// RUN: mlir-opt %s --transform-interpreter --split-input-file -verify-diagnostics | FileCheck %s module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op %1:2 = transform.structured.split %0 after 42 { dimension = 0 } : !transform.any_op transform.yield } } func.func private @elem(%arg0: f32, %arg1: index, %arg2: index) -> f32 // CHECK: #[[$ADD_42_MAP:.+]] = affine_map<(d0) -> (d0 + 42)> // CHECK-LABEL: @one_d_static // CHECK-SAME: %[[IN:.+]]: tensor<100xf32>, %[[OUT:.+]]: tensor<100xf32> func.func @one_d_static(%arg0: tensor<100xf32>, %arg1: tensor<100xf32>) -> tensor<100xf32> { // CHECK: %[[IN_SLICE_LOW:.+]] = tensor.extract_slice %[[IN]][0] [42] [1] : tensor<100xf32> to tensor<42xf32> // CHECK: %[[OUT_SLICE_LOW:.+]] = tensor.extract_slice %[[OUT]][0] [42] [1] : tensor<100xf32> to tensor<42xf32> // CHECK: %[[RES_SLICE_LOW:.+]] = linalg.generic // CHECK: ins(%[[IN_SLICE_LOW]] // CHECK: outs(%[[OUT_SLICE_LOW]] // CHECK: linalg.index 0 // CHECK: func.call @elem // CHECK: %[[RES_PARTIAL:.+]] = tensor.insert_slice %[[RES_SLICE_LOW]] into %[[OUT]][0] [42] [1] // // CHECK: %[[IN_SLICE_HIGH:.+]] = tensor.extract_slice %[[IN]][42] [58] [1] : tensor<100xf32> to tensor<58xf32> // CHECK: %[[OUT_SLICE_HIGH:.+]] = tensor.extract_slice %[[RES_PARTIAL]][42] [58] [1] : tensor<100xf32> to tensor<58xf32> // CHECK: %[[RES_SLICE_HIGH:.+]] = linalg.generic // CHECK: ins(%[[IN_SLICE_HIGH]] // CHECK: outs(%[[OUT_SLICE_HIGH]] // CHECK: %[[IDX:.+]] = linalg.index 0 // CHECK: affine.apply #[[$ADD_42_MAP]](%[[IDX]]) // CHECK: func.call @elem // CHECK: %[[RES:.+]] = tensor.insert_slice %[[RES_SLICE_HIGH]] into %[[RES_PARTIAL]][42] [58] [1] %0 = linalg.generic { indexing_maps = [affine_map<(i) -> (i)>, affine_map<(i) -> (i)>], iterator_types = ["parallel"] } ins(%arg0: tensor<100xf32>) outs(%arg1: tensor<100xf32>) { ^bb0(%0: f32, %1: f32): %i = linalg.index 0 : index %call_res = func.call @elem(%0, %i, %i) : (f32, index, index) -> f32 linalg.yield %call_res : f32 } -> tensor<100xf32> // CHECK: return %[[RES]] return %0 : tensor<100xf32> } // ----- module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op %1:2 = transform.structured.split %0 after 42 { dimension = 0 } : !transform.any_op transform.yield } } func.func private @elem(%arg0: f32, %arg1: index, %arg2: index) -> f32 // CHECK-LABEL: @one_d_static_overflow // CHECK-SAME: %[[IN:.+]]: tensor<10xf32>, %[[OUT:.+]]: tensor<10xf32> func.func @one_d_static_overflow(%arg0: tensor<10xf32>, %arg1: tensor<10xf32>) -> tensor<10xf32> { // Folding is sufficiently powerful to detect the static overflow and avoid // the splitting altogether. // CHECK: %[[RES_SLICE_LOW:.+]] = linalg.generic // CHECK: ins(%[[IN]] // CHECK: outs(%[[OUT]] // CHECK: linalg.index 0 // CHECK: func.call @elem %0 = linalg.generic { indexing_maps = [affine_map<(i) -> (i)>, affine_map<(i) -> (i)>], iterator_types = ["parallel"] } ins(%arg0: tensor<10xf32>) outs(%arg1: tensor<10xf32>) { ^bb0(%0: f32, %1: f32): %i = linalg.index 0 : index %call_res = func.call @elem(%0, %i, %i) : (f32, index, index) -> f32 linalg.yield %call_res : f32 } -> tensor<10xf32> return %0 : tensor<10xf32> } // ----- module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op %1 = transform.structured.match ops{["func.call"]} in %arg1 : (!transform.any_op) -> !transform.any_op transform.structured.split %0 after %1 { dimension = 0 } : !transform.any_op, !transform.any_op transform.yield } } func.func private @get_size() -> index // CHECK: #[[$MAP_MIN_100:.