// RUN: mlir-opt %s -allow-unregistered-dialect -one-shot-bufferize="allow-return-allocs-from-loops bufferize-function-boundaries" -cse -canonicalize -drop-equivalent-buffer-results -split-input-file | FileCheck %s // Run fuzzer with different seeds. // RUN: mlir-opt %s -allow-unregistered-dialect -one-shot-bufferize="allow-return-allocs-from-loops test-analysis-only analysis-fuzzer-seed=23 bufferize-function-boundaries" -split-input-file -o /dev/null // RUN: mlir-opt %s -allow-unregistered-dialect -one-shot-bufferize="allow-return-allocs-from-loops test-analysis-only analysis-fuzzer-seed=59 bufferize-function-boundaries" -split-input-file -o /dev/null // RUN: mlir-opt %s -allow-unregistered-dialect -one-shot-bufferize="allow-return-allocs-from-loops test-analysis-only analysis-fuzzer-seed=91 bufferize-function-boundaries" -split-input-file -o /dev/null // Test bufferization using memref types that have no layout map. // RUN: mlir-opt %s -allow-unregistered-dialect -one-shot-bufferize="allow-return-allocs-from-loops unknown-type-conversion=identity-layout-map function-boundary-type-conversion=identity-layout-map bufferize-function-boundaries" -split-input-file -o /dev/null // CHECK-LABEL: func @scf_for_yield_only( // CHECK-SAME: %[[A:[a-zA-Z0-9]*]]: memref>, // CHECK-SAME: %[[t:[a-zA-Z0-9]*]]: memref> // CHECK-SAME: ) -> memref { func.func @scf_for_yield_only( %A : tensor {bufferization.writable = false}, %B : tensor {bufferization.writable = true}, %lb : index, %ub : index, %step : index) -> (tensor, tensor) { // CHECK: %[[ALLOC_FOR_A:.*]] = memref.alloc // CHECK: memref.copy %[[A]], %[[ALLOC_FOR_A]] // The first scf.for remains but just turns into dead code. %r0 = scf.for %i = %lb to %ub step %step iter_args(%t = %A) -> (tensor) { scf.yield %t : tensor } // The second scf.for remains but just turns into dead code. %r1 = scf.for %i = %lb to %ub step %step iter_args(%t = %B) -> (tensor) { scf.yield %t : tensor } // CHECK: return %[[ALLOC_FOR_A]] : memref // CHECK-NOT: dealloc return %r0, %r1: tensor, tensor } // ----- // CHECK-LABEL: func @scf_for_is_reading( // CHECK-SAME: %[[A:.*]]: memref>, %[[B:.*]]: memref> func.func @scf_for_is_reading(%A : tensor, %B : tensor, %lb : index, %ub : index) -> (f32, f32) { %c1 = arith.constant 1 : index %cst = arith.constant 0.0 : f32 // This is a regression test to make sure that an alloc + copy is emitted. // CHECK: %[[alloc:.*]] = memref.alloc // CHECK: memref.copy %[[A]], %[[alloc]] // CHECK: scf.for {{.*}} iter_args(%{{.*}} = %[[alloc]]) %0 = scf.for %iv = %lb to %ub step %c1 iter_args(%1 = %A) -> tensor { %r = linalg.fill ins(%cst : f32) outs(%1 : tensor) -> tensor scf.yield %B : tensor } %1 = tensor.extract %0[%c1] : tensor %2 = tensor.extract %A[%c1] : tensor return %1, %2 : f32, f32 } // ----- // Ensure that the function bufferizes without error. This tests pre-order // traversal of scf.for loops during bufferization. No need to check the IR, // just want to make sure that it does not crash. // CHECK-LABEL: func @nested_scf_for func.func @nested_scf_for(%A : tensor {bufferization.writable = true}, %v : vector<5xf32>) -> tensor { %c0 = arith.constant 0 : index %c1 = arith.constant 1 : index %c10 = arith.constant 10 : index %r1 = scf.for %i = %c0 to %c10 step %c1 iter_args(%B = %A) -> tensor { %r2 = scf.for %j = %c0 to %c10 step %c1 iter_args(%C = %B) -> tensor { %w = vector.transfer_write %v, %C[%c0] : vector<5xf32>, tensor scf.yield %w : tensor } scf.yield %r2 : tensor } return %r1 : tensor } // ----- // CHECK-LABEL: func @scf_for_with_tensor.insert_slice // CHECK-SAME: %[[A:[a-zA-Z0-9]*]]: memref> // CHECK-SAME: %[[B:[a-zA-Z0-9]*]]: memref> // CHECK-SAME: %[[C:[a-zA-Z0-9]*]]: memref<4xf32, strided<[?], offset: ?>> func.func @scf_for_with_tensor.insert_slice( %A : tensor {bufferization.writable = false}, %B : tensor {bufferization.writable = true}, %C : tensor<4xf32> {bufferization.writable = false}, %lb : index, %ub : index, %step : index) -> (tensor, tensor) { // CHECK: %[[ALLOC_FOR_A:.