// RUN: mlir-opt %s --canonicalize --cse | FileCheck %s #SparseVector = #sparse_tensor.encoding<{map = (d0) -> (d0 : compressed)}> // CHECK-LABEL: func @sparse_nop_dense2dense_convert( // CHECK-SAME: %[[A:.*]]: tensor<64xf32>) // CHECK-NOT: sparse_tensor.convert // CHECK: return %[[A]] : tensor<64xf32> func.func @sparse_nop_dense2dense_convert(%arg0: tensor<64xf32>) -> tensor<64xf32> { %0 = sparse_tensor.convert %arg0 : tensor<64xf32> to tensor<64xf32> return %0 : tensor<64xf32> } // CHECK-LABEL: func @sparse_dce_convert( // CHECK-SAME: %[[A:.*]]: tensor<64xf32>) // CHECK-NOT: sparse_tensor.convert // CHECK: return func.func @sparse_dce_convert(%arg0: tensor<64xf32>) { %0 = sparse_tensor.convert %arg0 : tensor<64xf32> to tensor<64xf32, #SparseVector> return } // CHECK-LABEL: func @sparse_dce_getters( // CHECK-SAME: %[[A:.*]]: tensor<64xf32, #sparse{{[0-9]*}}>) // CHECK-NOT: sparse_tensor.positions // CHECK-NOT: sparse_tensor.coordinates // CHECK-NOT: sparse_tensor.values // CHECK: return func.func @sparse_dce_getters(%arg0: tensor<64xf32, #SparseVector>) { %0 = sparse_tensor.positions %arg0 { level = 0 : index } : tensor<64xf32, #SparseVector> to memref %1 = sparse_tensor.coordinates %arg0 { level = 0 : index } : tensor<64xf32, #SparseVector> to memref %2 = sparse_tensor.values %arg0 : tensor<64xf32, #SparseVector> to memref return } // CHECK-LABEL: func @sparse_concat_dce( // CHECK-NOT: sparse_tensor.concatenate // CHECK: return func.func @sparse_concat_dce(%arg0: tensor<2xf64, #SparseVector>, %arg1: tensor<3xf64, #SparseVector>, %arg2: tensor<4xf64, #SparseVector>) { %0 = sparse_tensor.concatenate %arg0, %arg1, %arg2 {dimension = 0 : index} : tensor<2xf64, #SparseVector>, tensor<3xf64, #SparseVector>, tensor<4xf64, #SparseVector> to tensor<9xf64, #SparseVector> return } // CHECK-LABEL: func @sparse_get_specifier_dce_fold( // CHECK-SAME: %[[A0:.*]]: !sparse_tensor.storage_specifier // CHECK-SAME: %[[A1:.*]]: index, // CHECK-SAME: %[[A2:.*]]: index) // CHECK-NOT: sparse_tensor.storage_specifier.set // CHECK-NOT: sparse_tensor.storage_specifier.get // CHECK: return %[[A1]] func.func @sparse_get_specifier_dce_fold(%arg0: !sparse_tensor.storage_specifier<#SparseVector>, %arg1: index, %arg2: index) -> index { %0 = sparse_tensor.storage_specifier.set %arg0 lvl_sz at 0 with %arg1 : !sparse_tensor.storage_specifier<#SparseVector> %1 = sparse_tensor.storage_specifier.set %0 pos_mem_sz at 0 with %arg2 : !sparse_tensor.storage_specifier<#SparseVector> %2 = sparse_tensor.storage_specifier.get %1 lvl_sz at 0 : !sparse_tensor.storage_specifier<#SparseVector> return %2 : index } #COO = #sparse_tensor.encoding<{map = (d0, d1) -> (d0 : compressed(nonunique), d1 : singleton)}> // CHECK-LABEL: func @sparse_reorder_coo( // CHECK-SAME: %[[A:.*]]: tensor // CHECK-NOT: %[[R:.*]] = sparse_tensor.reorder_coo // CHECK: return %[[A]] func.func @sparse_reorder_coo(%arg0 : tensor) -> tensor { %ret = sparse_tensor.reorder_coo quick_sort %arg0 : tensor to tensor return %ret : tensor } #BSR = #sparse_tensor.encoding<{ map = ( i, j ) -> ( i floordiv 2 : dense, j floordiv 3 : compressed, i mod 2 : dense, j mod 3 : dense ) }> // CHECK-LABEL: func @sparse_crd_translate( // CHECK-NOT: sparse_tensor.crd_translate func.func @sparse_crd_translate(%arg0: index, %arg1: index) -> (index, index) { %l0, %l1, %l2, %l3 = sparse_tensor.crd_translate dim_to_lvl [%arg0, %arg1] as #BSR : index, index, index, index %d0, %d1 = sparse_tensor.crd_translate lvl_to_dim [%l0, %l1, %l2, %l3] as #BSR : index, index return %d0, %d1 : index, index } // CHECK-LABEL: func.func @sparse_lvl_0( // CHECK: %[[C5:.*]] = arith.constant 5 : index // CHECK: return %[[C5]] : index func.func @sparse_lvl_0(%t : tensor<10x?xi32, #BSR>) -> index { %lvl = arith.constant 0 : index %l0 = sparse_tensor.lvl %t, %lvl : tensor<10x?xi32, #BSR> return %l0 : index } // CHECK-LABEL: func.func @sparse_lvl_3( // CHECK: %[[C3:.*]] = arith.constant 3 : index // CHECK: return %[[C3]] : index func.func @sparse_lvl_3(%t : tensor) -> index { %lvl = arith.constant 3 : index %l0 = sparse_tensor.lvl %t, %lvl : tensor return %l0 : index } #DSDD = #sparse_tensor.encoding<{ map = (i, j, k, l) -> (i: dense, j: compressed, k: dense, l: dense) }> // CHECK-LABEL: func.func @sparse_reinterpret_map( // CHECK-NOT: sparse_tensor.reinterpret_map func.func @sparse_reinterpret_map(%t0 : tensor<6x12xi32, #BSR>) -> tensor<6x12xi32, #BSR> { %t1 = sparse_tensor.reinterpret_map %t0 : tensor<6x12xi32, #BSR> to tensor<3x4x2x3xi32, #DSDD> %t2 = sparse_tensor.reinterpret_map %t1 : tensor<3x4x2x3xi32, #DSDD> to tensor<6x12xi32, #BSR> return %t2 : tensor<6x12xi32, #BSR> }