// RUN: mlir-opt %s -transform-interpreter -split-input-file -verify-diagnostics | FileCheck %s // CHECK-LABEL: @vectorize_matmul // CHECK-SAME: %[[A:.*]]: tensor<24x12xf32> // CHECK-SAME: %[[B:.*]]: tensor<12x25xf32> // CHECK-SAME: %[[C:.*]]: tensor<24x25xf32> func.func @vectorize_matmul(%arg0: tensor<24x12xf32>, %arg1: tensor<12x25xf32>, %arg2: tensor<24x25xf32>) -> tensor<24x25xf32> { // CHECK: %[[vA:.+]] = vector.transfer_read %[[A]] // CHECK: %[[vB:.+]] = vector.transfer_read %[[B]] // CHECK: %[[vC:.+]] = vector.transfer_read %[[C]] // CHECK: %[[vR:.+]] = vector.contract {{.*}} %[[vA]], %[[vB]], %[[vC]] // CHECK: vector.transfer_write %[[vR]], %[[C]] %0 = linalg.matmul ins(%arg0, %arg1 : tensor<24x12xf32>, tensor<12x25xf32>) outs(%arg2 : tensor<24x25xf32>) -> tensor<24x25xf32> func.return %0 : tensor<24x25xf32> } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op %1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op %2 = transform.structured.vectorize_children_and_apply_patterns %1 : (!transform.any_op) -> !transform.any_op transform.yield } } // ----- // CHECK-LABEL: @vectorize_matmul_memref // CHECK-SAME: %[[A:.*]]: memref<24x12xf32> // CHECK-SAME: %[[B:.*]]: memref<12x25xf32> // CHECK-SAME: %[[C:.*]]: memref<24x25xf32> func.func @vectorize_matmul_memref(%arg0: memref<24x12xf32>, %arg1: memref<12x25xf32>, %arg2: memref<24x25xf32>) { // CHECK: %[[vA:.+]] = vector.transfer_read %[[A]] // CHECK: %[[vB:.+]] = vector.transfer_read %[[B]] // CHECK: %[[vC:.+]] = vector.transfer_read %[[C]] // CHECK: %[[vR:.+]] = vector.contract {{.*}} %[[vA]], %[[vB]], %[[vC]] // CHECK: vector.transfer_write %[[vR]], %[[C]] linalg.matmul ins(%arg0, %arg1 : memref<24x12xf32>, memref<12x25xf32>) outs(%arg2 : memref<24x25xf32>) return } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op %1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op %2 = transform.structured.vectorize_children_and_apply_patterns %1 : (!transform.any_op) -> !transform.any_op transform.yield } } // ----- // CHECK-LABEL: @vectorize_copy_memref // CHECK-SAME: %[[A:.*]]: memref<100x100xf32>, // CHECK-SAME: %[[B:.*]]: memref<100x100xf32> func.func @vectorize_copy_memref(%arg0: memref<100x100xf32>, %arg1: memref<100x100xf32>) { // CHECK: %[[vA:.+]] = vector.transfer_read %[[A]] // CHECK: vector.transfer_write %[[vA]], %[[B]] linalg.copy ins(%arg0 : memref<100x100xf32>) outs(%arg1 : memref<100x100xf32>) return } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.copy"]} in %arg1 : (!transform.any_op) -> !transform.any_op %1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op %2 = transform.structured.vectorize_children_and_apply_patterns %1 : (!transform.any_op) -> !transform.any_op transform.yield } } // ----- #map0 = affine_map<()[s0] -> (-s0 + 12, 7)> #map1 = affine_map<()[s0] -> (-s0 + 7)> // CHECK-LABEL: @vectorize_keep_pad // CHECK-SAME: %[[C:[a-zA-Z0-9_]+]]: tensor<24x25xf32> func.func @vectorize_keep_pad( %arg0: tensor<24x12xf32>, %arg1: tensor<12x25xf32>, %arg2: tensor<24x25xf32>, %arg3: index, %arg4: index, %arg5: index) -> tensor<24x25xf32> { %c0 = arith.constant 0 : index %cst = arith.constant 0.000000e+00 : f32 %0 = affine.min #map0()[%arg5] %1 = tensor.extract_slice %arg0[%arg3, %arg5] [4, %0] [1, 1] : tensor<24x12xf32> to tensor<4x?xf32> %2 = tensor.extract_slice %arg1[%arg5, %arg4] [%0, 5] [1, 1] : tensor<12x25xf32> to tensor %3 = tensor.extract_slice %arg2[%arg3, %arg4] [4, 5] [1, 1] : tensor<24x25xf32> to tensor<4x5xf32> %4 = affine.apply #map1()[%0] // CHECK: %[[pA:.*]] = tensor.pad %5 = tensor.pad %1 nofold low[%c0, %c0] high[%c0, %4] { ^bb0(%arg6: index, %arg7: index): tensor.yield %cst : f32 } : tensor<4x?xf32> to tensor<4x7xf32> %6 = affine.apply #map1()[%0] // CHECK: %[[pB:.