// RUN: mlir-opt %s | mlir-opt | FileCheck %s --check-prefix=CHECK-ROUND // RUN: mlir-opt %s --lower-sparse-ops-to-foreach="enable-runtime-library=true enable-convert=false" \ // RUN: --lower-sparse-foreach-to-scf --cse --canonicalize | FileCheck %s // RUN: mlir-opt %s --lower-sparse-ops-to-foreach="enable-runtime-library=false enable-convert=false" \ // RUN: --lower-sparse-foreach-to-scf --cse --canonicalize | FileCheck %s #SparseVector = #sparse_tensor.encoding<{ map = (d0) -> (d0 : compressed) }> #SparseMatrix = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : compressed, d1 : compressed) }> // // roundtrip: // // CHECK-ROUND-LABEL: func.func @sparse_expand( // CHECK-ROUND-SAME: %[[A:.*]]: tensor<100xf64, #sparse{{[0-9]*}}>) -> tensor<10x10xf64, #sparse{{[0-9]*}}> // CHECK-ROUND: %[[E:.*]] = tensor.expand_shape %[[A]] {{\[\[}}0, 1]] : tensor<100xf64, #sparse{{[0-9]*}}> into tensor<10x10xf64, #sparse{{[0-9]*}}> // CHECK-ROUND: return %[[E]] : tensor<10x10xf64, #sparse{{[0-9]*}}> // // CHECK-LABEL: func.func @sparse_expand( // CHECK-SAME: %[[S:.*0]]: // CHECK-DAG: %[[C10:.*]] = arith.constant 10 : index // CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index // CHECK-DAG: %[[C1:.*]] = arith.constant 1 : index // CHECK: %[[B:.*]] = bufferization.alloc_tensor() // CHECK: %[[P0:.*]] = sparse_tensor.positions %[[S]] {level = 0 : index} // CHECK: %[[I0:.*]] = sparse_tensor.coordinates %[[S]] {level = 0 : index} // CHECK: %[[V:.*]] = sparse_tensor.values %[[S]] // CHECK: %[[S0:.*]] = memref.load %[[P0]]{{\[}}%[[C0]]] : memref // CHECK: %[[E0:.*]] = memref.load %[[P0]]{{\[}}%[[C1]]] : memref // CHECK: %[[RET:.*]] = scf.for %[[I:.*]] = %[[S0]] to %[[E0]] step %[[C1]] iter_args(%[[R:.*]] = %[[B]]) // CHECK: %[[SI:.*]] = memref.load %[[I0]]{{\[}}%[[I]]] : memref // CHECK: %[[SV:.*]] = memref.load %[[V]]{{\[}}%[[I]]] : memref // CHECK: %[[DI0:.*]] = arith.divui %[[SI]], %[[C10]] : index // CHECK: %[[DI1:.*]] = arith.remui %[[SI]], %[[C10]] : index // CHECK: %[[NT:.*]] = sparse_tensor.insert %[[SV]] into %[[R]]{{\[}}%[[DI0]], %[[DI1]]] // CHECK: scf.yield %[[NT:.*]] // CHECK: } // CHECK: %[[NT1:.*]] = sparse_tensor.load %[[RET]] hasInserts // CHECK-NOT: sparse_tensor.convert // CHECK: return %[[NT1]] : tensor<10x10xf64, #sparse{{[0-9]*}}> // func.func @sparse_expand(%arg0: tensor<100xf64, #SparseVector>) -> tensor<10x10xf64, #SparseMatrix> { %0 = tensor.expand_shape %arg0 [[0, 1]] : tensor<100xf64, #SparseVector> into tensor<10x10xf64, #SparseMatrix> return %0 : tensor<10x10xf64, #SparseMatrix> } // // roundtrip: // // CHECK-ROUND-LABEL: func.func @sparse_collapse( // CHECK-ROUND-SAME: %[[A:.*]]: tensor<10x10xf64, #sparse{{[0-9]*}}>) -> tensor<100xf64, #sparse{{[0-9]*}}> // CHECK-ROUND: %[[C:.*]] = tensor.collapse_shape %[[A]] {{\[\[}}0, 1]] : tensor<10x10xf64, #sparse{{[0-9]*}}> into tensor<100xf64, #sparse{{[0-9]*}}> // CHECK-ROUND: return %[[C]] : tensor<100xf64, #sparse{{[0-9]*}}> // // CHECK-LABEL: func.func @sparse_collapse( // CHECK-SAME: %[[S:.*0]]: // CHECK-DAG: %[[C10:.*]] = arith.constant 10 : index // CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index // CHECK-DAG: %[[C1:.*]] = arith.constant 1 : index // CHECK: %[[B:.