// RUN: mlir-opt %s --linalg-generalize-named-ops \ // RUN: --linalg-fuse-elementwise-ops \ // RUN: --sparse-reinterpret-map \ // RUN: --sparsification | \ // RUN: FileCheck %s --check-prefix=CHECK-SPARSE // RUN: mlir-opt %s --linalg-generalize-named-ops \ // RUN: --linalg-fuse-elementwise-ops \ // RUN: --sparse-reinterpret-map \ // RUN: --sparsification --lower-sparse-ops-to-foreach \ // RUN: --lower-sparse-foreach-to-scf \ // RUN: --sparse-tensor-conversion --cse | \ // RUN: FileCheck %s --check-prefix=CHECK-CONVERT #CSR = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : dense, d1 : compressed) }> #CSC = #sparse_tensor.encoding<{ map = (d0, d1) -> (d1 : dense, d0 : compressed) }> #DCSC = #sparse_tensor.encoding<{ map = (d0, d1) -> (d1 : compressed, d0 : compressed), }> #SV = #sparse_tensor.encoding<{ map = (d0) -> (d0 : compressed) }> #rowsum = { indexing_maps = [ affine_map<(i,j) -> (i,j)>, // A affine_map<(i,j) -> (i)> // x (out) ], iterator_types = ["parallel", "reduction"], doc = "X(i) = SUM A(i,j)" } // // CHECK-SPARSE-LABEL: func @kernel( // CHECK-SPARSE: %[[A:.*]], %[[B:.*]], %[[C:.*]], %{{.*}} = sparse_tensor.expand // CHECK-SPARSE: %[[COUNT:.*]] = scf.for {{.*}} { // CHECK-SPARSE: scf.for {{.*}} { // CHECK-SPARSE: } // CHECK-SPARSE: } // CHECK-SPARSE: sparse_tensor.compress %[[A]], %[[B]], %[[C]], %[[COUNT]] into // CHECK-SPARSE: %[[RET:.*]] = sparse_tensor.load %{{.*}} hasInserts // CHECK-SPARSE: return %[[RET]] // // CHECK-CONVERT-LABEL: func @kernel( // CHECK-CONVERT-SAME: %[[A:.*]]: !llvm.ptr) -> !llvm.ptr // CHECK-CONVERT-DAG: %[[C1:.*]] = arith.constant 1 : index // CHECK-CONVERT-DAG: %[[C0:.*]] = arith.constant 0 : index // CHECK-CONVERT: %[[N:.*]] = call @sparseLvlSize(%[[A]], %[[C1]]) // CHECK-CONVERT: %[[V:.*]] = call @newSparseTensor // CHECK-CONVERT: %[[S:.*]] = call @sparseLvlSize(%[[V]], %[[C0]]) // CHECK-CONVERT: %[[A:.*]] = memref.alloc(%[[S]]) : memref // CHECK-CONVERT: %[[B:.*]] = memref.alloc(%[[S]]) : memref // CHECK-CONVERT: %[[C:.*]] = memref.alloc(%[[S]]) : memref // CHECK-CONVERT: linalg.fill ins(%{{.*}} : f64) outs(%[[A]] : memref) // CHECK-CONVERT: linalg.fill ins(%{{.*}} : i1) outs(%[[B]] : memref) // CHECK-CONVERT: scf.for {{.*}} { // CHECK-CONVERT: scf.for {{.*}} { // CHECK-CONVERT: } // CHECK-CONVERT: } // CHECK-CONVERT: call @expInsertF64 // CHECK-CONVERT: memref.dealloc %[[A]] : memref // CHECK-CONVERT: memref.dealloc %[[B]] : memref // CHECK-CONVERT: memref.dealloc %[[C]] : memref // CHECK-CONVERT: call @endLexInsert // func.func @kernel(%arga: tensor) -> tensor { %c0 = arith.constant 0 : index %n = tensor.dim %arga, %c0 : tensor %v = tensor.empty(%n) : tensor %0 = linalg.generic #rowsum ins(%arga: tensor) outs(%v: tensor) { ^bb(%a: f64, %x: f64): %1 = arith.addf %x, %a : f64 linalg.yield %1 : f64 } -> tensor return %0 : tensor } // // CHECK-SPARSE-LABEL: func @matmul1( // CHECK-SPARSE-DAG: %[[C0:.*]] = arith.constant 0 : index // CHECK-SPARSE-DAG: %[[C1:.*]] = arith.constant 1 : index // CHECK-SPARSE-DAG: %[[C8:.*]] = arith.constant 8 : index // CHECK-SPARSE: %[[T:.*]] = scf.for %{{.*}} = %[[C0]] to %[[C8]] step %[[C1]] {{.*}} { // CHECK-SPARSE: %[[A:.*]], %[[B:.*]], %[[C:.*]], %{{.*}} = sparse_tensor.expand // CHECK-SPARSE: %[[COUNT:.*]] = scf.for {{.*}} { // CHECK-SPARSE: scf.for {{.*}} { // CHECK-SPARSE: } // CHECK-SPARSE: } // CHECK-SPARSE: sparse_tensor.compress %[[A]], %[[B]], %[[C]], %[[COUNT]] into // CHECK-SPARSE: } // CHECK-SPARSE: %[[RET:.*]] = sparse_tensor.load %[[T]] hasInserts // CHECK-SPARSE: return %[[RET]] // // CHECK-CONVERT-LABEL: func @matmul1( // CHECK-CONVERT-DAG: %[[C0:.