*]] = tensor.pad %7 = tensor.pad %2 nofold low[%c0, %c0] high[%6, %c0] { ^bb0(%arg6: index, %arg7: index): tensor.yield %cst : f32 } : tensor to tensor<7x5xf32> // CHECK: %[[vA:.+]] = vector.transfer_read %[[pA]] // CHECK: %[[vB:.+]] = vector.transfer_read %[[pB]] // CHECK: %[[vC:.+]] = vector.transfer_read %[[C]] // CHECK: %[[vR:.+]] = vector.contract {{.*}} %[[vA]], %[[vB]], %[[vC]] // CHECK: vector.transfer_write %[[vR]], %[[C]] %8 = linalg.matmul ins(%5, %7 : tensor<4x7xf32>, tensor<7x5xf32>) outs(%3 : tensor<4x5xf32>) -> tensor<4x5xf32> %9 = tensor.insert_slice %8 into %arg2[%arg3, %arg4] [4, 5] [1, 1] : tensor<4x5xf32> into tensor<24x25xf32> return %9 : tensor<24x25xf32> } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op %1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op %2 = transform.structured.vectorize_children_and_apply_patterns %1 : (!transform.any_op) -> !transform.any_op transform.yield } } // ----- #map0 = affine_map<()[s0] -> (-s0 + 12, 7)> #map1 = affine_map<()[s0] -> (-s0 + 7)> // CHECK-LABEL: @vectorize_pad // CHECK-SAME: %[[A:.+]]: tensor<24x12xf32> // CHECK-SAME: %[[B:.+]]: tensor<12x25xf32> // CHECK-SAME: %[[C:.+]]: tensor<24x25xf32> func.func @vectorize_pad( %arg0: tensor<24x12xf32>, %arg1: tensor<12x25xf32>, %arg2: tensor<24x25xf32>, %arg3: index, %arg4: index, %arg5: index) -> tensor<24x25xf32> { %c0 = arith.constant 0 : index %cst = arith.constant 0.000000e+00 : f32 %0 = affine.min #map0()[%arg5] // CHECK: %[[sA:.+]] = tensor.extract_slice %[[A]] // CHECK: %[[sB:.+]] = tensor.extract_slice %[[B]] %1 = tensor.extract_slice %arg0[%arg3, %arg5] [4, %0] [1, 1] : tensor<24x12xf32> to tensor<4x?xf32> %2 = tensor.extract_slice %arg1[%arg5, %arg4] [%0, 5] [1, 1] : tensor<12x25xf32> to tensor %3 = tensor.extract_slice %arg2[%arg3, %arg4] [4, 5] [1, 1] : tensor<24x25xf32> to tensor<4x5xf32> // CHECK: %[[vA:.+]] = vector.transfer_read %[[sA]] %4 = affine.apply #map1()[%0] %5 = tensor.pad %1 nofold low[%c0, %c0] high[%c0, %4] { ^bb0(%arg6: index, %arg7: index): tensor.yield %cst : f32 } : tensor<4x?xf32> to tensor<4x7xf32> %6 = affine.apply #map1()[%0] // CHECK: %[[vB:.+]] = vector.transfer_read %[[sB]] %7 = tensor.pad %2 nofold low[%c0, %c0] high[%6, %c0] { ^bb0(%arg6: index, %arg7: index): tensor.yield %cst : f32 } : tensor to tensor<7x5xf32> // CHECK: %[[vC:.+]] = vector.transfer_read %[[C]] // CHECK: %[[vR:.+]] = vector.contract {{.*}} %[[vA]], %[[vB]], %[[vC]] // CHECK: vector.transfer_write %[[vR]], %[[C]] %8 = linalg.matmul ins(%5, %7 : tensor<4x7xf32>, tensor<7x5xf32>) outs(%3 : tensor<4x5xf32>) -> tensor<4x5xf32> %9 = tensor.insert_slice %8 into %arg2[%arg3, %arg4] [4, 5] [1, 1] : tensor<4x5xf32> into tensor<24x25xf32> return %9 : tensor<24x25xf32> } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op %1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op %2 = transform.structured.vectorize_children_and_apply_patterns %1 {vectorize_padding} : (!transform.any_op) -> !transform.any_op transform.yield } } // ----- func.func @vectorize(%arg0: tensor<24x12xf32>, %arg1: tensor<12x25xf32>, %arg2: tensor<24x25xf32>) -> tensor<24x25xf32> { // expected-note @below {{non-isolated target}} %0 = linalg.matmul ins(%arg0, %arg1 : tensor<24x12xf32>, tensor<12x25xf32>) outs(%arg2 : tensor<24x25xf32>) -> tensor<24x25xf32> func.return %0 : tensor<24x25xf32> } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op // expected-error @below {{op requires isolated-from-above targets}} %2 = transform.structured.vectorize_children_and_apply_patterns %0 : (!transform.any_op) -> !transform.any_op transform.yield } }