// RUN: mlir-opt %s -one-shot-bufferize="allow-return-allocs-from-loops bufferize-function-boundaries test-analysis-only" -split-input-file | FileCheck %s // Run fuzzer with different seeds. // RUN: mlir-opt %s -one-shot-bufferize="allow-return-allocs-from-loops bufferize-function-boundaries test-analysis-only analysis-fuzzer-seed=23" -split-input-file -o /dev/null // RUN: mlir-opt %s -one-shot-bufferize="allow-return-allocs-from-loops bufferize-function-boundaries test-analysis-only analysis-fuzzer-seed=59" -split-input-file -o /dev/null // RUN: mlir-opt %s -one-shot-bufferize="allow-return-allocs-from-loops bufferize-function-boundaries test-analysis-only analysis-fuzzer-seed=91" -split-input-file -o /dev/null // CHECK-LABEL: func @scf_for_yield_only func.func @scf_for_yield_only( %A : tensor {bufferization.writable = false}, %B : tensor {bufferization.writable = true}, %lb : index, %ub : index, %step : index) -> (tensor, tensor) { // CHECK: scf.for // CHECK-NEXT: scf.yield // CHECK-SAME: {__inplace_operands_attr__ = ["true"]} // CHECK: } {__inplace_operands_attr__ = ["none", "none", "none", "false"]} %r0 = scf.for %i = %lb to %ub step %step iter_args(%t = %A) -> (tensor) { scf.yield %t : tensor } // CHECK: scf.for // CHECK-NEXT: scf.yield // CHECK-SAME: {__inplace_operands_attr__ = ["true"]} // CHECK: } {__inplace_operands_attr__ = ["none", "none", "none", "true"]} %r1 = scf.for %i = %lb to %ub step %step iter_args(%t = %B) -> (tensor) { scf.yield %t : tensor } // CHECK: return // CHECK-SAME: __equivalent_func_args__ = [-1, 1] return %r0, %r1: tensor, tensor } // ----- // CHECK-LABEL: func @scf_for_with_tensor.insert_slice func.func @scf_for_with_tensor.insert_slice( %A : tensor {bufferization.writable = false}, %B : tensor {bufferization.writable = true}, %C : tensor<4xf32> {bufferization.writable = false}, %lb : index, %ub : index, %step : index) -> (tensor, tensor) { // CHECK: scf.for // scf.for bbArgs are always inplaceable seen from ops inside the body: // 1. Either the matching tensor is not inplaceable and an alloc occurs // which makes bbArg inplaceable. // 2. Or it is already inplaceable and so is bbArg. // CHECK-NEXT: tensor.insert_slice // CHECK-SAME: {__inplace_operands_attr__ = ["true", "true"]} // CHECK-NEXT: tensor.insert_slice // CHECK-SAME: {__inplace_operands_attr__ = ["true", "true"]} // CHECK-NEXT: scf.yield {__inplace_operands_attr__ = ["true", "true"]} // CHECK-NEXT: } {__inplace_operands_attr__ = ["none", "none", "none", "false", "true"]} %r0:2 = scf.for %i = %lb to %ub step %step iter_args(%tA = %A, %tB = %B) -> (tensor, tensor) { %ttA = tensor.insert_slice %C into %tA[0][4][1] : tensor<4xf32> into tensor %ttB = tensor.insert_slice %C into %tB[0][4][1] : tensor<4xf32> into tensor scf.yield %ttA, %ttB : tensor, tensor } // CHECK: return // CHECK-SAME: __equivalent_func_args__ = [-1, 1] return %r0#0, %r0#1: tensor, tensor } // ----- func.func private @some_use(tensor) -> () // CHECK-LABEL: func @scf_for_deps func.func @scf_for_deps( %A : tensor {bufferization.writable = true}, %B : tensor {bufferization.writable = true}, %lb : index, %ub : index, %step : index) -> (tensor) { // %r0 must be out of place because one use of %t in the subsequent production // of %r1 is read. // CHECK: scf.for // CHECK-NEXT: call // CHECK-SAME: {__inplace_operands_attr__ = ["false"]} // CHECK-NEXT: scf.yield // CHECK-SAME: {__inplace_operands_attr__ = ["true"]} // CHECK: } {__inplace_operands_attr__ = ["none", "none", "none", "false"]} %r0 = scf.for %i = %lb to %ub step %step iter_args(%t = %A) -> (tensor) { func.call @some_use(%t) : (tensor) -> () scf.yield %t : tensor } // %r1 bufferizes inplace fine. // CHECK: scf.for // CHECK-NEXT: call // CHECK-SAME: {__inplace_operands_attr__ = ["false"]} // CHECK-NEXT: scf.yield // CHECK-SAME: {__inplace_operands_attr__ = ["true"]} // CHECK: } {__inplace_operands_attr__ = ["none", "none", "none", "true"]} %r1 = scf.for %i = %lb to %ub step %step iter_args(%t = %A) -> (tensor) { func.call @some_use(%t) : (tensor) -> () scf.yield %t : tensor } // CHECK: return // CHECK-SAME: __equivalent_func_args__ = [0] return %r1: tensor } // ----- #accesses = [ affine_map<(i) -> (i)> ] #trait = { indexing_maps = #accesses, iterator_types = ["parallel"] } // CHECK-LABEL: func @reading_scf_for func.func @reading_scf_for(%t1: tensor {bufferization.writable = true}, %s: index, %v: vector<5xf32>) -> (tensor, vector<5xf32>) { %c0 = arith.constant 0 : index %c1 = arith.constant 1 : index %cst = arith.constant 0.0 : f32 // Write to %t1. // CHECK: vector.transfer_write // CHECK-SAME: __inplace_operands_attr__ = ["none", "false", "none"] %t3 = vector.transfer_write %v, %t1[%s] : vector<5xf32>, tensor // Read the old value of %t1 inside the loop via an alias. // CHECK: scf.for {{.*}} { %r, %v3 = scf.for %i = %c0 to %s step %c1 iter_args(%t2 = %t1, %v0 = %v) -> (tensor, vector<5xf32>) { // CHECK: tensor.extract_slice // CHECK-SAME: __inplace_operands_attr__ = ["true", "none", "none"] %e = tensor.extract_slice %t2[%s][%s][1] : tensor to tensor // Read from %t1 via alias %e. %v2 = vector.transfer_read %e[%s], %cst : tensor, vector<5xf32> scf.yield %t2, %v2 : tensor, vector<5xf32> } // CHECK: } {__inplace_operands_attr__ = ["none", "none", "none", "true", "none"]} // Use %t3 in some way without reading it, so that it does not get DCE'd. // CHECK: linalg.generic // CHECK-SAME: __inplace_operands_attr__ = ["true"] %o = linalg.generic #trait outs (%t3 : tensor) { ^bb(%0: f32) : linalg.yield %cst : f32 } -> (tensor) return %o, %v3 : tensor, vector<5xf32> } // ----- #accesses = [ affine_map<(i) -> (i)> ] #trait = { indexing_maps = #accesses, iterator_types = ["parallel"] } // CHECK-LABEL: func @non_reading_scf_for func.func @non_reading_scf_for(%t1: tensor {bufferization.writable = true}, %s: index, %v: vector<5xf32>) -> (tensor, vector<5xf32>) { %c0 = arith.constant 0 : index %c1 = arith.constant 1 : index %c10 = arith.constant 10 : index %cst = arith.constant 0.0 : f32 // Write to %t1. // CHECK: vector.transfer_write // CHECK-SAME: __inplace_operands_attr__ = ["none", "true", "none"] %t3 = vector.transfer_write %v, %t1[%s] : vector<5xf32>, tensor // This loop does not read from %t1. It only writes to it. // CHECK: scf.for %r, %v3 = scf.for %i = %c0 to %c10 step %c1 iter_args(%t2 = %t1, %v0 = %v) -> (tensor, vector<5xf32>) { // Write to %t1 via %t2. (Overwrite %t3.) // CHECK: linalg.generic // CHECK-SAME: __inplace_operands_attr__ = ["true"] %o2 = linalg.generic #trait outs (%t2 : tensor) { ^bb(%0: f32) : linalg.yield %cst : f32 } -> (tensor) // Read overwritten value. This is not a read of %t1. %v2 = vector.transfer_read %o2[%s], %cst : tensor, vector<5xf32> scf.yield %o2, %v2 : tensor, vector<5xf32> } // Use %t3 in some way without reading it, so that it does not get DCE'd. // CHECK: linalg.generic // CHECK-SAME: __inplace_operands_attr__ = ["true"] %o = linalg.generic #trait outs (%t3 : tensor) { ^bb(%0: f32) : linalg.yield %cst : f32 } -> (tensor) // CHECK: return // CHECK-SAME: __equivalent_func_args__ = [0, -1] return %o, %v3 : tensor, vector<5xf32> } // ----- //===----------------------------------------------------------------------===// // scf.if cases //===----------------------------------------------------------------------===// // This example passes analysis, but it fails when bufferizing. // CHECK-LABEL: func @scf_if_inplace1 func.func @scf_if_inplace1(%t1: tensor {bufferization.writable = true}, %t2: tensor {bufferization.writable = true}, %cond: i1) -> tensor { %r = scf.if %cond -> (tensor) { // CHECK: scf.yield // CHECK-SAME: {__inplace_operands_attr__ = ["true"]} scf.yield %t1 : tensor } else { // CHECK: scf.yield // CHECK-SAME: {__inplace_operands_attr__ = ["true"]} scf.yield %t2 : tensor } return %r : tensor } // ----- // CHECK-LABEL: func @scf_if_inplace2 