// RUN: mlir-opt %s --transform-interpreter --split-input-file -canonicalize | FileCheck %s // This is a simple tile-and-fuse example with a single fusion group. module { // CHECK: func @foo // CHECK: scf.forall {{.*}} { // CHECK: linalg.fill // CHECK: linalg.matmul // CHECK: linalg.generic // CHECK: } func.func @foo(%A: tensor, %B: tensor, %C: tensor, %D: tensor, %sz0: index, %sz1: index) -> tensor { %cst = arith.constant 0.000000e+00 : f32 %5 = linalg.fill {__producer__} ins(%cst : f32) outs(%D : tensor) -> tensor %6 = linalg.matmul {__producer__} ins(%A, %B : tensor, tensor) outs(%5 : tensor) -> tensor %7 = linalg.generic {__root__, indexing_maps = [affine_map<(d0, d1) -> (d0)>, affine_map<(d0, d1) -> (d0, d1)>, affine_map<(d0, d1) -> (d0, d1)>], iterator_types = ["parallel", "parallel"] } ins(%C, %6 : tensor, tensor) outs(%D : tensor) { ^bb0(%arg2: f32, %arg3: f32, %arg4: f32): %16 = arith.maximumf %arg3, %cst : f32 %17 = arith.cmpf ogt, %arg2, %cst : f32 %18 = arith.select %17, %cst, %16 : f32 linalg.yield %18 : f32 } -> tensor return %7 : tensor } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { // Find the root and all producers. %root = transform.structured.match attributes{"__root__"} in %arg1 : (!transform.any_op) -> !transform.any_op %producers = transform.structured.match attributes{"__producer__"} in %arg1 : (!transform.any_op) -> !transform.any_op // Tile the root. %tiled_op, %forall_op = transform.structured.tile_using_forall %root num_threads [10, 20] : (!transform.any_op) -> (!transform.any_op, !transform.any_op) // Fuse all producers. transform.structured.fuse_into_containing_op %producers into %forall_op : (!transform.any_op, !transform.any_op) -> (!transform.any_op, !transform.any_op) transform.yield } } } // ----- // Inverse the order of the payload ops passed to the tile_using_forall // op. Fusion should still work. module { // CHECK: func @foo // CHECK: scf.forall {{.*}} { // CHECK: linalg.fill // CHECK: linalg.matmul // CHECK: linalg.generic // CHECK: } func.func @foo(%A: tensor, %B: tensor, %C: tensor, %D: tensor, %sz0: index, %sz1: index) -> tensor { %cst = arith.constant 0.000000e+00 : f32 %5 = linalg.fill {__producer__} ins(%cst : f32) outs(%D : tensor) -> tensor %6 = linalg.matmul {__producer__} ins(%A, %B : tensor, tensor) outs(%5 : tensor) -> tensor %7 = linalg.generic {__root__, indexing_maps = [affine_map<(d0, d1) -> (d0)>, affine_map<(d0, d1) -> (d0, d1)>, affine_map<(d0, d1) -> (d0, d1)>], iterator_types = ["parallel", "parallel"] } ins(%C, %6 : tensor, tensor) outs(%D : tensor) { ^bb0(%arg2: f32, %arg3: f32, %arg4: f32): %16 = arith.maximumf %arg3, %cst : f32 %17 = arith.cmpf ogt, %arg2, %cst : f32 %18 = arith.select %17, %cst, %16 : f32 linalg.yield %18 : f32 } -> tensor return %7 : tensor } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { // Find the root and all producers. %root = transform.structured.match attributes{"__root__"} in %arg1 : (!transform.any_op) -> !transform.any_op %producers = transform.structured.match attributes{"__producer__"} in %arg1 : (!transform.any_op) -> !transform.any_op %reversed_producers = transform.test_reverse_payload_ops %producers : (!transform.any_op) -> !transform.any_op // Tile the root. %tiled_op, %forall_op = transform.structured.tile_using_forall %root num_threads [10, 20] : (!transform.any_op) -> (!transform.any_op, !transform.any_op) // Fuse all producers. transform.structured.fuse_into_containing_op %reversed_producers into %forall_op : (!transform.any_op, !transform.any_op) -> (!transform.any_op, !transform.any_op) transform.yield } } }