// RUN: mlir-opt %s -transform-interpreter --split-input-file | FileCheck %s !A_mk = tensor<1023x255xf32> !B_kn = tensor<255x127xf32> !C_mn = tensor<1023x127xf32> // Normalized dims are: ( k, m, n)(kk, mm, nn) // CHECK-DAG: #[[$mk_kkmm:.*]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d1, d0, d3, d4)> // CHECK-DAG: #[[$kn_kknn:.*]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, d2, d3, d5)> // CHECK-DAG: #[[$mn_mmnn:.*]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d1, d2, d4, d5)> // CHECK-LABEL: @matmul_mk_kn_mn( func.func @matmul_mk_kn_mn(%A : !A_mk, %B : !B_kn, %C : !C_mn) -> !C_mn { // CHECK: linalg.generic // CHECK-SAME: indexing_maps = [#[[$mk_kkmm]], #[[$kn_kknn]], #[[$mn_mmnn]]] // CHECK-SAME: ["reduction", "parallel", "parallel", "reduction", "parallel", "parallel"]} // CHECK-SAME: ins(%{{.*}} : tensor<128x8x32x8xf32>, tensor<8x8x32x16xf32>) // CHECK-SAME: outs(%{{.*}} : tensor<128x8x8x16xf32>) %0 = linalg.matmul ins(%A, %B : !A_mk, !B_kn) outs(%C : !C_mn) -> !C_mn return %0 : !C_mn } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%module_op: !transform.any_op {transform.readonly}) { %matmul = transform.structured.match ops{["linalg.matmul"]} in %module_op : (!transform.any_op) -> !transform.op<"linalg.matmul"> transform.structured.pack_greedily %matmul matmul_packed_sizes = [8, 16, 32] matmul_inner_dims_order = [1, 2, 0] : (!transform.op<"linalg.matmul">) -> !transform.op<"linalg.generic"> transform.yield } } // ----- !A_mk = tensor<1023x255xf32> !B_nk = tensor<127x255xf32> !C_nm = tensor<127x1023xf32> #mkn_accesses = [ affine_map<(m, n, k) -> (m, k)>, affine_map<(m, n, k) -> (n, k)>, affine_map<(m, n, k) -> (n, m)> ] #mkn_trait = { indexing_maps = #mkn_accesses, iterator_types = ["parallel", "parallel", "reduction"] } // Normalized dims are: ( k, m, n)(kk, mm, nn) // CHECK-DAG: #[[$km_kkmm:.*]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d1, d0, d3, d4)> // CHECK-DAG: #[[$kn_kknn:.*]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d2, d0, d3, d5)> // CHECK-DAG: #[[$mn_mmnn:.*]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d2, d1, d4, d5)> // CHECK-LABEL: @matmul_mk_nk_nm( func.func @matmul_mk_nk_nm(%A : !A_mk, %B : !B_nk, %C : !C_nm) -> !C_nm { // CHECK: linalg.generic // CHECK-SAME: indexing_maps = [#[[$mk_kkmm]], #[[$kn_kknn]], #[[$mn_mmnn]]] // CHECK-SAME: ["reduction", "parallel", "parallel", "reduction", "parallel", "parallel"]} // CHECK-SAME: ins(%{{.*}} : tensor<128x8x32x8xf32>, tensor<8x8x32x16xf32>) // CHECK-SAME: outs(%{{.*}} : tensor<8x128x8x16xf32>) %0 = linalg.generic #mkn_trait ins(%A, %B : !A_mk, !B_nk) outs(%C : !C_nm) { ^bb0(%a: f32, %b: f32, %c: f32): %d = arith.mulf %a, %b : f32 %e = arith.addf %c, %d : f32 linalg.yield %e : f32 } -> !C_nm return %0 : !C_nm } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%module_op: !transform.any_op {transform.readonly}) { %generic = transform.structured.match ops{["linalg.generic"]} in %module_op : (!transform.any_op) -> !transform.op<"linalg.generic"> transform.structured.pack_greedily %generic matmul_packed_sizes = [8, 16, 32] matmul_inner_dims_order = [1, 2, 