func.func @scf_if_inplace2(%t1: tensor {bufferization.writable = true}, %v: vector<5xf32>, %idx: index, %cond: i1) -> tensor { %r = scf.if %cond -> (tensor) { // CHECK: scf.yield // CHECK-SAME: {__inplace_operands_attr__ = ["true"]} scf.yield %t1 : tensor } else { // CHECK: vector.transfer_write // CHECK-SAME: {__inplace_operands_attr__ = ["none", "true", "none"] %t2 = vector.transfer_write %v, %t1[%idx] : vector<5xf32>, tensor scf.yield %t2 : tensor } // CHECK: return // CHECK-SAME: __equivalent_func_args__ = [0] return %r : tensor } // ----- // CHECK-LABEL: func @scf_if_inplace3 func.func @scf_if_inplace3(%t1: tensor {bufferization.writable = true}, %v1: vector<5xf32>, %v2: vector<5xf32>, %idx: index, %cond: i1) -> tensor { // CHECK: tensor.extract_slice // CHECK-SAME: {__inplace_operands_attr__ = ["true", "none", "none"] %e = tensor.extract_slice %t1[%idx][%idx][1] : tensor to tensor %r = scf.if %cond -> (tensor) { // CHECK: vector.transfer_write // CHECK-SAME: {__inplace_operands_attr__ = ["none", "true", "none"] %t2 = vector.transfer_write %v1, %e[%idx] : vector<5xf32>, tensor // CHECK: scf.yield // CHECK-SAME: {__inplace_operands_attr__ = ["true"]} scf.yield %t2 : tensor } else { // Writing the same tensor through an alias. This is OK. // CHECK: vector.transfer_write // CHECK-SAME: {__inplace_operands_attr__ = ["none", "true", "none"] %t3 = vector.transfer_write %v2, %t1[%idx] : vector<5xf32>, tensor // CHECK: scf.yield // CHECK-SAME: {__inplace_operands_attr__ = ["true"]} scf.yield %t3 : tensor } return %r : tensor } // ----- // CHECK-LABEL: func @scf_if_in_place4 func.func @scf_if_in_place4(%t1: tensor {bufferization.writable = true}, %v: vector<5xf32>, %idx: index, %cond: i1, %cond2: i1) -> (tensor, vector<10xf32>) { %cst = arith.constant 0.0 : f32 %r = scf.if %cond -> (tensor) { // CHECK: scf.yield // CHECK-SAME: {__inplace_operands_attr__ = ["true"]} scf.yield %t1 : tensor } else { // CHECK: vector.transfer_write // CHECK-SAME: {__inplace_operands_attr__ = ["none", "true", "none"] %t2 = vector.transfer_write %v, %t1[%idx] : vector<5xf32>, tensor // CHECK: scf.yield // CHECK-SAME: {__inplace_operands_attr__ = ["true"]} scf.yield %t2 : tensor } %r_alias = scf.if %cond2 -> (tensor) { // Reading %r is OK. No conflict. // CHECK: scf.yield // CHECK-SAME: {__inplace_operands_attr__ = ["true"]} scf.yield %r : tensor } else { // CHECK: scf.yield // CHECK-SAME: {__inplace_operands_attr__ = ["true"]} scf.yield %r : tensor } %v2 = vector.transfer_read %r_alias[%idx], %cst : tensor, vector<10xf32> // CHECK: return // CHECK-SAME: __equivalent_func_args__ = [0, -1] return %r_alias, %v2 : tensor, vector<10xf32> } // ----- // CHECK-LABEL: func @scf_if_inplace5 func.func @scf_if_inplace5(%t1: tensor {bufferization.writable = true}, %idx: index, %cond: i1) -> tensor { %r = scf.if %cond -> (tensor) { // CHECK: tensor.extract_slice // CHECK-SAME: {__inplace_operands_attr__ = ["true", "none", "none"] %e = tensor.extract_slice %t1[%idx][%idx][1] : tensor to tensor // CHECK: scf.yield // CHECK-SAME: {__inplace_operands_attr__ = ["true"]} scf.yield %e : tensor } else { // CHECK: tensor.extract_slice // CHECK-SAME: {__inplace_operands_attr__ = ["true", "none", "none"] %f = tensor.extract_slice %t1[%idx][%idx][1] : tensor to tensor // CHECK: scf.yield // CHECK-SAME: {__inplace_operands_attr__ = ["true"]} scf.yield %f : tensor } // Inserting into an equivalent tensor at the same offset. This bufferizes // inplace. // CHECK: tensor.insert_slice // CHECK-SAME: {__inplace_operands_attr__ = ["true", "true", "none", "none"] %r2 = tensor.insert_slice %r into %t1[%idx][%idx][1] : tensor into tensor // CHECK: return // CHECK-SAME: __equivalent_func_args__ = [0] return %r2 : tensor } // ----- // CHECK-LABEL: func @scf_if_inplace6 func.func @scf_if_inplace6(%t1: tensor {bufferization.writable = true}, %v1: vector<5xf32>, %v2: vector<5xf32>, %v3: vector<5xf32>, %idx: index, %cond: i1, %cond2: i1) -> tensor { // Test nested scf.if ops. %r = scf.if %cond -> (tensor) { %t2 = scf.if %cond2 -> (tensor) { // CHECK: vector.transfer_write // CHECK-SAME: {__inplace_operands_attr__ = ["none", "true", "none"] %t3 = vector.transfer_write %v1, %t1[%idx] : vector<5xf32>, tensor // CHECK: scf.yield // CHECK-SAME: {__inplace_operands_attr__ = ["true"]} scf.yield %t3 : tensor } else { // CHECK: vector.transfer_write // CHECK-SAME: {__inplace_operands_attr__ = ["none", "true", "none"] %t4 = vector.transfer_write %v3, %t1[%idx] : vector<5xf32>, tensor // CHECK: scf.yield // CHECK-SAME: {__inplace_operands_attr__ = ["true"]} scf.yield %t4 : tensor } // CHECK: scf.yield // CHECK-SAME: {__inplace_operands_attr__ = ["true"]} scf.yield %t2 : tensor } else { // CHECK: vector.transfer_write // CHECK-SAME: {__inplace_operands_attr__ = ["none", "true", "none"] %t3 = vector.transfer_write %v2, %t1[%idx] : vector<5xf32>, tensor // CHECK: scf.yield // CHECK-SAME: {__inplace_operands_attr__ = ["true"]} scf.yield %t3 : tensor } // CHECK: return // CHECK-SAME: __equivalent_func_args__ = [0] return %r : tensor } // ----- // CHECK-LABEL: func @scf_if_inplace7 func.func @scf_if_inplace7(%t1: tensor {bufferization.writable = true}, %v1: vector<5xf32>, %v2: vector<5xf32>, %idx: index, %idx2: index, %cond: i1) -> (tensor, vector<5xf32>) { %cst = arith.constant 0.0 : f32 %r, %v_r2 = scf.if %cond -> (tensor, vector<5xf32>) { // CHECK: vector.transfer_write // CHECK-SAME: {__inplace_operands_attr__ = ["none", "true", "none"] %t2 = vector.transfer_write %v1, %t1[%idx] : vector<5xf32>, tensor // CHECK: scf.yield // CHECK-SAME: {__inplace_operands_attr__ = ["true", "none"]} scf.yield %t2, %v1 : tensor, vector<5xf32> } else { // Writing the same tensor through an alias. // CHECK: vector.transfer_write // CHECK-SAME: {__inplace_operands_attr__ = ["none", "false", "none"] %t3 = vector.transfer_write %v2, %t1[%idx] : vector<5xf32>, tensor // Read the original value of %t1. This requires the write in this branch // to be out-of-place. But the write in the other branch can still be // inplace. %v_r = vector.transfer_read %t1[%idx2], %cst : tensor, vector<5xf32> // CHECK: scf.yield // CHECK-SAME: {__inplace_operands_attr__ = ["true", "none"]} scf.yield %t3, %v_r : tensor, vector<5xf32> } return %r, %v_r2 : tensor, vector<5xf32> } // ----- // CHECK-LABEL: func @scf_if_out_of_place1a func.func @scf_if_out_of_place1a(%t1: tensor {bufferization.writable = true}, %idx: index, %idx2: index, %cond: i1) -> tensor { %r = scf.if %cond -> (tensor) { // CHECK: tensor.extract_slice // CHECK-SAME: {__inplace_operands_attr__ = ["true", "none", "none"] %e = tensor.extract_slice %t1[%idx][%idx][1] : tensor to tensor // CHECK: scf.yield // CHECK-SAME: {__inplace_operands_attr__ = ["true"]} scf.yield %e : tensor } else { // CHECK: scf.yield // CHECK-SAME: {__inplace_operands_attr__ = ["true"]} scf.yield %t1 : tensor } // Reading from and writing to the same tensor via different args. This is a // conflict. // CHECK: tensor.insert_slice // CHECK-SAME: {__inplace_operands_attr__ = ["true", "false", "none", "none"] %r2 = tensor.insert_slice %r into %t1[%idx2][%idx2][1] : tensor into tensor return %r2 : tensor } // ----- // CHECK-LABEL: func @scf_if_out_of_place1b func.func @scf_if_out_of_place1b(%t1: tensor {bufferization.writable = true}, %idx: index, %idx2: index, %idx3: index, %cond: i1) -> tensor { %r = scf.if %cond -> (tensor) { // CHECK: tensor.extract_slice // CHECK-SAME: {__inplace_operands_attr__ = ["false", "none", "none"] %e = tensor.extract_slice %t1[%idx][%idx][1] : tensor to tensor // CHECK: scf.yield // CHECK-SAME: {__inplace_operands_attr__ = ["true"]} scf.yield %e : tensor } else { // CHECK: tensor.extract_slice // CHECK-SAME: {__inplace_operands_attr__ = ["false", "none", "none"] %f = tensor.extract_slice %t1[%idx2][%idx2][1] : tensor to tensor // CHECK: scf.yield // CHECK-SAME: {__inplace_operands_attr__ = ["true"]} scf.yield %f : tensor } // Reading from and writing to the same tensor via different args. This is a // conflict. In contrast to scf_if_out_of_place1a, the fact that %r aliases // with %t1 is only detected when analyzing the tensor.extract_slices. That's // why the tensor.insert_slice is inplace and the two extract_slices are // out-of-place. // CHECK: tensor.insert_slice // CHECK-SAME: {__inplace_operands_attr__ = ["true", "true", "none", "none"] %r2 = tensor.insert_slice %r into %t1[%idx3][%idx3][1] : tensor into tensor // CHECK: return // CHECK-SAME: __equivalent_func_args__ = [0] return %r2 : tensor } // ----- // CHECK-LABEL: func @scf_if_out_of_place1c func.func @scf_if_out_of_place1c(%t1: tensor {bufferization.writable = true}, %idx: index, %idx2: index, %cond: i1) -> tensor { %r = scf.if %cond -> (tensor) { // CHECK: tensor.extract_slice // CHECK-SAME: {__inplace_operands_attr__ = ["false", "none", "none"] %e = tensor.extract_slice %t1[%idx][%idx][1] : tensor to tensor // CHECK: scf.yield // CHECK-SAME: {__inplace_operands_attr__ = ["true"]} scf.yield %e : tensor } else { // TODO: This one could bufferize inplace, but the analysis is too restrictive. // CHECK: tensor.extract_slice // CHECK-SAME: {__inplace_operands_attr__ = ["false", "none", "none"] %f = tensor.extract_slice %t1[%idx2][%idx2][1] : tensor to tensor // CHECK: scf.yield // CHECK-SAME: {__inplace_operands_attr__ = ["true"]} scf.yield %f : tensor } // CHECK: tensor.insert_slice // CHECK-SAME: {__inplace_operands_attr__ = ["true", "true", "none", "none"] %r2 = tensor.insert_slice %r into %t1[%idx2][%idx2][1] : tensor into tensor // CHECK: return // CHECK-SAME: __equivalent_func_args__ = [0] return %r2 : tensor } // ----- // CHECK-LABEL: func @scf_if_out_of_place2 func.func @scf_if_out_of_place2(%t1: tensor {bufferization.writable = true}, %v: vector<5xf32>, %idx: index, %cond: i1) -> (tensor, vector<10xf32>) { %cst = arith.constant 0.0 : f32 %r = scf.if %cond -> (tensor) { scf.yield %t1 : tensor } else { // CHECK: vector.transfer_write // CHECK-SAME: {__inplace_operands_attr__ = ["none", "false", "none"] %t2 = vector.transfer_write %v, %t1[%idx] : vector<5xf32>, tensor // CHECK: scf.yield // CHECK-SAME: {__inplace_operands_attr__ = ["true"]} scf.yield %t2 : tensor } // Read the old value of %t1. Forces the transfer_write to bufferize // out-of-place. %v2 = vector.transfer_read %t1[%idx], %cst : tensor, vector<10xf32> return %r, %v2 : tensor, vector<10xf32> } // ----- // CHECK-LABEL: func @scf_if_out_of_place3 func.func @scf_if_out_of_place3(%t1: tensor {bufferization.writable = true}, %v: vector<5xf32>, %idx: index, %cond: i1, %cond2: i1) -> (tensor, vector<10xf32>) { %cst = arith.constant 0.0 : f32 %r = scf.if %cond -> (tensor) { scf.yield %t1 : tensor } else { // CHECK: vector.transfer_write // CHECK-SAME: {__inplace_operands_attr__ = ["none", "false", "none"] %t2 = vector.transfer_write %v, %t1[%idx] : vector<5xf32>, tensor // CHECK: scf.yield // CHECK-SAME: {__inplace_operands_attr__ = ["true"]} scf.yield %t2 : tensor } %t1_alias = scf.if %cond2 -> (tensor) { // scf.yield bufferizes to a read. That is a conflict in this example. // CHECK: scf.yield // CHECK-SAME: {__inplace_operands_attr__ = ["true"]} scf.yield %t1 : tensor } else { // CHECK: scf.yield // CHECK-SAME: {__inplace_operands_attr__ = ["true"]} scf.yield %t1 : tensor } %v2 = vector.transfer_read %t1_alias[%idx], %cst : tensor, vector<10xf32> return %r, %v2 : tensor, vector<10xf32> } // ----- // CHECK-LABEL: func @write_to_same_tensor_in_loop_in_place( func.func @write_to_same_tensor_in_loop_in_place( %A : tensor {bufferization.writable = true}, %lb : index, %ub : index, %step : index, %sz: index) -> (tensor) { // CHECK: scf.for {{.