+]] = affine_map<()[s0] -> (s0, 100)> // CHECK: #[[$MAP_S_MINUS_100:.+]] = affine_map<()[s0] -> (-s0 + 100)> // CHECK-LABEL: @dynamic func.func @dynamic(%arg0: tensor<100xf32>, %arg1: tensor<100xf32>) -> tensor<100xf32> { // CHECK: %[[SPLIT:.+]] = call @get_size // CHECK: %[[SPLIT_LOW:.+]] = affine.min #[[$MAP_MIN_100]]()[%[[SPLIT]] // CHECK: %[[SPLIT_HIGH_1:.+]] = affine.apply #[[$MAP_S_MINUS_100]]()[%[[SPLIT_LOW]]] // CHECK: %[[IN_SLICE_LOW:.+]] = tensor.extract_slice %[[IN:.+]][0] [%[[SPLIT_LOW]]] [1] : tensor<100xf32> to tensor // CHECK: %[[OUT_SLICE_LOW:.+]] = tensor.extract_slice %[[OUT:.+]][0] [%[[SPLIT_LOW]]] [1] : tensor<100xf32> to tensor // CHECK: %[[RES_SLICE_LOW:.+]] = linalg.generic // CHECK: ins(%[[IN_SLICE_LOW]] // CHECK: outs(%[[OUT_SLICE_LOW]] // CHECK: %[[PARTIAL:.+]] = tensor.insert_slice %[[RES_SLICE_LOW]] into %[[OUT]][0] [%[[SPLIT_LOW]]] [1] // // CHECK: %[[SPLIT_HIGH_2:.+]] = affine.apply #[[$MAP_S_MINUS_100]]()[%[[SPLIT_LOW]]] // CHECK: %[[SPLIT_HIGH_3:.+]] = affine.apply #[[$MAP_S_MINUS_100]]()[%[[SPLIT_LOW]]] // CHECK: %[[IN_SLICE_HIGH:.+]] = tensor.extract_slice %[[IN:.+]][%[[SPLIT_LOW]]] [%[[SPLIT_HIGH_2]]] [1] : tensor<100xf32> to tensor // CHECK: %[[OUT_SLICE_HIGH:.+]] = tensor.extract_slice %[[PARTIAL:.+]][%[[SPLIT_LOW]]] [%[[SPLIT_HIGH_3]]] [1] : tensor<100xf32> to tensor // CHECK: %[[RES_SLICE_HIGH:.+]] = linalg.generic // CHECK: ins(%[[IN_SLICE_HIGH]] // CHECK: outs(%[[OUT_SLICE_HIGH]] // CHECK: %[[SPLIT_HIGH_4:.+]] = affine.apply #[[$MAP_S_MINUS_100]]()[%[[SPLIT_LOW]]] // CHECK: tensor.insert_slice %[[RES_SLICE_HIGH]] into %[[PARTIAL]][%[[SPLIT_LOW]]] [%[[SPLIT_HIGH_4]]] [1] %0 = func.call @get_size() : () -> index %1 = linalg.generic { indexing_maps = [affine_map<(i) -> (i)>, affine_map<(i) -> (i)>], iterator_types = ["parallel"] } ins(%arg0: tensor<100xf32>) outs(%arg1: tensor<100xf32>) { ^bb0(%3: f32, %4: f32): %5 = arith.addf %3, %4 : f32 linalg.yield %5 : f32 } -> tensor<100xf32> return %1 : tensor<100xf32> } // ----- module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op %1:2 = transform.structured.split %0 after 4 { dimension = 0 } : !transform.any_op %2:2 = transform.structured.split %1#1 after 16 { dimension = 1 } : !transform.any_op transform.yield } } func.func private @elem(%arg0: f32, %arg1: index, %arg2: index) -> f32 // CHECK-LABEL: @two_d func.func @two_d(%arg0: tensor<10x34xf32>, %arg1: tensor<10x34xf32>) -> tensor<10x34xf32> { // Check the overall structure: split along the dimension 0, and then split // the second half only along the dimension 1. // CHECK: %[[IN_1:.+]] = tensor.extract_slice %[[IN:.+]][0, 0] // CHECK: %[[OUT_1:.+]] = tensor.extract_slice %[[OUT:.+]][0, 0] // CHECK: %[[RES_1:.