0] : (!transform.op<"linalg.generic">) -> !transform.op<"linalg.generic"> transform.yield } } // ----- !A_mk = tensor<1023x255xf32> !B_nk = tensor<127x255xf32> !C_nm = tensor<127x1023xf32> #mkn_accesses = [ affine_map<(k, m, n) -> (m, k)>, affine_map<(k, m, n) -> (n, k)>, affine_map<(k, m, n) -> (n, m)> ] #mkn_trait = { indexing_maps = #mkn_accesses, iterator_types = ["reduction", "parallel", "parallel"] } // Normalized dims are: ( k, m, n)(kk, mm, nn) // CHECK-DAG: #[[$mk_kkmm:.*]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d1, d0, d3, d4)> // CHECK-DAG: #[[$kn_kknn:.*]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d2, d0, d3, d5)> // CHECK-DAG: #[[$mn_mmnn:.*]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d2, d1, d4, d5)> // CHECK-LABEL: @matmul_mk_nk_nm_transposed( func.func @matmul_mk_nk_nm_transposed(%A : !A_mk, %B : !B_nk, %C : !C_nm) -> !C_nm { // CHECK: linalg.generic // CHECK-SAME: indexing_maps = [#[[$mk_kkmm]], #[[$kn_kknn]], #[[$mn_mmnn]]] // CHECK-SAME: ["reduction", "parallel", "parallel", "reduction", "parallel", "parallel"]} // CHECK-SAME: ins(%{{.*}} : tensor<128x8x32x8xf32>, tensor<8x8x32x16xf32>) // CHECK-SAME: outs(%{{.*}} : tensor<8x128x8x16xf32>) %0 = linalg.generic #mkn_trait ins(%A, %B : !A_mk, !B_nk) outs(%C : !C_nm) { ^bb0(%a: f32, %b: f32, %c: f32): %d = arith.mulf %a, %b : f32 %e = arith.addf %c, %d : f32 linalg.yield %e : f32 } -> !C_nm return %0 : !C_nm } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%module_op: !transform.any_op {transform.readonly}) { %generic = transform.structured.match ops{["linalg.generic"]} in %module_op : (!transform.any_op) -> !transform.op<"linalg.generic"> transform.structured.pack_greedily %generic matmul_packed_sizes = [8, 16, 32] matmul_inner_dims_order = [1, 2, 0] : (!transform.op<"linalg.generic">) -> !transform.op<"linalg.generic"> transform.yield } } // ----- !A_bmkm2 = tensor<42x1023x255x33xf32> !B_nkb = tensor<127x255x42xf32> !C_nbm = tensor<127x42x1023xf32> #mkn_accesses = [ affine_map<(k, m, n, b, m2) -> (b, m, k, m2)>, affine_map<(k, m, n, b, m2) -> (n, k, b)>, affine_map<(k, m, n, b, m2) -> (n, b, m)> ] #mkn_trait = { indexing_maps = #mkn_accesses, iterator_types = ["reduction", "parallel", "parallel", "parallel", "parallel"] } // Normalized dims are: ( ?, ?, k, m, n)(kk, mm, nn) // CHECK-DAG: #[[$bmkm2_kkmm:.*]] = affine_map<(d0, d1, d2, d3, d4, d5, d6, d7) -> (d0, d3, d2, d1, d5, d6)> // CHECK-DAG: #[[$nkb_kknn:.*]] = affine_map<(d0, d1, d2, d3, d4, d5, d6, d7) -> (d4, d2, d0, d5, d7)> // CHECK-DAG: #[[$nbm_mmnn:.*]] = affine_map<(d0, d1, d2, d3, d4, d5, d6, d7) -> (d4, d0, d3, d6, d7)> // CHECK-LABEL: @contraction_bmkm2_nkb_nbm( func.func @contraction_bmkm2_nkb_nbm(%A : !A_bmkm2, %B : !B_nkb, %C : !C_nbm) -> !C_nbm { // CHECK: linalg.generic // CHECK-SAME: indexing_maps = [#[[$bmkm2_kkmm]], #[[$nkb_kknn]], #[[$nbm_mmnn]]] // CHECK-SAME: ["parallel", "parallel", "reduction", "parallel", "parallel", "reduction", "parallel", "parallel"]} // CHECK-SAME: ins(%{{.*}} : tensor<42x128x8x33x32x8xf32>, tensor<8x8x42x32x16xf32>) // CHECK-SAME: outs(%{{.