*}} { %r0 = scf.for %i = %lb to %ub step %step iter_args(%t = %A) -> (tensor) { %B = bufferization.alloc_tensor(%sz) : tensor %i2 = arith.index_cast %i : index to i32 %i3 = arith.sitofp %i2 : i32 to f32 // The tensor.insert is in-place because the %B is defined inside the loop. // CHECK: tensor.insert // CHECK-SAME: {__inplace_operands_attr__ = ["none", "true", "none"]} %B2 = tensor.insert %i3 into %B[%i] : tensor // CHECK: tensor.insert_slice // CHECK-SAME: {__inplace_operands_attr__ = ["true", "true", "none", "none"]} %A2 = tensor.insert_slice %B2 into %t[%i][%sz][1] : tensor into tensor scf.yield %A2 : tensor } // CHECK: } {__inplace_operands_attr__ = ["none", "none", "none", "true"]} return %r0 : tensor } // ----- // This is a regression test. Everything can bufferize in-place because %7 and // %arg1 are in the same repetitive region. // CHECK-LABEL: func @same_enclosing_repetitive_region func.func @same_enclosing_repetitive_region(%2: tensor<320xf32>, %3: tensor<320x10240xf32>) -> tensor<320xf32> { %c0 = arith.constant 0 : index %cst = arith.constant -0.000000e+00 : f32 %c320 = arith.constant 320 : index %4 = scf.forall (%arg0) in (%c320) shared_outs(%arg1 = %2) -> (tensor<320xf32>) { // CHECK: tensor.extract_slice {{.*}} {__inplace_operands_attr__ = ["true", "none"]} %5 = tensor.extract_slice %3[%arg0, 0] [1, 10240] [1, 1] : tensor<320x10240xf32> to tensor<1x10240xf32> // CHECK: tensor.extract_slice {{.*}} {__inplace_operands_attr__ = ["true", "none"]} %6 = tensor.extract_slice %arg1[%arg0] [1] [1] : tensor<320xf32> to tensor<1xf32> // CHECK: linalg.fill {__inplace_operands_attr__ = ["none", "true"]} %7 = linalg.fill ins(%cst : f32) outs(%6 : tensor<1xf32>) -> tensor<1xf32> // CHECK: linalg.fill {__inplace_operands_attr__ = ["none", "true"]} %8 = linalg.fill ins(%cst : f32) outs(%7 : tensor<1xf32>) -> tensor<1xf32> scf.forall.in_parallel { // CHECK: tensor.parallel_insert_slice {{.*}} {__inplace_operands_attr__ = ["true", "true", "none"]} tensor.parallel_insert_slice %8 into %arg1[%arg0] [1] [1] : tensor<1xf32> into tensor<320xf32> } } return %4 : tensor<320xf32> } // ----- // CHECK-LABEL: different_repetitive_region_via_alias func.func @different_repetitive_region_via_alias(%arg0: tensor<4xf32>, %arg1: tensor<4xf32>, %arg2: index, %arg3: index, %arg4: index) -> (tensor<4xf32>) { %cst = arith.constant 0.000000e+00 : f32 %cst2 = arith.constant 1.000000e+00 : f32 %0 = bufferization.alloc_tensor() : tensor<4xf32> // CHECK: linalg.fill {__inplace_operands_attr__ = ["none", "false"]} %1 = linalg.fill ins(%cst : f32) outs(%0 : tensor<4xf32>) -> tensor<4xf32> %2 = scf.for %arg5 = %arg2 to %arg3 step %arg4 iter_args(%arg6 = %arg1) -> (tensor<4xf32>) { // CHECK: tensor.extract {{.*}} {__inplace_operands_attr__ = ["true", "none"]} %4 = tensor.extract %1[%arg4] : tensor<4xf32> vector.print %4 : f32 // CHECK: linalg.fill {__inplace_operands_attr__ = ["none", "true"]} %5 = linalg.fill ins(%cst2 : f32) outs(%0 : tensor<4xf32>) -> tensor<4xf32> scf.yield %5 : tensor<4xf32> } return %2 : tensor<4xf32> } // ----- // CHECK-LABEL: no_raw_conflict_after_repetitive_use func.func @no_raw_conflict_after_repetitive_use(%arg0: tensor<4xf32>, %arg1: tensor<4xf32>, %arg2: index, %arg3: index, %arg4: index) -> (tensor<4xf32>, tensor<4xf32>) { %cst = arith.constant 0.000000e+00 : f32 %cst2 = arith.constant 1.000000e+00 : f32 %cst3 = arith.constant 2.000000e+00 : f32 %0 = bufferization.alloc_tensor() : tensor<4xf32> // CHECK: linalg.fill {__inplace_operands_attr__ = ["none", "true"]} %1 = linalg.fill ins(%cst : f32) outs(%0 : tensor<4xf32>) -> tensor<4xf32> %2 = scf.for %arg5 = %arg2 to %arg3 step %arg4 iter_args(%arg6 = %arg1) -> (tensor<4xf32>) { // CHECK: tensor.extract {{.*}} {__inplace_operands_attr__ = ["true", "none"]} %4 = tensor.extract %1[%arg4] : tensor<4xf32> vector.print %4 : f32 // CHECK: linalg.fill {__inplace_operands_attr__ = ["none", "false"]} %5 = linalg.fill ins(%cst2 : f32) outs(%1 : tensor<4xf32>) -> tensor<4xf32> scf.yield %5 : tensor<4xf32> } // The following is *not* a RaW conflict. // CHECK: tensor.extract {{.