*]] = memref.alloc // CHECK: memref.copy %[[A]], %[[ALLOC_FOR_A]] // CHECK: scf.for {{.*}} // CHECK-NOT: iter_args %r0:2 = scf.for %i = %lb to %ub step %step iter_args(%tA = %A, %tB = %B) -> (tensor, tensor) { // %ttA bufferizes to direct copy of %BUFFER_CAST_C into %svA // CHECK: %[[svA:.*]] = memref.subview %[[ALLOC_FOR_A]][0] [4] [1] // CHECK: memref.copy %[[C]], %[[svA]] %ttA = tensor.insert_slice %C into %tA[0][4][1] : tensor<4xf32> into tensor // %ttB bufferizes to direct copy of %BUFFER_CAST_C into %BUFFER_CAST_B // CHECK: %[[svB:.*]] = memref.subview %[[B]][0] [4] [1] // CHECK: memref.copy %[[C]], %[[svB]] %ttB = tensor.insert_slice %C into %tB[0][4][1] : tensor<4xf32> into tensor // CHECK-NOT: scf.yield scf.yield %ttA, %ttB : tensor, tensor } // CHECK: return %[[ALLOC_FOR_A]] : memref return %r0#0, %r0#1: tensor, tensor } // ----- // CHECK-LABEL: func @execute_region_with_conflict( // CHECK-SAME: %[[m1:.*]]: memref {bufferization.writable = true}) -> (f32, tensor, f32) { %f1 = arith.constant 0.0 : f32 %idx = arith.constant 7 : index // scf.execute_region is canonicalized away after bufferization. So just the // memref.store is left over. // CHECK: %[[alloc:.*]] = memref.alloc // CHECK: memref.copy %[[m1]], %[[alloc]] // CHECK: memref.store %{{.*}}, %[[alloc]][%{{.*}}] %0, %1, %2 = scf.execute_region -> (f32, tensor, f32) { %t2 = tensor.insert %f1 into %t1[%idx] : tensor scf.yield %f1, %t2, %f1 : f32, tensor, f32 } // CHECK: %[[load:.*]] = memref.load %[[m1]] %3 = tensor.extract %t1[%idx] : tensor // CHECK: return %{{.*}}, %[[alloc]], %[[load]] : f32, memref, f32 return %0, %1, %3 : f32, tensor, f32 } // ----- // CHECK-LABEL: func @scf_if_inplace( // CHECK-SAME: %[[cond:.*]]: i1, %[[t1:.*]]: memref, %[[v:.*]]: vector func.func @scf_if_inplace(%cond: i1, %t1: tensor {bufferization.writable = true}, %v: vector<5xf32>, %idx: index) -> tensor { // CHECK: scf.if %[[cond]] { // CHECK-NEXT: } else { // CHECK-NEXT: vector.transfer_write %[[v]], %[[t1]] // CHECK-NEXT: } // CHECK-NEXT: return %r = scf.if %cond -> (tensor) { scf.yield %t1 : tensor } else { %t2 = vector.transfer_write %v, %t1[%idx] : vector<5xf32>, tensor scf.yield %t2 : tensor } return %r : tensor } // ----- // CHECK-LABEL: func @scf_if_inside_scf_for // CHECK-DAG: %[[c0:.*]] = arith.constant 0 : index // CHECK-DAG: %[[c1:.*]] = arith.constant 1 : index // CHECK-DAG: %[[c10:.*]] = arith.constant 10 : index // CHECK: scf.for %{{.*}} = %[[c0]] to %[[c10]] step %[[c1]] { // CHECK: scf.if %{{.*}} { // CHECK: } else { // CHECK: vector.transfer_write // CHECK: } // CHECK: } func.func @scf_if_inside_scf_for( %t1: tensor {bufferization.writable = true}, %v: vector<5xf32>, %idx: index, %cond: i1) -> tensor { %c0 = arith.constant 0 : index %c1 = arith.constant 1 : index %c10 = arith.constant 10 : index %r = scf.for %iv = %c0 to %c10 step %c1 iter_args(%bb = %t1) -> (tensor) { %r2 = scf.if %cond -> (tensor) { scf.yield %bb : tensor } else { %t2 = vector.transfer_write %v, %bb[%idx] : vector<5xf32>, tensor scf.yield %t2 : tensor } scf.yield %r2 : tensor } return %r : tensor } // ----- // CHECK-LABEL: func @scf_if_non_equiv_yields( // CHECK-SAME: %[[cond:.*]]: i1, %[[A:.*]]: memref<{{.*}}>, %[[B:.*]]: memref<{{.*}}>) -> memref<{{.*}}> func.func @scf_if_non_equiv_yields( %b : i1, %A : tensor<4xf32> {bufferization.writable = false}, %B : tensor<4xf32> {bufferization.writable = false}) -> tensor<4xf32> { // CHECK: %[[r:.*]] = arith.select %[[cond]], %[[A]], %[[B]] %r = scf.if %b -> (tensor<4xf32>) { scf.yield %A : tensor<4xf32> } else { scf.yield %B : tensor<4xf32> } // CHECK: return %[[r]] return %r: tensor<4xf32> } // ----- // Note: This bufferization is inefficient, but it bufferizes correctly. // CHECK-LABEL: func @scf_execute_region_yield_non_equivalent( // CHECK: %[[alloc:.*]] = memref.alloc(%{{.