*}} : tensor<8x42x128x8x16xf32>) %0 = linalg.generic #mkn_trait ins(%A, %B : !A_bmkm2, !B_nkb) outs(%C : !C_nbm) { ^bb0(%a: f32, %b: f32, %c: f32): %d = arith.mulf %a, %b : f32 %e = arith.addf %c, %d : f32 linalg.yield %e : f32 } -> !C_nbm return %0 : !C_nbm } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%module_op: !transform.any_op {transform.readonly}) { %generic = transform.structured.match ops{["linalg.generic"]} in %module_op : (!transform.any_op) -> !transform.op<"linalg.generic"> transform.structured.pack_greedily %generic matmul_packed_sizes = [8, 16, 32] matmul_inner_dims_order = [1, 2, 0] : (!transform.op<"linalg.generic">) -> !transform.op<"linalg.generic"> transform.yield } } // ----- // Conv linguo: h w kh kw c n f cc nn ff // Normalized dims are: ( ?, ?, ?, ?, k, m, n)(kk, mm, nn) // n c h + kh w + kw cc nn // CHECK-DAG: #[[$M1:.*]] = affine_map<(d0, d1, d2, d3, d4, d5, d6, d7, d8, d9) -> (d5, d4, d0 + d2, d1 + d3, d7, d8)> // f c kh kw cc ff // CHECK-DAG: #[[$M2:.*]] = affine_map<(d0, d1, d2, d3, d4, d5, d6, d7, d8, d9) -> (d6, d4, d2, d3, d7, d9)> // n f h w nn ff // CHECK-DAG: #[[$M3:.*]] = affine_map<(d0, d1, d2, d3, d4, d5, d6, d7, d8, d9) -> (d5, d6, d0, d1, d8, d9)> // CHECK-LABEL: @conv_2d_nchw_fchw func.func @conv_2d_nchw_fchw(%arg0: tensor, %arg2: tensor) -> tensor { %c0 = arith.constant dense<0.1> : tensor<16x47x3x3xf32> // CHECK: linalg.generic // CHECK-SAME: indexing_maps = [#[[$M1]], #[[$M2]], #[[$M3]]] // CHECK-SAME: iterator_types = ["parallel", "parallel", "reduction", "reduction", "reduction", "parallel", "parallel", "reduction", "parallel", "parallel"] // CHECK-SAME: ins(%{{.*}} : tensor, tensor<1x2x3x3x32x16xf32>) // CHECK-SAME: outs(%{{.*}} : tensor) %0 = linalg.conv_2d_nchw_fchw {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64> } ins(%arg0, %c0: tensor, tensor<16x47x3x3xf32>) outs(%arg2: tensor) -> tensor return %0 : tensor } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%module_op: !transform.any_op {transform.readonly}) { %conv = transform.structured.match ops{["linalg.conv_2d_nchw_fchw"]} in %module_op : (!transform.any_op) -> !transform.op<"linalg.conv_2d_nchw_fchw"> transform.structured.pack_greedily %conv matmul_packed_sizes = [8, 16, 32] matmul_inner_dims_order = [1, 2, 0] : (!transform.op<"linalg.conv_2d_nchw_fchw">) -> !transform.op<"linalg.generic"> transform.yield } } // ----- // These should fail to pack for now as they don't contain a contraction. // CHECK-LABEL: @reduce_and_map func.func @reduce_and_map(%arg0: tensor<10x100xf32>, %arg1: tensor<10x100xf32>, %output: tensor<10xf32>) -> tensor<10xf32> { %map_init = tensor.empty() : tensor<10x100xf32> // CHECK: linalg.map %mapped = linalg.map { arith.addf } ins(%arg0, %arg1 : tensor<10x100xf32>, tensor<10x100xf32>) outs(%map_init : tensor<10x100xf32>) // CHECK: linalg.reduce %res = linalg.reduce { arith.addf } ins(%mapped: tensor<10x100xf32>) outs(%output: tensor<10xf32>) dimensions = [1] return %res : tensor<10xf32> } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%module_op: !transform.any_op {transform.readonly}) { %generic = transform.structured.match ops{["linalg.generic"]} in %module_op : (!transform.any_op) -> !transform.op<"linalg.generic"> transform.structured.pack_greedily %generic matmul_packed_sizes = [8, 16, 32] matmul_inner_dims_order = [1, 2, 0] : (!transform.op<"linalg.generic">) -> !transform.op<"linalg.generic"> transform.yield } } // ----- !A_mk = tensor<1023x255xf32> !B_nk = tensor<127x255xf32> !C_nm = tensor<127x1023xf32> #mkn_accesses = [ affine_map<(m, n, k) -> (m, k)>, affine_map<(m, n, k) -> (n, k)>, affine_map<(m, n, k) -> (n, m)> ] #mkn_trait = { indexing_maps = #mkn_accesses, iterator_types = ["parallel", "parallel", "reduction"] } // Normalized dims are: ( k, m, n)(kk, mm, nn) // CHECK-DAG: #[[$km_kkmm:.*]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d1, d0, d3, d4)> // CHECK-DAG: #[[$kn_kknn:.*]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d2, d0, d3, d5)> // CHECK-DAG: #[[$mn_mmnn:.*]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d2, d1, d4, d5)> // CHECK-LABEL: @matmul_mk_nk_nm( func.func @matmul_mk_nk_nm(%A : !A_mk, %B : !B_nk, %C : !C_nm) -> !C_nm { // CHECK: linalg.generic // CHECK-SAME: indexing_maps = [#[[$mk_kkmm]], #[[$kn_kknn]], #[[$mn_mmnn]]] // CHECK-SAME: ["reduction", "parallel", "parallel", "reduction", "parallel", "parallel"]} // CHECK-SAME: ins(%{{.*}} : tensor<128x8x32x8xf32>, tensor<1x8x32x130xf32>) // CHECK-SAME: outs(%{{.*}} : tensor<1x128x8x130xf32>) %0 = linalg.generic #mkn_trait ins(%A, %B : !A_mk, !B_nk) outs(%C : !C_nm) { ^bb0(%a: f32, %b: f32, %c: f32): %d = arith.mulf %a, %b : f32 %e = arith.addf %c, %d : f32 linalg.yield %e : f32 } -> !C_nm return %0 : !C_nm } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%module_op: !transform.any_op {transform.readonly}) { %generic = transform.structured.match ops{["linalg.generic"]} in %module_op : (!transform.any_op) -> !transform.op<"linalg.generic"> transform.structured.pack_greedily %generic // In this spec, the "k" dimension is not packed but rather padded to the // next multiple of 10 (i.e. 130). matmul_packed_sizes = [8, 0, 32] matmul_padded_sizes_next_multiple_of = [0, 10, 0] matmul_inner_dims_order = [1, 2, 0] : (!transform.op<"linalg.generic">) -> !transform.op<"linalg.generic"> transform.yield } } // ----- !A_mk = tensor<1023x255xf32> !B_nk = tensor<127x255xf32> !C_nm = tensor<127x1023xf32> #mkn_accesses = [ affine_map<(m, n, k) -> (m, k)>, affine_map<(m, n, k) -> (n, k)>, affine_map<(m, n, k) -> (n, m)> ] #mkn_trait = { indexing_maps = #mkn_accesses, iterator_types = ["parallel", "parallel", "reduction"] } // Normalized dims are: ( k, m, n)(kk, mm) // CHECK-DAG: #[[$km_kkmm:.*]] = affine_map<(d0, d1, d2, d3, d4) -> (d1, d0, d3)> // CHECK-DAG: #[[$kn_kknn:.*]] = affine_map<(d0, d1, d2, d3, d4) -> (d2, d0, d3, d4)> // CHECK-DAG: #[[$mn_mmnn:.*]] = affine_map<(d0, d1, d2, d3, d4) -> (d2, d1, d4)> // CHECK-LABEL: @matmul_mk_nk_nm( func.func @matmul_mk_nk_nm(%A : !A_mk, %B : !B_nk, %C : !C_nm) -> !C_nm { // CHECK: linalg.generic // CHECK-SAME: indexing_maps = [#[[$mk_kkmm]], #[[$kn_kknn]], #[[$mn_mmnn]]] // CHECK-SAME: ["reduction", "parallel", "parallel", "reduction", "parallel"]} // CHECK-SAME: ins(%{{.