*]] = bufferization.alloc_tensor() // CHECK: %[[P0:.*]] = sparse_tensor.positions %[[S]] {level = 0 : index} // CHECK: %[[I0:.*]] = sparse_tensor.coordinates %[[S]] {level = 0 : index} // CHECK: %[[P1:.*]] = sparse_tensor.positions %[[S]] {level = 1 : index} // CHECK: %[[I1:.*]] = sparse_tensor.coordinates %[[S]] {level = 1 : index} // CHECK: %[[V:.*]] = sparse_tensor.values %[[S]] // CHECK: %[[S0:.*]] = memref.load %[[P0]]{{\[}}%[[C0]]] : memref // CHECK: %[[E0:.*]] = memref.load %[[P0]]{{\[}}%[[C1]]] : memref // CHECK: %[[RET:.*]] = scf.for %[[I:.*]] = %[[S0]] to %[[E0]] step %[[C1]] iter_args(%[[A0:.*]] = %[[B]]) // CHECK: %[[SI0:.*]] = memref.load %[[I0]]{{\[}}%[[I]]] : memref // CHECK-DAG: %[[S1:.*]] = memref.load %[[P1]]{{\[}}%[[I]]] : memref // CHECK-DAG: %[[PE1:.*]] = arith.addi %[[I]], %[[C1]] : index // CHECK: %[[E1:.*]] = memref.load %[[P1]]{{\[}}%[[PE1]]] : memref // CHECK: %[[RET_1:.*]] = scf.for %[[J:.*]] = %[[S1]] to %[[E1]] step %[[C1]] iter_args(%[[A1:.*]] = %[[A0]]) // CHECK: %[[SI1:.*]] = memref.load %[[I1]]{{\[}}%[[J]]] : memref // CHECK: %[[SV:.*]] = memref.load %[[V]]{{\[}}%[[J]]] : memref // CHECK: %[[T:.*]] = arith.muli %[[SI0]], %[[C10]] : index // CHECK: %[[DI:.*]] = arith.addi %[[T]], %[[SI1]] : index // CHECK: %[[R1:.*]] = sparse_tensor.insert %[[SV]] into %[[A1]]{{\[}}%[[DI]]] // CHECK scf.yield %[[R1]] // CHECK } // CHECK scf.yield %[[RET_1]] // CHECK: } // CHECK: %[[NT1:.*]] = sparse_tensor.load %[[RET]] hasInserts // CHECK-NOT: sparse_tensor.convert // CHECK: return %[[NT1]] : tensor<100xf64, #sparse{{[0-9]*}}> // func.func @sparse_collapse(%arg0: tensor<10x10xf64, #SparseMatrix>) -> tensor<100xf64, #SparseVector> { %0 = tensor.collapse_shape %arg0 [[0, 1]] : tensor<10x10xf64, #SparseMatrix> into tensor<100xf64, #SparseVector> return %0 : tensor<100xf64, #SparseVector> } // // roundtrip: // // CHECK-ROUND-LABEL: func.func @dynamic_sparse_expand( // CHECK-ROUND-SAME: %[[A:.*]]: tensor) -> tensor // CHECK-ROUND: %[[E:.*]] = tensor.expand_shape %[[A]] {{\[\[}}0, 1]] : tensor into tensor // CHECK-ROUND: return %[[E]] : tensor // // CHECK-LABEL: func.func @dynamic_sparse_expand( // CHECK-SAME: %[[S:.*0]]: // CHECK-DAG: %[[C10:.*]] = arith.constant 10 : index // CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index // CHECK-DAG: %[[C1:.*]] = arith.constant 1 : index // CHECK: %[[SD:.*]] = sparse_tensor.lvl %[[S]], %[[C0]] // CHECK: %[[DD0:.*]] = arith.divui %[[SD]], %[[C10]] : index // CHECK: %[[B:.*]] = bufferization.alloc_tensor(%[[DD0]]) // CHECK: %[[P0:.*]] = sparse_tensor.positions %[[S]] {level = 0 : index} // CHECK: %[[I0:.*]] = sparse_tensor.coordinates %[[S]] {level = 0 : index} // CHECK: %[[V:.*]] = sparse_tensor.values %[[S]] // CHECK: %[[S0:.*]] = memref.load %[[P0]]{{\[}}%[[C0]]] : memref // CHECK: %[[E0:.*]] = memref.load %[[P0]]{{\[}}%[[C1]]] : memref // CHECK: %[[RET:.*]] = scf.for %[[I:.*]] = %[[S0]] to %[[E0]] step %[[C1]] iter_args(%[[R:.*]] = %[[B]]) // CHECK: %[[SI:.*]] = memref.load %[[I0]]{{\[}}%[[I]]] : memref // CHECK: %[[SV:.*]] = memref.load %[[V]]{{\[}}%[[I]]] : memref // CHECK: %[[T1:.*]] = arith.muli %[[DD0]], %[[C10]] : index // CHECK: %[[T2:.