0, 1, 2], pack_paddings=[1, 1, 0] } : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op) transform.yield } } // ----- // Check that the padding can be applied even when the output argument of the // linalg op is not produced by an empty op or an extract_slice op. // CHECK-DAG: #[[$MAP_MIN:.*]] = affine_map<(d0) -> (-d0 + 2044, 16)> // CHECK-DAG: #[[$MAP_TO_16:.*]] = affine_map<(d0) -> (-d0 + 16)> // CHECK-LABEL: @outs_not_produced_by_empty_or_extract_slice( // CHECK-SAME: %[[A:[^: ]*]]: tensor<128x2044xf32>, // CHECK-SAME: %[[B:[^: ]*]]: tensor<2044x128xf32>) func.func @outs_not_produced_by_empty_or_extract_slice(%a : tensor<128x2044xf32>, %b : tensor<2044x128xf32>) -> tensor<128x128xf32> { %cst = arith.constant 0.000000e+00 : f32 %0 = tensor.empty() : tensor<128x128xf32> %9 = linalg.fill ins(%cst : f32) outs(%0 : tensor<128x128xf32>) -> tensor<128x128xf32> %c0 = arith.constant 0 : index %c16 = arith.constant 16 : index %c2044 = arith.constant 2044 : index // CHECK: scf.for %[[ARG3:.*]] = {{.*}} iter_args(%[[ARG4:.*]] = %{{.*}}) %10 = scf.for %arg3 = %c0 to %c2044 step %c16 iter_args(%arg4 = %9) -> (tensor<128x128xf32>) { // CHECK: %[[MIN:.*]] = affine.min #[[$MAP_MIN]](%[[ARG3]]) %11 = affine.min affine_map<(d0) -> (-d0 + 2044, 16)>(%arg3) // CHECK: %[[A_SLICE:.*]] = tensor.extract_slice %[[A]] // CHECK: %[[B_SLICE:.*]] = tensor.extract_slice %[[B]] %extracted_slice_2 = tensor.extract_slice %a[0, %arg3] [128, %11] [1, 1] : tensor<128x2044xf32> to tensor<128x?xf32> %extracted_slice_3 = tensor.extract_slice %b[%arg3, 0] [%11, 128] [1, 1] : tensor<2044x128xf32> to tensor // CHECK-DAG: %[[CST:.*]] = arith.constant 0. // CHECK-DAG: %[[TO_16:.*]] = affine.apply #[[$MAP_TO_16]](%[[MIN]]) // CHECK: %[[PADDED_A_SLICE:.*]] = tensor.pad %[[A_SLICE]] nofold low[0, 0] high[0, %[[TO_16]]] // CHECK: tensor.yield %[[CST]] // CHECK: %[[PADDED_B_SLICE:.*]] = tensor.pad %[[B_SLICE]] nofold // The output shape is already padded, so actually we shouldn't // add anything to the upper bound. // CHECK: %[[PADDED_ARG4:.*]] = tensor.pad %[[ARG4]] nofold low[{{.*}}] high[0, 0] // CHECK: %[[T5:.*]] = linalg.matmul // CHECK-SAME: ins(%[[PADDED_A_SLICE]], %[[PADDED_B_SLICE]] : tensor<128x16xf32>, tensor<16x128xf32>) // CHECK-SAME: outs(%[[PADDED_ARG4]] : tensor<128x128xf32>) %res = linalg.matmul ins(%extracted_slice_2, %extracted_slice_3 : tensor<128x?xf32>, tensor) outs(%arg4 : tensor<128x128xf32>) -> tensor<128x128xf32> scf.yield %res : tensor<128x128xf32> } return %10 : tensor<128x128xf32> } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op %padded, %pad, %copy_back = transform.structured.pad %0 { padding_values=[0.0 : f32, 0.0 : f32, 0.0 : f32], padding_dimensions=[0, 1, 2], pack_paddings=[1, 1, 1] } : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op) transform.yield } } // ----- #map = affine_map<()[s0] -> (-s0 + 12, 7)> // CHECK-LABEL: @pack_everything func.func @pack_everything(%arg0: tensor<24x12xf32>, %arg1: tensor<12x25xf32>, %arg2: tensor<24x25xf32>, %iv0 : index, %iv1 : index, %iv2 : index) -> tensor<24x25xf32> { %0 = affine.min #map()[%iv2] // CHECK: %[[T0:.*]] = tensor.extract_slice % // CHECK: %[[T1:.*]] = tensor.extract_slice % // CHECK: %[[T2:.*]] = tensor.extract_slice % %1 = tensor.extract_slice %arg0[%iv0, %iv2] [4, %0] [1, 1] : tensor<24x12xf32> to tensor<4x?xf32> %2 = tensor.extract_slice %arg1[%iv2, %iv1] [%0, 5] [1, 1] : tensor<12x25xf32> to tensor %3 = tensor.extract_slice %arg2[%iv0, %iv1] [4, 5] [1, 1] : tensor<24x25xf32> to tensor<4x5xf32> // CHECK-DAG: %[[CST:.*]] = arith.constant 0. // CHECK: %[[PAD0:.*]] = tensor.pad %[[T0]] nofold // CHECK: %[[PAD1:.*]] = tensor.pad %[[T1]] nofold // CHECK: %[[PAD2:.*]] = tensor.pad %[[T2]] nofold // CHECK: %[[T5:.*]] = linalg.matmul // CHECK-SAME: ins(%[[PAD0]], %[[PAD1]] : tensor<4x7xf32>, tensor<7x5xf32>) // CHECK-SAME: outs(%[[PAD2]] : tensor<4x5xf32>) // Get unpadded result (no-op in this example). // CHECK: %[[T6:.*]] = tensor.extract_slice %[[T5]] // Copy back result to the original buffer, so that the destination of the // computation does not change. // CHECK: %[[T7:.*]] = bufferization.materialize_in_destination %[[T6]] in %[[T2]] %4 = linalg.matmul ins(%1, %2 : tensor<4x?xf32>, tensor) outs(%3 : tensor<4x5xf32>) -> tensor<4x5xf32> // CHECK: %[[T8:.*]] = tensor.insert_slice %[[T7]] into %{{.*}} %5 = tensor.insert_slice %4 into %arg2[%iv0, %iv1] [4, 5] [1, 1] : tensor<4x5xf32> into tensor<24x25xf32> func.return %5 : tensor<24x25xf32> } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op %padded, %pad, %copy_back = transform.structured.pad %0 { padding_values=[0.0 : f32, 0.0 : f32, 0.0 : f32], padding_dimensions=[0, 1, 2], pack_paddings=[1, 1, 1] } : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op) transform.yield } }