+]] = linalg.generic // CHECK-SAME: ins(%[[IN_1]] : tensor<4x34xf32>) // CHECK-SAME: outs(%[[OUT_1]] : tensor<4x34xf32>) // CHECK: %[[PARTIAL_1:.+]] = tensor.insert_slice %[[RES_1]] into %[[OUT]] // // CHECK: %[[IN_2:.+]] = tensor.extract_slice %[[IN]] // CHECK: %[[OUT_2:.+]] = tensor.extract_slice %[[PARTIAL_1]] // Note that `extract_slice` taking a slice from another `extract_slice` result // is folded to use the operand of the first `extract_slice`. // CHECK: %[[IN_21:.+]] = tensor.extract_slice %[[IN_2]] // CHECK: %[[OUT_21:.+]] = tensor.extract_slice %[[OUT_2]] // CHECK: %[[RES_21:.+]] = linalg.generic // CHECK-SAME: ins(%[[IN_21]] : tensor<6x16xf32>) // CHECK-SAME: outs(%[[OUT_21]] : tensor<6x16xf32>) // CHECK: %[[PARTIAL_21:.+]] = tensor.insert_slice %[[RES_21]] into %[[OUT_2]] // // CHECK: %[[IN_22:.+]] = tensor.extract_slice %[[IN_2]] // CHECK: %[[OUT_22:.+]] = tensor.extract_slice %[[PARTIAL_21]] // CHECK: %[[RES_22:.+]] = linalg.generic // CHECK-SAME: ins(%[[IN_22]] : tensor<6x18xf32>) // CHECK-SAME: outs(%[[OUT_22]] : tensor<6x18xf32>) // CHECK: %[[PARTIAL_22:.+]] = tensor.insert_slice %[[RES_22]] into %[[PARTIAL_21]] // CHECK: %[[PARTIAL_2:.+]] = tensor.insert_slice %[[PARTIAL_22]] into %[[PARTIAL_1]] %0 = linalg.generic { indexing_maps = [affine_map<(i, j) -> (i, j)>, affine_map<(i, j) -> (i, j)>], iterator_types = ["parallel", "parallel"] } ins(%arg0: tensor<10x34xf32>) outs(%arg1: tensor<10x34xf32>) { ^bb0(%0: f32, %1: f32): %i = linalg.index 0 : index %j = linalg.index 1 : index %call_res = func.call @elem(%0, %i, %j) : (f32, index, index) -> f32 linalg.yield %call_res : f32 } -> tensor<10x34xf32> return %0 : tensor<10x34xf32> } // ----- module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.consumed}) { // expected-error @below {{expects either a dynamic or a static split point to be provided}} %0:2 = "transform.structured.split"(%arg1) { dimension = 1, static_split_point = -9223372036854775808 } : (!transform.any_op) -> (!transform.any_op, !transform.any_op) transform.yield } } // ----- module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op %1 = transform.structured.match ops{["func.call"]} in %arg1 : (!transform.any_op) -> !transform.any_op // expected-error @below {{expected dynamic split point handle to point to a single-result index-typed op}} transform.structured.split %0 after %1 { dimension = 0 } : !transform.any_op, !transform.any_op transform.yield } } func.func private @get_size() -> i64 func.func @dynamic(%arg0: tensor<100xf32>, %arg1: tensor<100xf32>) -> tensor<100xf32> { // expected-note @below {{dynamic split point}} %0 = func.call @get_size() : () -> i64 %1 = linalg.generic { indexing_maps = [affine_map<(i) -> (i)>, affine_map<(i) -> (i)>], iterator_types = ["parallel"] } ins(%arg0: tensor<100xf32>) outs(%arg1: tensor<100xf32>) { ^bb0(%3: f32, %4: f32): linalg.yield %3 : f32 } -> tensor<100xf32> return %1 : tensor<100xf32> } // ----- module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op %1 = transform.structured.match ops{["func.call"]} in %arg1 : (!transform.any_op) -> !transform.any_op // expected-error @below {{expected the dynamic split point handle to