*}}) // CHECK: %[[r:.*]] = memref.load %[[alloc]][%{{.*}}] // CHECK: return %[[r]] func.func @scf_execute_region_yield_non_equivalent(%i: index, %j: index) -> f32 { %r = scf.execute_region -> (tensor) { %t2 = bufferization.alloc_tensor(%i) : tensor scf.yield %t2 : tensor } %f = tensor.extract %r[%j] : tensor return %f : f32 } // ----- // Note: This bufferizes to inefficient code, but bufferization should not see // such IR in the first place. The iter_arg would canonicalize away. This test // case is just to ensure that the bufferization generates correct code. // CHECK-LABEL: func @scf_for_yield_non_equivalent( // CHECK-SAME: %[[t:.*]]: memref, %lb : index, %ub : index, %step : index) -> tensor { %r = scf.for %i = %lb to %ub step %step iter_args(%a = %t) -> tensor { scf.yield %t : tensor } return %r : tensor } // ----- // CHECK-LABEL: func @scf_for_yield_allocation( // CHECK-SAME: %[[t:.*]]: memref, %lb : index, %ub : index, %step : index) -> tensor { %r = scf.for %i = %lb to %ub step %step iter_args(%a = %t) -> tensor { %t2 = bufferization.alloc_tensor(%i) : tensor scf.yield %t2 : tensor } return %r : tensor } // ----- // TODO: The scf.yield could bufferize to 1 alloc and 2 copies (instead of // 2 allocs and 2 copies). // CHECK-LABEL: func @scf_for_swapping_yields( // CHECK-SAME: %[[A:.*]]: memref, %[[B:.*]]: memref func.func @scf_for_swapping_yields( %A : tensor, %B : tensor {bufferization.writable = true}, %C : tensor<4xf32>, %lb : index, %ub : index, %step : index) -> (f32, f32) { // CHECK: %[[for:.*]]:2 = scf.for {{.*}} iter_args(%[[iter1:.*]] = %[[A]], %[[iter2:.*]] = %[[B]]) %r0:2 = scf.for %i = %lb to %ub step %step iter_args(%tA = %A, %tB = %B) -> (tensor, tensor) { // CHECK: %[[sv1:.*]] = memref.subview %[[iter1]] // CHECK: memref.copy %{{.*}}, %[[sv1]] %ttA = tensor.insert_slice %C into %tA[0][4][1] : tensor<4xf32> into tensor // CHECK: %[[sv2:.*]] = memref.subview %[[iter2]] // CHECK: memref.copy %{{.*}}, %[[sv2]] %ttB = tensor.insert_slice %C into %tB[0][4][1] : tensor<4xf32> into tensor // CHECK: %[[alloc2:.*]] = memref.alloc(%{{.*}}) // CHECK: memref.copy %[[iter2]], %[[alloc2]] // CHECK: %[[alloc1:.*]] = memref.alloc(%{{.*}}) // CHECK: memref.copy %[[iter1]], %[[alloc1]] // CHECK: %[[casted2:.*]] = memref.cast %[[alloc2]] // CHECK: %[[casted1:.*]] = memref.cast %[[alloc1]] // CHECK: scf.yield %[[casted2]], %[[casted1]] // Yield tensors in different order. scf.yield %ttB, %ttA : tensor, tensor } // CHECK: %[[r0:.*]] = memref.load %[[for]]#0 // CHECK: %[[r1:.*]] = memref.load %[[for]]#1 %f0 = tensor.extract %r0#0[%step] : tensor %f1 = tensor.extract %r0#1[%step] : tensor // CHECK: return %[[r0]], %[[r1]] return %f0, %f1: f32, f32 } // ----- // CHECK-LABEL: func @scf_while( // CHECK-SAME: %[[arg0:.*]]: memref func.func @scf_while(%arg0: tensor, %idx: index) -> tensor { // CHECK: scf.while : () -> () { %res:2 = scf.while (%arg1 = %arg0, %i = %idx) : (tensor, index) -> (tensor, index) { // CHECK: %[[condition:.*]] = memref.load %[[arg0]] // CHECK: scf.condition(%[[condition]]) %condition = tensor.extract %arg1[%idx] : tensor scf.condition(%condition) %arg1, %idx : tensor, index } do { ^bb0(%arg2: tensor, %i: index): // CHECK: } do { // CHECK: memref.store %{{.*}}, %[[arg0]] // CHECK: scf.yield // CHECK: } %pos = "dummy.some_op"() : () -> (index) %val = "dummy.another_op"() : () -> (i1) %1 = tensor.insert %val into %arg2[%pos] : tensor scf.yield %1, %i : tensor, index } // CHECK: return return %res#0 : tensor } // ----- // The loop condition yields non-equivalent buffers. // CHECK-LABEL: func @scf_while_non_equiv_condition( // CHECK-SAME: %[[arg0:.*]]: memref<5xi1, strided{{.*}}>, %[[arg1:.*]]: memref<5xi1, strided{{.*}}> func.func @scf_while_non_equiv_condition(%arg0: tensor<5xi1>, %arg1: tensor<5xi1>, %idx: index) -> (tensor<5xi1>, tensor<5xi1>) { // CHECK: %[[loop:.*]]:2 = scf.while (%[[w0:.*]] = %[[arg0]], %[[w1:.