// RUN: mlir-opt %s -transform-interpreter --split-input-file --verify-diagnostics #map0 = affine_map<(d0) -> (d0 * 110)> #map1 = affine_map<(d0) -> (696, d0 * 110 + 110)> func.func @test_loops_do_not_get_coalesced() { affine.for %i = 0 to 7 { affine.for %j = #map0(%i) to min #map1(%i) { } } {coalesce} return } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["affine.for"]} attributes {coalesce} in %arg1 : (!transform.any_op) -> !transform.any_op %1 = transform.cast %0 : !transform.any_op to !transform.op<"affine.for"> // expected-error @below {{failed to coalesce}} %2 = transform.loop.coalesce %1: (!transform.op<"affine.for">) -> (!transform.op<"affine.for">) transform.yield } } // ----- func.func @test_loops_do_not_get_unrolled() { affine.for %i = 0 to 7 { arith.addi %i, %i : index } return } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["arith.addi"]} in %arg1 : (!transform.any_op) -> !transform.any_op %1 = transform.get_parent_op %0 {op_name = "affine.for"} : (!transform.any_op) -> !transform.op<"affine.for"> // expected-error @below {{failed to unroll}} transform.loop.unroll %1 { factor = 8 } : !transform.op<"affine.for"> transform.yield } } // ----- func.func private @cond() -> i1 func.func private @body() func.func @loop_outline_op_multi_region() { // expected-note @below {{target op}} scf.while : () -> () { %0 = func.call @cond() : () -> i1 scf.condition(%0) } do { ^bb0: func.call @body() : () -> () scf.yield } return } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["scf.while"]} in %arg1 : (!transform.any_op) -> !transform.any_op // expected-error @below {{failed to outline}} transform.loop.outline %0 {func_name = "foo"} : (!transform.any_op) -> (!transform.any_op, !transform.any_op) transform.yield } } // ----- func.func @test_loop_peeling_not_beneficial() { // Loop peeling is not beneficial because the step size already divides // ub - lb evenly. lb, ub and step are constant in this test case and the // "fast path" is exercised. %lb = arith.constant 0 : index %ub = arith.constant 40 : index %step = arith.constant 5 : index scf.for %i = %lb to %ub step %step { arith.addi %i, %i : index } return } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["arith.addi"]} in %arg1 : (!transform.any_op) -> !transform.any_op %1 = transform.get_parent_op %0 {op_name = "scf.for"} : (!transform.any_op) -> !transform.op<"scf.for"> // expected-error @below {{failed to peel}} transform.loop.peel %1 : (!transform.op<"scf.for">) -> (!transform.any_op, !transform.any_op) transform.yield } } // ----- func.func @test_loop_peeling_not_beneficial_already_peeled(%lb: index, %ub: index, %step: index) { // Loop peeling is not beneficial because the step size already divides // ub - lb evenly. This test case exercises the "slow path". %new_ub = affine.apply affine_map<()[s0, s1, s2] -> (s1 - (s1 - s0) mod s2)>()[%lb, %ub, %step] scf.for %i = %lb to %new_ub step %step { arith.addi %i, %i : index } return } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["arith.addi"]} in %arg1 : (!transform.any_op) -> !transform.any_op %1 = transform.get_parent_op %0 {op_name = "scf.for"} : (!transform.any_op) -> !transform.op<"scf.for"> // expected-error @below {{failed to peel}} transform.loop.peel %1 : (!transform.op<"scf.for">) -> (!transform.any_op, !transform.any_op) transform.yield } } // ----- func.func @test_loop_peeling_not_beneficial_already_peeled_lb_zero(%ub: index, %step: index) { // Loop peeling is not beneficial because the step size already divides // ub - lb evenly. This test case exercises the "slow path". %lb = arith.constant 0 : index %new_ub = affine.apply affine_map<()[s1, s2] -> (s1 - s1 mod s2)>()[%ub, %step] scf.for %i = %lb to %new_ub step %step { arith.addi %i, %i : index } return } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["arith.addi"]} in %arg1 : (!transform.any_op) -> !transform.any_op %1 = transform.get_parent_op %0 {op_name = "scf.for"} : (!transform.any_op) -> !transform.op<"scf.for"> // expected-error @below {{failed to peel}} transform.loop.peel %1 : (!transform.op<"scf.for">) -> (!transform.any_op, !transform.any_op) transform.yield } }