*}} {__inplace_operands_attr__ = ["true", "none"]} %6 = tensor.extract %1[%arg4] : tensor<4xf32> vector.print %6 : f32 // CHECK: linalg.fill {__inplace_operands_attr__ = ["none", "true"]} %7 = linalg.fill ins(%cst3 : f32) outs(%1 : tensor<4xf32>) -> tensor<4xf32> return %2, %7 : tensor<4xf32>, tensor<4xf32> } // ----- // CHECK-LABEL: func @read_of_bbarg_in_repetitive_region( func.func @read_of_bbarg_in_repetitive_region( %t: tensor<10xf32>, %a: index, %b: index, %c: index, %cst: f32) { // CHECK: scf.for scf.for %iv = %a to %b step %c { // Must bufferize out-of-place because definition of read is in a different // repetitive region. // CHECK: tensor.extract_slice {{.*}} {__inplace_operands_attr__ = ["true"]} %2 = tensor.extract_slice %t[0][4][1] : tensor<10xf32> to tensor<4xf32> %3 = tensor.extract %2[%a] : tensor<4xf32> vector.print %3 : f32 // CHECK: tensor.insert {{.*}} {__inplace_operands_attr__ = ["none", "false", "none"]} %4 = tensor.insert %cst into %2[%a] : tensor<4xf32> %5 = tensor.extract %4[%a] : tensor<4xf32> vector.print %5 : f32 } return } // ----- // CHECK-LABEL: func @read_definition_in_same_repetitive_region_as_write( func.func @read_definition_in_same_repetitive_region_as_write( %t: tensor<10xf32>, %a: index, %b: index, %c: index, %cst: f32) { // CHECK: tensor.insert {{.*}} {__inplace_operands_attr__ = ["none", "true", "none"]} %1 = tensor.insert %cst into %t[%a] : tensor<10xf32> // CHECK: scf.for scf.for %iv = %a to %b step %c { // Can bufferize in-place. // CHECK: tensor.extract_slice {{.*}} {__inplace_operands_attr__ = ["true"]} %2 = tensor.extract_slice %1[0][4][1] : tensor<10xf32> to tensor<4xf32> %3 = tensor.extract %2[%a] : tensor<4xf32> vector.print %3 : f32 } return } // ----- // CHECK-LABEL: func @read_definition_in_same_repetitive_region_as_conflicting_write( func.func @read_definition_in_same_repetitive_region_as_conflicting_write( %t: tensor<10xf32>, %a: index, %b: index, %c: index, %cst: f32) { // Cannot bufferize in-place according to normal op dominance rules. // CHECK: tensor.insert {{.*}} {__inplace_operands_attr__ = ["none", "false", "none"]} %1 = tensor.insert %cst into %t[%a] : tensor<10xf32> // CHECK: scf.for scf.for %iv = %a to %b step %c { // CHECK: tensor.extract_slice {{.*}} {__inplace_operands_attr__ = ["true"]} %2 = tensor.extract_slice %t[0][4][1] : tensor<10xf32> to tensor<4xf32> %3 = tensor.extract %2[%a] : tensor<4xf32> vector.print %3 : f32 } return } // ----- // CHECK: func @write_value_in_repetitive_region( func.func @write_value_in_repetitive_region( %t: tensor<10xf32>, %a: index, %b: index, %c: index, %cst: f32) { %0 = tensor.extract %t[%a] : tensor<10xf32> vector.print %0 : f32 scf.for %iv = %a to %b step %c { // No further read of %0, so this can bufferize in-place. // CHECK: tensor.extract_slice {{.*}} {__inplace_operands_attr__ = ["true"]} %2 = tensor.extract_slice %t[0][4][1] : tensor<10xf32> to tensor<4xf32> // CHECK: linalg.fill {__inplace_operands_attr__ = ["none", "true"]} %filled = linalg.fill ins(%cst : f32) outs(%2 : tensor<4xf32>) -> tensor<4xf32> %3 = tensor.extract %filled[%a] : tensor<4xf32> vector.print %3 : f32 } return } // ----- // CHECK-LABEL: func @nesting_op_repetitive_regions( func.func @nesting_op_repetitive_regions( %t: tensor<10xf32>, %a: index, %b: index, %c: index, %cst: f32) { // Cannot bufferize in-place according to normal op dominance rules. // CHECK: tensor.insert {{.*}} {__inplace_operands_attr__ = ["none", "false", "none"]} %1 = tensor.insert %cst into %t[%a] : tensor<10xf32> // CHECK: scf.for scf.for %iv1 = %a to %b step %c { // CHECK: scf.for scf.for %iv2 = %a to %b step %c { // CHECK: scf.for scf.for %iv3 = %a to %b step %c { // CHECK: tensor.extract_slice {{.