// RUN: mlir-opt %s -one-shot-bufferize="allow-unknown-ops allow-return-allocs-from-loops" -split-input-file -verify-diagnostics func.func @inconsistent_memory_space_scf_if(%c: i1) -> tensor<10xf32> { // Yielding tensors with different memory spaces. Such IR cannot be // bufferized. %0 = bufferization.alloc_tensor() {memory_space = 0 : ui64} : tensor<10xf32> %1 = bufferization.alloc_tensor() {memory_space = 1 : ui64} : tensor<10xf32> // expected-error @+1 {{inconsistent memory space on then/else branches}} %r = scf.if %c -> tensor<10xf32> { // expected-error @+1 {{failed to bufferize op}} scf.yield %0 : tensor<10xf32> } else { scf.yield %1 : tensor<10xf32> } func.return %r : tensor<10xf32> } // ----- func.func @execute_region_multiple_yields(%t: tensor<5xf32>) -> tensor<5xf32> { // expected-error @below{{op op without unique scf.yield is not supported}} %0 = scf.execute_region -> tensor<5xf32> { scf.yield %t : tensor<5xf32> ^bb1(%arg1 : tensor<5xf32>): scf.yield %arg1 : tensor<5xf32> } func.return %0 : tensor<5xf32> } // ----- func.func @execute_region_no_yield(%t: tensor<5xf32>) -> tensor<5xf32> { // expected-error @below{{op op without unique scf.yield is not supported}} %0 = scf.execute_region -> tensor<5xf32> { cf.br ^bb0(%t : tensor<5xf32>) ^bb0(%arg0 : tensor<5xf32>): cf.br ^bb1(%arg0: tensor<5xf32>) ^bb1(%arg1 : tensor<5xf32>): cf.br ^bb0(%arg1: tensor<5xf32>) } func.return %0 : tensor<5xf32> } // ----- func.func @inconsistent_memory_space_scf_for(%lb: index, %ub: index, %step: index) -> tensor<10xf32> { %0 = bufferization.alloc_tensor() {memory_space = 0 : ui64} : tensor<10xf32> %1 = bufferization.alloc_tensor() {memory_space = 1 : ui64} : tensor<10xf32> // expected-error @below{{init_arg and yielded value bufferize to inconsistent memory spaces}} %2 = scf.for %iv = %lb to %ub step %step iter_args(%arg = %0) -> tensor<10xf32> { // expected-error @below {{failed to bufferize op}} scf.yield %1 : tensor<10xf32> } return %2 : tensor<10xf32> }