point to as many operations (0) as the target handle (1)}} transform.structured.split %0 after %1 { dimension = 0 } : !transform.any_op, !transform.any_op transform.yield } } func.func private @get_size() -> i64 func.func @dynamic(%arg0: tensor<100xf32>, %arg1: tensor<100xf32>) -> tensor<100xf32> { %1 = linalg.generic { indexing_maps = [affine_map<(i) -> (i)>, affine_map<(i) -> (i)>], iterator_types = ["parallel"] } ins(%arg0: tensor<100xf32>) outs(%arg1: tensor<100xf32>) { ^bb0(%3: f32, %4: f32): linalg.yield %3 : f32 } -> tensor<100xf32> return %1 : tensor<100xf32> } // ----- module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["func.return"]} in %arg1 : (!transform.any_op) -> !transform.any_op // expected-error @below {{only applies to structured ops}} transform.structured.split %0 after 16 { dimension = 1 } : !transform.any_op transform.yield } } func.func @noop(%arg0: tensor<100xf32>, %arg1: tensor<100xf32>) -> tensor<100xf32> { // expected-note @below {{target op}} return %arg0 : tensor<100xf32> } // ----- module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op // expected-error @below {{dimension 1 does not exist in target op}} transform.structured.split %0 after 16 { dimension = 1 } : !transform.any_op transform.yield } } func.func @one_d_static(%arg0: tensor<100xf32>, %arg1: tensor<100xf32>) -> tensor<100xf32> { // expected-note @below {{target op}} %0 = linalg.generic { indexing_maps = [affine_map<(i) -> (i)>, affine_map<(i) -> (i)>], iterator_types = ["parallel"] } ins(%arg0: tensor<100xf32>) outs(%arg1: tensor<100xf32>) { ^bb0(%0: f32, %1: f32): linalg.yield %0 : f32 } -> tensor<100xf32> return %0 : tensor<100xf32> } // ----- module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op // expected-error @below {{splitting does not produce the second part for a subset of targets}} // expected-note @below {{expected splitting to produce the second part of all or none of the targets}} %1:2 = transform.structured.split %0 after 142 { dimension = 0 } : !transform.any_op transform.yield } } func.func private @elem(%arg0: f32, %arg1: index, %arg2: index) -> f32 func.func @split_one_but_not_other( %arg0: tensor<100xf32>, %arg1: tensor<100xf32>, %arg2: tensor<200xf32>, %arg3: tensor<200xf32>) -> (tensor<100xf32>, tensor<200xf32>) { // expected-note @below {{first target with no second part}} %0 = linalg.generic { indexing_maps = [affine_map<(i) -> (i)>, affine_map<(i) -> (i)>], iterator_types = ["parallel"] } ins(%arg0: tensor<100xf32>) outs(%arg1: tensor<100xf32>) { ^bb0(%arg4: f32, %arg5: f32): %i = linalg.index 0 : index %call_res = func.call @elem(%arg4, %i, %i) : (f32, index, index) -> f32 linalg.yield %call_res : f32 } -> tensor<100xf32> %1 = linalg.generic { indexing_maps = [affine_map<(i) -> (i)>, affine_map<(i) -> (i)>], iterator_types = ["parallel"] } ins(%arg2: tensor<200xf32>) outs(%arg3: tensor<200xf32>) { ^bb0(%arg4: f32, %arg5: f32): %i = linalg.index 0 : index %call_res = func.call @elem(%arg4, %i, %i) : (f32, index, index) -> f32 linalg.yield %call_res : f32 } -> tensor<200xf32> return %0, %1 : tensor<100xf32>, tensor<200xf32> }