*}} : tensor<1023x8x32xf32>, tensor<1x8x32x130xf32>) // CHECK-SAME: outs(%{{.*}} : tensor<1x1023x130xf32>) %0 = linalg.generic #mkn_trait ins(%A, %B : !A_mk, !B_nk) outs(%C : !C_nm) { ^bb0(%a: f32, %b: f32, %c: f32): %d = arith.mulf %a, %b : f32 %e = arith.addf %c, %d : f32 linalg.yield %e : f32 } -> !C_nm return %0 : !C_nm } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%module_op: !transform.any_op {transform.readonly}) { %generic = transform.structured.match ops{["linalg.generic"]} in %module_op : (!transform.any_op) -> !transform.op<"linalg.generic"> transform.structured.pack_greedily %generic // In this spec, the "n" dimension is neither packed not unpacked. // We don't end up with an innermost matmul after packing but only with an // innermost matvec. matmul_packed_sizes = [0, 0, 32] matmul_padded_sizes_next_multiple_of = [0, 10, 0] matmul_inner_dims_order = [1, 2, 0] : (!transform.op<"linalg.generic">) -> !transform.op<"linalg.generic"> transform.yield } } // ----- !A = tensor<1023x255xf32> !X = tensor<255xf32> !Y = tensor<1023xf32> // CHECK-LABEL: @matvec_fail( func.func @matvec_fail(%A : !A, %x : !X, %y : !Y) -> !Y { // CHECK: linalg.matvec %0 = linalg.matvec ins(%A, %x : !A, !X) outs(%y : !Y) -> !Y return %0 : !Y } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%module_op: !transform.any_op {transform.readonly}) { %matmul = transform.structured.match ops{["linalg.matvec"]} in %module_op : (!transform.any_op) -> !transform.op<"linalg.matvec"> transform.structured.pack_greedily %matmul matmul_packed_sizes = [8, 16, 32] matmul_inner_dims_order = [1, 2, 0] : (!transform.op<"linalg.matvec">) -> !transform.any_op transform.yield } } // ----- func.func @no_padding_on_packs(%A: tensor<32x32xf32>, %B: tensor<32x32xf32>, %C: tensor<32x32xf32>) -> tensor<32x32xf32> { %0 = linalg.matmul ins(%A, %B: tensor<32x32xf32>, tensor<32x32xf32>) outs(%C: tensor<32x32xf32>) -> tensor<32x32xf32> return %0 : tensor<32x32xf32> } // CHECK-LABEL: no_padding_on_packs // CHECK: tensor.pack %{{.+}} inner_dims_pos = [0, 1] inner_tiles = [8, 4] // CHECK-SAME: into %{{.+}} : tensor<32x32xf32> -> tensor<4x8x8x4xf32> // CHECK: tensor.pack %{{.+}} outer_dims_perm = [1, 0] // CHECK-SAME: inner_dims_pos = [0, 1] inner_tiles = [4, 16] into %{{.+}} : tensor<32x32xf32> -> tensor<2x8x4x16xf32> // CHECK: tensor.pack %{{.+}} inner_dims_pos = [0, 1] inner_tiles = [8, 16] // CHECK-SAME: into %{{.+}} : tensor<32x32xf32> -> tensor<4x2x8x16xf32> module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.op<"linalg.matmul"> %1 = transform.structured.pack_greedily %0 matmul_packed_sizes = [8, 16, 4] matmul_inner_dims_order = [0, 1, 2] : (!transform.op<"linalg.matmul">) -> !transform.op<"linalg.generic"> %pack = transform.get_producer_of_operand %1[1] : (!transform.op<"linalg.generic">) -> (!transform.op<"tensor.pack">) %2, %pack_2, %empty_unpack_2 = transform.structured.pack_transpose %pack with_compute_op(%1) outer_perm = [1, 0] inner_perm = [1, 0] : (!transform.op<"tensor.pack">, !transform.op<"linalg.generic">) -> (!transform.op<"linalg.generic">, !transform.op<"tensor.pack">, !transform.any_op) transform.yield } }