*]] = %[[arg1]]) {{.*}} { %r0, %r1 = scf.while (%w0 = %arg0, %w1 = %arg1) : (tensor<5xi1>, tensor<5xi1>) -> (tensor<5xi1>, tensor<5xi1>) { // CHECK: %[[condition:.*]] = memref.load %[[w0]] // CHECK: %[[a1:.*]] = memref.alloc() {{.*}} : memref<5xi1> // CHECK: memref.copy %[[w1]], %[[a1]] // CHECK: %[[a0:.*]] = memref.alloc() {{.*}} : memref<5xi1> // CHECK: memref.copy %[[w0]], %[[a0]] // CHECK: scf.condition(%[[condition]]) %[[a1]], %[[a0]] %condition = tensor.extract %w0[%idx] : tensor<5xi1> scf.condition(%condition) %w1, %w0 : tensor<5xi1>, tensor<5xi1> } do { ^bb0(%b0: tensor<5xi1>, %b1: tensor<5xi1>): // CHECK: } do { // CHECK: ^bb0(%[[b0:.*]]: memref<5xi1>, %[[b1:.*]]: memref<5xi1>): // CHECK: memref.store %{{.*}}, %[[b0]] // CHECK: %[[casted0:.*]] = memref.cast %[[b0]] : memref<5xi1> to memref<5xi1, strided{{.*}}> // CHECK: %[[casted1:.*]] = memref.cast %[[b1]] : memref<5xi1> to memref<5xi1, strided{{.*}}> // CHECK: scf.yield %[[casted0]], %[[casted1]] // CHECK: } %pos = "dummy.some_op"() : () -> (index) %val = "dummy.another_op"() : () -> (i1) %1 = tensor.insert %val into %b0[%pos] : tensor<5xi1> scf.yield %1, %b1 : tensor<5xi1>, tensor<5xi1> } // CHECK: return %[[loop]]#0, %[[loop]]#1 return %r0, %r1 : tensor<5xi1>, tensor<5xi1> } // ----- // Both the loop condition and the loop buffer yield non-equivalent buffers. // CHECK-LABEL: func @scf_while_non_equiv_condition_and_body( // CHECK-SAME: %[[arg0:.*]]: memref<5xi1, strided{{.*}}>, %[[arg1:.*]]: memref<5xi1, strided{{.*}}> func.func @scf_while_non_equiv_condition_and_body(%arg0: tensor<5xi1>, %arg1: tensor<5xi1>, %idx: index) -> (tensor<5xi1>, tensor<5xi1>) { // CHECK: %[[loop:.*]]:2 = scf.while (%[[w0:.*]] = %[[arg0]], %[[w1:.*]] = %[[arg1]]) {{.*}} { %r0, %r1 = scf.while (%w0 = %arg0, %w1 = %arg1) : (tensor<5xi1>, tensor<5xi1>) -> (tensor<5xi1>, tensor<5xi1>) { // CHECK: %[[condition:.*]] = memref.load %[[w0]] // CHECK: %[[a1:.*]] = memref.alloc() {{.*}} : memref<5xi1> // CHECK: memref.copy %[[w1]], %[[a1]] // CHECK: %[[a0:.*]] = memref.alloc() {{.*}} : memref<5xi1> // CHECK: memref.copy %[[w0]], %[[a0]] // CHECK: scf.condition(%[[condition]]) %[[a1]], %[[a0]] %condition = tensor.extract %w0[%idx] : tensor<5xi1> scf.condition(%condition) %w1, %w0 : tensor<5xi1>, tensor<5xi1> } do { ^bb0(%b0: tensor<5xi1>, %b1: tensor<5xi1>): // CHECK: } do { // CHECK: ^bb0(%[[b0:.*]]: memref<5xi1>, %[[b1:.*]]: memref<5xi1>): // CHECK: memref.store %{{.*}}, %[[b0]] // CHECK: %[[casted1:.*]] = memref.cast %[[b1]] // CHECK: %[[casted0:.*]] = memref.cast %[[b0]] // CHECK: scf.yield %[[casted1]], %[[casted0]] // CHECK: } %pos = "dummy.some_op"() : () -> (index) %val = "dummy.another_op"() : () -> (i1) %1 = tensor.insert %val into %b0[%pos] : tensor<5xi1> scf.yield %b1, %1 : tensor<5xi1>, tensor<5xi1> } // CHECK: return %[[loop]]#0, %[[loop]]#1 return %r0, %r1 : tensor<5xi1>, tensor<5xi1> } // ----- // CHECK-LABEL: func @scf_while_iter_arg_result_mismatch( // CHECK-SAME: %[[arg0:.*]]: memref<5xi1, strided{{.*}}>, %[[arg1:.*]]: memref<5xi1, strided{{.*}}> // CHECK: scf.while (%[[arg3:.*]] = %[[arg1]]) : (memref<5xi1, strided{{.*}}) -> () { // CHECK-DAG: %[[load:.*]] = memref.load %[[arg0]] // CHECK: scf.condition(%[[load]]) // CHECK: } do { // CHECK: %[[alloc2:.*]] = memref.alloc() {{.*}} : memref<5xi1> // CHECK: memref.copy %[[arg0]], %[[alloc2]] // CHECK: memref.store %{{.*}}, %[[alloc2]] // CHECK: %[[casted:.*]] = memref.cast %[[alloc2]] : memref<5xi1> to memref<5xi1, strided{{.*}}> // CHECK: scf.yield %[[casted]] // CHECK: } func.func @scf_while_iter_arg_result_mismatch(%arg0: tensor<5xi1>, %arg1: tensor<5xi1>, %arg2: index) { scf.while (%arg3 = %arg1) : (tensor<5xi1>) -> () { %0 = tensor.extract %arg0[%arg2] : tensor<5xi1> %1 = tensor.extract %arg3[%arg2] : tensor<5xi1> "dummy.use"(%1) : (i1) -> () scf.condition(%0) } do { %0 = "dummy.some_op"() : () -> index %1 = "dummy.another_op"() : () -> i1 %2 = tensor.insert %1 into %arg0[%0] : tensor<5xi1> scf.yield %2 : tensor<5xi1> } return } // ----- // CHECK-LABEL: func.func @parallel_insert_slice_no_conflict( // CHECK-SAME: %[[idx:.