*]] = arith.constant 0 : index // CHECK-CONVERT-DAG: %[[C1:.*]] = arith.constant 1 : index // CHECK-CONVERT-DAG: %[[C4:.*]] = arith.constant 4 : index // CHECK-CONVERT-DAG: %[[C8:.*]] = arith.constant 8 : index // CHECK-CONVERT: %[[N:.*]] = call @newSparseTensor // CHECK-CONVERT: %[[A:.*]] = memref.alloc(%[[C4]]) : memref // CHECK-CONVERT: %[[B:.*]] = memref.alloc(%[[C4]]) : memref // CHECK-CONVERT: %[[C:.*]] = memref.alloc(%[[C4]]) : memref // CHECK-CONVERT: linalg.fill ins(%{{.*}} : f64) outs(%[[A]] : memref) // CHECK-CONVERT: linalg.fill ins(%{{.*}} : i1) outs(%[[B]] : memref) // CHECK-CONVERT: scf.for %{{.*}} = %[[C0]] to %[[C8]] step %[[C1]] {{.*}} { // CHECK-CONVERT: scf.for {{.*}} { // CHECK-CONVERT: scf.for {{.*}} { // CHECK-CONVERT: } // CHECK-CONVERT: } // CHECK-CONVERT: call @expInsertF64 // CHECK-CONVERT: } // CHECK-CONVERT: memref.dealloc %[[A]] : memref // CHECK-CONVERT: memref.dealloc %[[B]] : memref // CHECK-CONVERT: memref.dealloc %[[C]] : memref // CHECK-CONVERT: call @endLexInsert // func.func @matmul1(%A: tensor<8x2xf64, #CSR>, %B: tensor<2x4xf64, #CSR>) -> tensor<8x4xf64, #CSR> { %C = tensor.empty() : tensor<8x4xf64, #CSR> %D = linalg.matmul ins(%A, %B: tensor<8x2xf64, #CSR>, tensor<2x4xf64, #CSR>) outs(%C: tensor<8x4xf64, #CSR>) -> tensor<8x4xf64, #CSR> return %D: tensor<8x4xf64, #CSR> } // // CHECK-SPARSE-LABEL: func @matmul2( // CHECK-SPARSE-DAG: %[[C0:.*]] = arith.constant 0 : index // CHECK-SPARSE-DAG: %[[C1:.*]] = arith.constant 1 : index // CHECK-SPARSE-DAG: %[[C4:.*]] = arith.constant 4 : index // CHECK-SPARSE: %[[T:.*]] = scf.for %{{.*}} = %[[C0]] to %[[C4]] step %[[C1]] {{.*}} { // CHECK-SPARSE: %[[A:.*]], %[[B:.*]], %[[C:.*]], %{{.*}} = sparse_tensor.expand // CHECK-SPARSE: %[[COUNT:.*]] = scf.for {{.*}} { // CHECK-SPARSE: scf.for {{.*}} { // CHECK-SPARSE: } // CHECK-SPARSE: } // CHECK-SPARSE: sparse_tensor.compress %[[A]], %[[B]], %[[C]], %[[COUNT]] // CHECK-SPARSE: } // CHECK-SPARSE: %[[DEMAP:.*]] = sparse_tensor.load %[[T]] hasInserts // CHECK-SPARSE: %[[RET:.*]] = sparse_tensor.reinterpret_map %[[DEMAP]] // CHECK-SPARSE: return %[[RET]] // // CHECK-CONVERT-LABEL: func @matmul2( // CHECK-CONVERT-DAG: %[[C0:.*]] = arith.constant 0 : index // CHECK-CONVERT-DAG: %[[C1:.*]] = arith.constant 1 : index // CHECK-CONVERT-DAG: %[[C4:.*]] = arith.constant 4 : index // CHECK-CONVERT-DAG: %[[C8:.*]] = arith.constant 8 : index // CHECK-CONVERT: %[[N:.*]] = call @newSparseTensor // CHECK-CONVERT: %[[A:.*]] = memref.alloc(%[[C8]]) : memref // CHECK-CONVERT: %[[B:.*]] = memref.alloc(%[[C8]]) : memref // CHECK-CONVERT: %[[C:.*]] = memref.alloc(%[[C8]]) : memref // CHECK-CONVERT: linalg.fill ins(%{{.*}} : f64) outs(%[[A]] : memref) // CHECK-CONVERT: linalg.fill ins(%{{.*}} : i1) outs(%[[B]] : memref) // CHECK-CONVERT: scf.for %{{.*}} = %[[C0]] to %[[C4]] step %[[C1]] {{.*}} { // CHECK-CONVERT: scf.for {{.*}} { // CHECK-CONVERT: scf.for {{.*}} { // CHECK-CONVERT: } // CHECK-CONVERT: } // CHECK-CONVERT: call @expInsertF64 // CHECK-CONVERT: } // CHECK-CONVERT: memref.dealloc %[[A]] : memref // CHECK-CONVERT: memref.dealloc %[[B]] : memref // CHECK-CONVERT: memref.dealloc %[[C]] : memref // CHECK-CONVERT: call @endLexInsert // func.func @matmul2(%A: tensor<8x2xf64, #CSC>, %B: tensor<2x4xf64, #CSC>) -> tensor<8x4xf64, #CSC> { %C = tensor.empty() : tensor<8x4xf64, #CSC> %D = linalg.matmul ins(%A, %B: tensor<8x2xf64, #CSC>, tensor<2x4xf64, #CSC>) outs(%C: tensor<8x4xf64, #CSC>) -> tensor<8x4xf64, #CSC> return %D: tensor<8x4xf64, #CSC> }