*}} {__inplace_operands_attr__ = ["true"]} %2 = tensor.extract_slice %t[0][4][1] : tensor<10xf32> to tensor<4xf32> %3 = tensor.extract %2[%a] : tensor<4xf32> vector.print %3 : f32 } } } return } // ----- // CHECK-LABEL: func @parallel_region() func.func @parallel_region() -> tensor<320xf32> { %alloc0 = bufferization.alloc_tensor() : tensor<320xf32> %alloc1 = bufferization.alloc_tensor() : tensor<1xf32> %c320 = arith.constant 320 : index // CHECK: scf.forall %0 = scf.forall (%arg0) in (%c320) shared_outs(%arg1 = %alloc0) -> (tensor<320xf32>) { %val = "test.foo"() : () -> (f32) // linalg.fill must bufferize out-of-place because every thread needs a // private copy of %alloc1. // CHECK: linalg.fill {__inplace_operands_attr__ = ["none", "false"]} %fill = linalg.fill ins(%val : f32) outs(%alloc1 : tensor<1xf32>) -> tensor<1xf32> scf.forall.in_parallel { // CHECK: tensor.parallel_insert_slice {{.*}} {__inplace_operands_attr__ = ["true", "true", "none"]} tensor.parallel_insert_slice %fill into %arg1[%arg0] [1] [1] : tensor<1xf32> into tensor<320xf32> } } // CHECK: } {__inplace_operands_attr__ = ["none", "true"]} return %0 : tensor<320xf32> } // ----- // CHECK-LABEL: func @parallel_region_mixed_def( func.func @parallel_region_mixed_def(%c: i1) -> tensor<320xf32> { %alloc0 = bufferization.alloc_tensor() : tensor<320xf32> %alloc1 = bufferization.alloc_tensor() : tensor<1xf32> %c320 = arith.constant 320 : index // CHECK: scf.forall %0 = scf.forall (%arg0) in (%c320) shared_outs(%arg1 = %alloc0) -> (tensor<320xf32>) { %alloc2 = bufferization.alloc_tensor() : tensor<1xf32> %selected = scf.if %c -> tensor<1xf32> { scf.yield %alloc1 : tensor<1xf32> } else { scf.yield %alloc2 : tensor<1xf32> } %val = "test.foo"() : () -> (f32) // linalg.fill must bufferize out-of-place because every thread needs a // private copy of %alloc1. // CHECK: linalg.fill {__inplace_operands_attr__ = ["none", "false"]} %fill = linalg.fill ins(%val : f32) outs(%selected : tensor<1xf32>) -> tensor<1xf32> scf.forall.in_parallel { // CHECK: tensor.parallel_insert_slice {{.*}} {__inplace_operands_attr__ = ["true", "true", "none"]} tensor.parallel_insert_slice %fill into %arg1[%arg0] [1] [1] : tensor<1xf32> into tensor<320xf32> } } // CHECK: } {__inplace_operands_attr__ = ["none", "true"]} return %0 : tensor<320xf32> } // ----- // CHECK-LABEL: func @parallel_region_two_writes( func.func @parallel_region_two_writes(%f: f32) -> tensor<320xf32> { %alloc0 = bufferization.alloc_tensor() : tensor<320xf32> %alloc1 = bufferization.alloc_tensor() : tensor<1xf32> %c320 = arith.constant 320 : index %c0 = arith.constant 0 : index // CHECK: scf.forall %0 = scf.forall (%arg0) in (%c320) shared_outs(%arg1 = %alloc0) -> (tensor<320xf32>) { %val = "test.foo"() : () -> (f32) // linalg.fill must bufferize out-of-place because every thread needs a // private copy of %alloc1. // CHECK: linalg.fill {__inplace_operands_attr__ = ["none", "false"]} %fill = linalg.fill ins(%val : f32) outs(%alloc1 : tensor<1xf32>) -> tensor<1xf32> // CHECK: tensor.insert // CHECK-SAME: __inplace_operands_attr__ = ["none", "true", "none"] %inserted = tensor.insert %f into %fill[%c0] : tensor<1xf32> scf.forall.in_parallel { // CHECK: tensor.parallel_insert_slice {{.*}} {__inplace_operands_attr__ = ["true", "true", "none"]} tensor.parallel_insert_slice %inserted into %arg1[%arg0] [1] [1] : tensor<1xf32> into tensor<320xf32> } } // CHECK: } {__inplace_operands_attr__ = ["none", "true"]} return %0 : tensor<320xf32> } // ----- // CHECK-LABEL: func @parallel_region_no_read() func.func @parallel_region_no_read() { %alloc0 = bufferization.alloc_tensor() : tensor<320xf32> %alloc1 = bufferization.alloc_tensor() : tensor<1xf32> %c320 = arith.constant 320 : index // CHECK: scf.forall scf.forall (%arg0) in (%c320) { %val = "test.foo"() : () -> (f32) // linalg.fill can bufferize in-place because no alias of %alloc1 is read. // CHECK: linalg.fill {__inplace_operands_attr__ = ["none", "true"]} %fill = linalg.fill ins(%val : f32) outs(%alloc1 : tensor<1xf32>) -> tensor<1xf32> scf.forall.in_parallel { } } return }