*]]: index, %[[idx2:.*]]: index, // CHECK-SAME: %[[arg1:.*]]: memref, // CHECK-SAME: %[[arg2:.*]]: memref func.func @parallel_insert_slice_no_conflict( %idx: index, %idx2: index, %arg1: tensor {bufferization.writable = true}, %arg2: tensor {bufferization.writable = true}) -> (tensor, f32) { %cst = arith.constant 4.200000e+01 : f32 %c0 = arith.constant 0 : index %c1 = arith.constant 1 : index // CHECK: scf.forall (%[[tidx:.*]]) in (%[[idx2]]) %2 = scf.forall (%arg3) in (%idx2) shared_outs(%o = %arg2) -> (tensor) { // CHECK: %[[subview:.*]] = memref.subview %[[arg2]][5] [%[[idx]]] [1] %6 = tensor.extract_slice %o[5] [%idx] [%c1] : tensor to tensor // CHECK: linalg.fill ins(%{{.*}}) outs(%[[subview]] : memref) -> tensor // CHECK-NOT: memref.copy // Empty terminator is elided from pretty-printing. // CHECK-NOT: scf.forall.in_parallel // CHECK-NOT: parallel_insert_slice scf.forall.in_parallel { tensor.parallel_insert_slice %8 into %o[5] [%idx] [%c1] : tensor into tensor } } // CHECK: %[[load:.*]] = memref.load %[[arg2]] %f = tensor.extract %2[%c0] : tensor // CHECK: return %[[load]] : f32 return %2, %f : tensor, f32 } // ----- // CHECK-LABEL: func.func @parallel_insert_slice_with_conflict( // CHECK-SAME: %[[idx:.*]]: index, %[[idx2:.*]]: index, // CHECK-SAME: %[[arg1:.*]]: memref, // CHECK-SAME: %[[arg2:.*]]: memref func.func @parallel_insert_slice_with_conflict( %idx: index, %idx2: index, %arg1: tensor {bufferization.writable = true}, %arg2: tensor {bufferization.writable = true}) -> (f32, f32) { %cst = arith.constant 4.200000e+01 : f32 %c0 = arith.constant 0 : index %c1 = arith.constant 1 : index // The parallel_insert_slice_op bufferizes out-of-place due to a RAW conflict // on %arg2, so we need an allocation. // CHECK: %[[alloc1:.*]] = memref.alloc // CHECK: memref.copy %[[arg2]], %[[alloc1]] // CHECK: scf.forall (%[[tidx:.*]]) in (%[[idx2]]) %2 = scf.forall (%arg3) in (%idx2) shared_outs(%o = %arg2) -> (tensor) { // CHECK: %[[subview1:.*]] = memref.subview %[[alloc1]][5] [%[[idx]]] [1] %6 = tensor.extract_slice %o[5] [%idx] [%c1] : tensor to tensor // CHECK: linalg.fill ins(%{{.*}}) outs(%[[subview1]] : memref) -> tensor // CHECK-NOT: memref.copy // Empty terminator is elided from pretty-printing. // CHECK-NOT: scf.forall.in_parallel // CHECK-NOT: parallel_insert_slice scf.forall.in_parallel { tensor.parallel_insert_slice %8 into %o[5] [%idx] [%c1] : tensor into tensor } } // CHECK: %[[load:.*]] = memref.load %[[arg2]] // CHECK: %[[load2:.*]] = memref.load %[[alloc1]] %f = tensor.extract %arg2[%c0] : tensor %f2 = tensor.extract %2[%c0] : tensor // CHECK: return %[[load2]], %[[load]] : f32, f32 return %f2, %f : f32, f32 } // ----- #map0 = affine_map<(d0) -> (d0 * 4)> #map1 = affine_map<(d0) -> (d0 * 2)> // CHECK-LABEL: func.func @matmul func.func @matmul(%arg0: tensor<8x8xf32>, %arg1: tensor<8x8xf32>, %arg2: tensor<8x8xf32> {bufferization.writable = true}) -> tensor<8x8xf32> { %c2 = arith.constant 2 : index %c4 = arith.constant 4 : index // CHECK: scf.forall {{.*}} %0 = scf.forall (%arg3, %arg4) in (%c2, %c4) shared_outs(%o = %arg2) -> (tensor<8x8xf32>) { %1 = affine.apply #map0(%arg3) %3 = tensor.extract_slice %arg0[%1, 0] [4, 8] [1, 1] : tensor<8x8xf32> to tensor<4x8xf32> %4 = affine.apply #map1(%arg4) %6 = tensor.extract_slice %arg1[0, %4] [8, 4] [1, 1] : tensor<8x8xf32> to tensor<8x4xf32> %7 = tensor.extract_slice %o[%1, %4] [4, 4] [1, 1] : tensor<8x8xf32> to tensor<4x4xf32> // CHECK: linalg.matmul ins({{.*}}memref<4x8xf32, strided<[?, ?], offset: ?>>, memref<8x4xf32, strided<[?, ?], offset: ?>>) outs({{.*}} : memref<4x4xf32, strided<[?, ?], offset: ?>>) %8 = linalg.matmul ins(%3, %6 : tensor<4x8xf32>, tensor<8x4xf32>) outs(%7 : tensor<4x4xf32>) -> tensor<4x4xf32> scf.forall.in_parallel { tensor.parallel_insert_slice %8 into %o[%1, %4] [4, 4] [1, 1] : tensor<4x4xf32> into tensor<8x8xf32> } } return %0 : tensor<8x8xf32> } // ----- // CHECK-LABEL: func @scf_foreach_private_var( // CHECK-SAME: %[[t:.*]]: memref<10xf32 func.func @scf_foreach_private_var(%t: tensor<10xf32>) -> f32 { %c2 = arith.constant 2 : index %c5 = arith.constant 5 : index // A copy is inserted for the uses of %t in the loop. // CHECK: %[[t_copy:.*]] = memref.alloc() {{.*}} : memref<10xf32> // CHECK: memref.copy %[[t]], %[[t_copy]] // CHECK: scf.forall (%{{.*}}) in (2) { // Load from the original and store into the copy. // CHECK: %[[subview:.*]] = memref.subview %[[t_copy]] // CHECK: memref.load %[[t]] // CHECK: memref.store %{{.*}}, %[[subview]] %0 = scf.forall (%tid) in (%c2) shared_outs(%o = %t) -> tensor<10xf32> { %offset = arith.muli %c5, %tid : index %slice = tensor.extract_slice %o[%offset] [5] [1] : tensor<10xf32> to tensor<5xf32> %r2 = tensor.extract %t[%tid] : tensor<10xf32> %i = tensor.insert %r2 into %slice[%c2] : tensor<5xf32> scf.forall.in_parallel { tensor.parallel_insert_slice %i into %o[%offset] [5] [1] : tensor<5xf32> into tensor<10xf32> } } %r = tensor.extract %0[%c2] : tensor<10xf32> return %r : f32 } // ----- // CHECK-LABEL: func.func @scf_foreach_privatized_but_not_copied( // CHECK-SAME: %[[t0:.*]]: memref<10xf32, {{.*}}>, %[[t1:.*]]: memref<10xf32 func.func @scf_foreach_privatized_but_not_copied( %t0: tensor<10xf32>, %t1: tensor<10xf32>) -> f32 { %c2 = arith.constant 2 : index %c5 = arith.constant 5 : index // CHECK-NOT: memref.alloc // CHECK-NOT: memref.copy // CHECK: scf.forall {{.*}} { %0 = scf.forall (%tid) in (%c2) shared_outs(%o = %t0) -> tensor<10xf32> { %offset = arith.muli %c5, %tid : index %slice = tensor.extract_slice %o[%offset] [5] [1] : tensor<10xf32> to tensor<5xf32> // %t1 is never written in here, so no copy is needed // CHECK: memref.load %[[t1]] %r2 = tensor.extract %t1[%tid] : tensor<10xf32> %i = tensor.insert %r2 into %slice[%c2] : tensor<5xf32> scf.forall.in_parallel { tensor.parallel_insert_slice %i into %o[%offset] [5] [1] : tensor<5xf32> into tensor<10xf32> } } %r = tensor.extract %0[%c2] : tensor<10xf32> return %r : f32 } // ----- // CHECK-LABEL: func @scf_if_memory_space func.func @scf_if_memory_space(%c: i1, %f: f32, %cst: f32) -> (f32, f32) { %c0 = arith.constant 0 : index // CHECK: %[[alloc:.*]] = memref.alloc() {{.*}} : memref<5xf32, 1> %alloc = bufferization.alloc_tensor() {memory_space = 1 : i64} : tensor<5xf32> // CHECK: linalg.fill {{.*}} outs(%[[alloc]] : memref<5xf32, 1>) %filled = linalg.fill ins(%cst : f32) outs(%alloc : tensor<5xf32>) -> tensor<5xf32> // CHECK: scf.if %{{.*}} -> (memref<5xf32, 1>) { %1 = scf.if %c -> tensor<5xf32> { // CHECK: scf.yield %[[alloc]] scf.yield %filled : tensor<5xf32> } else { // CHECK: %[[alloc2:.*]] = memref.alloc() {{.*}} : memref<5xf32, 1> // CHECK: memref.store %{{.*}}, %[[alloc2]] // CHECK: scf.yield %[[alloc2]] %2 = tensor.insert %f into %filled[%c0] : tensor<5xf32> scf.yield %2 : tensor<5xf32> } %r0 = tensor.extract %filled[%c0] : tensor<5xf32> %r1 = tensor.extract %1[%c0] : tensor<5xf32> return %r0, %r1 : f32, f32 } // ----- // CHECK-LABEL: func @scf_execute_region_memory_space // CHECK: memref.alloc() {{.*}} : memref<5xf32, 1> // CHECK: memref.store // CHECK: memref.load func.func @scf_execute_region_memory_space(%f: f32) -> f32 { %c0 = arith.constant 0 : index %0 = scf.execute_region -> tensor<5xf32> { %1 = bufferization.alloc_tensor() {memory_space = 1 : i64} : tensor<5xf32> %2 = tensor.insert %f into %1[%c0] : tensor<5xf32> scf.yield %2 : tensor<5xf32> } %r = tensor.extract %0[%c0] : tensor<5xf32> return %r : f32 } // ----- // Additional allocs are inserted in the loop body. We just check that all // allocs have the correct memory space. // CHECK-LABEL: func @scf_for_swapping_yields_memory_space func.func @scf_for_swapping_yields_memory_space( %sz: index, %C : tensor<4xf32>, %lb : index, %ub : index, %step : index) -> (f32, f32) { // CHECK: memref.alloc(%{{.*}}) {{.*}} : memref // CHECK: memref.alloc(%{{.*}}) {{.*}} : memref %A = bufferization.alloc_tensor(%sz) {memory_space = 1 : i64} : tensor %B = bufferization.alloc_tensor(%sz) {memory_space = 1 : i64} : tensor // CHECK: scf.for {{.*}} { %r0:2 = scf.for %i = %lb to %ub step %step iter_args(%tA = %A, %tB = %B) -> (tensor, tensor) { // CHECK: memref.alloc(%{{.*}}) {{.*}} : memref // CHECK: memref.alloc(%{{.*}}) {{.*}} : memref %ttA = tensor.insert_slice %C into %tA[0][4][1] : tensor<4xf32> into tensor %ttB = tensor.insert_slice %C into %tB[0][4][1] : tensor<4xf32> into tensor // Yield tensors in different order. scf.yield %ttB, %ttA : tensor, tensor } // CHECK: } %f0 = tensor.extract %r0#0[%step] : tensor %f1 = tensor.extract %r0#1[%step] : tensor return %f0, %f1: f32, f32 } // ----- // CHECK-LABEL: func @scf_for_yield_alias_of_non_equivalent( func.func @scf_for_yield_alias_of_non_equivalent(%sz: index) -> tensor { %c0 = arith.constant 0 : index %c1 = arith.constant 1 : index %cst = arith.constant 5.0 : f32 // CHECK: %[[generate:.*]] = memref.alloc %0 = tensor.generate %sz { ^bb0(%i: index): tensor.yield %cst : f32 } : tensor // A copy is inserted because %t is used inside the loop. // CHECK: %[[generate_copy:.*]] = memref.alloc // CHECK: memref.copy %[[generate]], %[[generate_copy]] // CHECK: scf.for %r = scf.for %iv = %c0 to %sz step %c1 iter_args(%t = %0) -> tensor { %iv_sub = arith.subi %iv, %c1 : index // CHECK: memref.subview %[[generate]] %ll = tensor.extract_slice %0[%iv_sub][%sz][1] : tensor to tensor %l = tensor.extract %ll[%c0] : tensor %double = arith.mulf %cst, %l : f32 // CHECK: memref.store %{{.*}}, %[[generate_copy]] %s = tensor.insert %double into %t[%iv] : tensor scf.yield %s : tensor } // CHECK: return %[[generate_copy]] return %r : tensor } // ----- // We just check that this example bufferizes to valid IR. // CHECK-LABEL: func @scf_for_buffer_type_mismatch func.func @scf_for_buffer_type_mismatch(%sz: index, %sz2: index) -> f32 { %c0 = arith.constant 0 : index %c1 = arith.constant 1 : index %c10 = arith.constant 10 : index %0 = bufferization.alloc_tensor(%sz) : tensor %e2 = tensor.extract_slice %0[1][%sz2][1] : tensor to tensor // init_arg and iter_arg have different buffer types. This must be resolved // with casts. %r = scf.for %iv = %c0 to %c10 step %c1 iter_args(%t = %e2) -> tensor { %s = "test.dummy"() : () -> (index) %e = tensor.extract_slice %t[1][%s][1] : tensor to tensor scf.yield %e : tensor } %x = tensor.extract %r[%c1] : tensor return %x : f32 } // ----- // We just check that this example bufferizes to valid IR. // CHECK-LABEL: func @scf_while_buffer_type_mismatch func.func @scf_while_buffer_type_mismatch(%sz: index, %sz2: index) -> f32 { %c0 = arith.constant 0 : index %c1 = arith.constant 1 : index %c10 = arith.constant 10 : index %cst = arith.constant 5.5 : f32 %0 = bufferization.alloc_tensor(%sz) : tensor %e2 = tensor.extract_slice %0[1][%sz2][1] : tensor to tensor // init_arg and iter_arg have different buffer types. This must be resolved // with casts. %r = scf.while (%t = %e2) : (tensor) -> (tensor) { %c = "test.condition"() : () -> (i1) %s = "test.dummy"() : () -> (index) %e = tensor.extract_slice %t[1][%s][1] : tensor to tensor scf.condition(%c) %e : tensor } do { ^bb0(%b0: tensor): %s2 = "test.dummy"() : () -> (index) %n = tensor.insert %cst into %b0[%s2] : tensor scf.yield %n : tensor } %x = tensor.extract %r[%c1] : tensor return %x : f32 } // ----- // CHECK-LABEL: func @non_tensor_for_arg func.func @non_tensor_for_arg(%A : tensor {bufferization.writable = true}) -> tensor { %c0 = arith.constant 0 : index %c1 = arith.constant 1 : index %c2 = arith.constant 2.0 : f32 %c10 = arith.constant 10 : index %r1:2 = scf.for %i = %c0 to %c10 step %c1 iter_args(%idx = %c1, %t = %A) -> (index, tensor) { %t2 = tensor.insert %c2 into %t[%idx] : tensor scf.yield %idx, %t2 : index, tensor } return %r1#1 : tensor } // ----- // This is a regression test. Just check that the IR bufferizes. // CHECK-LABEL: func @buffer_type_of_collapse_shape func.func @buffer_type_of_collapse_shape(%arg0: tensor) { %true = arith.constant true %0 = scf.while (%arg1 = %arg0) : (tensor) -> (tensor) { scf.condition(%true) %arg1 : tensor } do { ^bb0(%_: tensor): %3 = bufferization.alloc_tensor() : tensor<1xf64> %16 = tensor.collapse_shape %3 [] : tensor<1xf64> into tensor scf.yield %16 : tensor } return } // ----- // This is a regression test. Just check that the IR bufferizes. // CHECK-LABEL: func @non_block_argument_yield func.func @non_block_argument_yield() { %true = arith.constant true %0 = bufferization.alloc_tensor() : tensor %1 = scf.while (%arg0 = %0) : (tensor) -> (tensor) { scf.condition(%true) %arg0 : tensor } do { ^bb0(%arg0: tensor): %ret = scf.while (%arg1 = %0) : (tensor) -> (tensor) { scf.condition(%true) %arg1 : tensor } do { ^bb0(%arg7: tensor): scf.yield %0 : tensor } scf.yield %ret : tensor } return } // ----- // This is a regression test. Make sure that bufferization succeeds. // CHECK-LABEL: func @regression_cast_in_loop( func.func @regression_cast_in_loop() -> tensor<2xindex> { %false = arith.constant false %c0 = arith.constant 0 : index %0 = bufferization.alloc_tensor() : tensor<2xindex> // CHECK: scf.while (%{{.*}} = %{{.*}}) : (memref<2xindex>) -> memref<2xindex> %1 = scf.while (%arg0 = %0) : (tensor<2xindex>) -> tensor<2xindex> { scf.condition(%false) %arg0 : tensor<2xindex> } do { // CHECK: ^bb0(%{{.*}}: memref<2xindex>): ^bb0(%arg0: tensor<2xindex>): %cast = tensor.cast %0 : tensor<2xindex> to tensor %inserted = tensor.insert %c0 into %cast[%c0] : tensor %cast_0 = tensor.cast %inserted : tensor to tensor<2xindex> scf.yield %cast_0 : tensor<2xindex> } return %1 : tensor<2xindex> } // ----- // This test does not compute anything meaningful but it tests that // bufferizesToMemoryWrite is correctly propagated through regions. // CHECK-LABEL: func @elide_copy_of_non_writing_scf_if( func.func @elide_copy_of_non_writing_scf_if(%c: i1, %p1: index, %p2: index, %f: f32) -> (tensor<10xf32>, f32) { %r = scf.if %c -> tensor<10xf32> { // CHECK: memref.alloc %t1 = bufferization.alloc_tensor() : tensor<10xf32> scf.yield %t1 : tensor<10xf32> } else { // CHECK: memref.alloc %t2 = bufferization.alloc_tensor() : tensor<10xf32> scf.yield %t2 : tensor<10xf32> } // No copy should be inserted because %r does not bufferize to a memory write. // I.e., %r does not have defined contents and the copy can be elided. // CHECK-NOT: memref.alloc // CHECK-NOT: memref.copy %r2 = tensor.insert %f into %r[%p1] : tensor<10xf32> %r3 = tensor.extract %r[%p2] : tensor<10xf32> return %r2, %r3 : tensor<10xf32>, f32 } // ----- // CHECK-LABEL: func @index_switch( // CHECK-SAME: %[[pred:.*]]: index, %[[b:.*]]: memref<{{.*}}>, %[[c:.*]]: memref<{{.*}}>) -> memref<{{.*}}> func.func @index_switch(%pred: index, %b: tensor<5xf32>, %c: tensor<5xf32>) -> tensor<5xf32> { // Throw in a tensor that bufferizes to a different layout map. // CHECK: %[[a:.*]] = memref.alloc() {{.*}} : memref<5xf32> %a = bufferization.alloc_tensor() : tensor<5xf32> // CHECK: %[[r:.*]] = scf.index_switch %[[pred]] -> memref<5xf32, strided<[?], offset: ?>> %0 = scf.index_switch %pred -> tensor<5xf32> // CHECK: case 2 { // CHECK: %[[cast:.*]] = memref.cast %[[a]] : memref<5xf32> to memref<5xf32, strided<[?], offset: ?>> // CHECK: scf.yield %[[cast]] case 2 { scf.yield %a: tensor<5xf32> } // CHECK: case 5 { // CHECK: scf.yield %[[b]] : memref<5xf32, strided<[?], offset: ?>> case 5 { scf.yield %b: tensor<5xf32> } // CHECK: default { // CHECK: scf.yield %[[c]] : memref<5xf32, strided<[?], offset: ?>> default { scf.yield %c: tensor<5xf32> } // CHECK: return %[[r]] return %0 : tensor<5xf32> }