*]] = arith.divui %[[T1]], %[[DD0]] : index // CHECK: %[[DI0:.*]] = arith.divui %[[SI]], %[[T2]] : index // CHECK: %[[T3:.*]] = arith.remui %[[SI]], %[[T2]] : index // CHECK: %[[T4:.*]] = arith.divui %[[T2]], %[[C10]] : index // CHECK: %[[DI1:.*]] = arith.divui %[[T3]], %[[T4]] : index // CHECK: %[[NT:.*]] = sparse_tensor.insert %[[SV]] into %[[R]]{{\[}}%[[DI0]], %[[DI1]]] // CHECK: scf.yield %[[NT]] // CHECK: } // CHECK: %[[NT1:.*]] = sparse_tensor.load %[[RET]] hasInserts // CHECK-NOT: sparse_tensor.convert // CHECK: return %[[NT1]] : tensor // func.func @dynamic_sparse_expand(%arg0: tensor) -> tensor { %0 = tensor.expand_shape %arg0 [[0, 1]] : tensor into tensor return %0 : tensor } // // roundtrip: // // CHECK-ROUND-LABEL: func.func @dynamic_sparse_collapse( // CHECK-ROUND-SAME: %[[A:.*]]: tensor<10x?xf64, #sparse{{[0-9]*}}>) -> tensor // CHECK-ROUND: %[[C:.*]] = tensor.collapse_shape %[[A]] {{\[\[}}0, 1]] : tensor<10x?xf64, #sparse{{[0-9]*}}> into tensor // CHECK-ROUND: return %[[C]] : tensor // // CHECK-LABEL: func.func @dynamic_sparse_collapse( // CHECK-SAME: %[[S:.*0]]: // CHECK-DAG: %[[C10:.*]] = arith.constant 10 : index // CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index // CHECK-DAG: %[[C1:.*]] = arith.constant 1 : index // CHECK: %[[SD1:.*]] = sparse_tensor.lvl %[[S]], %[[C1]] // CHECK: %[[DD0:.*]] = arith.muli %[[SD1]], %[[C10]] : index // CHECK: %[[B:.*]] = bufferization.alloc_tensor(%[[DD0]]) // CHECK: %[[P0:.*]] = sparse_tensor.positions %[[S]] {level = 0 : index} // CHECK: %[[I0:.*]] = sparse_tensor.coordinates %[[S]] {level = 0 : index} // CHECK: %[[P1:.*]] = sparse_tensor.positions %[[S]] {level = 1 : index} // CHECK: %[[I1:.*]] = sparse_tensor.coordinates %[[S]] {level = 1 : index} // CHECK: %[[V:.*]] = sparse_tensor.values %[[S]] // CHECK: %[[S0:.*]] = memref.load %[[P0]]{{\[}}%[[C0]]] : memref // CHECK: %[[E0:.*]] = memref.load %[[P0]]{{\[}}%[[C1]]] : memref // CHECK: %[[RET:.*]] = scf.for %[[I:.*]] = %[[S0]] to %[[E0]] step %[[C1]] iter_args(%[[R0:.*]] = %[[B]]) // CHECK: %[[SI0:.*]] = memref.load %[[I0]]{{\[}}%[[I]]] : memref // CHECK-DAG: %[[S1:.*]] = memref.load %[[P1]]{{\[}}%[[I]]] : memref // CHECK-DAG: %[[PE1:.*]] = arith.addi %[[I]], %[[C1]] : index // CHECK: %[[E1:.*]] = memref.load %[[P1]]{{\[}}%[[PE1]]] : memref // CHECK: %[[RET_1:.*]] = scf.for %[[J:.*]] = %[[S1]] to %[[E1]] step %[[C1]] iter_args(%[[R1:.*]] = %[[R0]]) // CHECK: %[[SI1:.*]] = memref.load %[[I1]]{{\[}}%[[J]]] : memref // CHECK: %[[SV:.*]] = memref.load %[[V]]{{\[}}%[[J]]] : memref // CHECK: %[[T1:.*]] = arith.divui %[[DD0]], %[[C10]] : index // CHECK: %[[T2:.*]] = arith.muli %[[SI0]], %[[T1]] : index // CHECK: %[[T3:.*]] = arith.divui %[[T1]], %[[SD1]] : index // CHECK: %[[T4:.*]] = arith.muli %[[SI1]], %[[T3]] : index // CHECK: %[[DI:.*]] = arith.addi %[[T2]], %[[T4]] : index // CHECK: %[[NT:.*]] = sparse_tensor.insert %[[SV]] into %[[R1]]{{\[}}%[[DI]]] // CHECK scf.yield %[[NT]] // CHECK } // CHECK scf.yield %[[RET_1]] // CHECK: } // CHECK: %[[NT1:.*]] = sparse_tensor.load %[[RET]] hasInserts // CHECK-NOT: sparse_tensor.convert // CHECK: return %[[NT1]] : tensor // func.func @dynamic_sparse_collapse(%arg0: tensor<10x?xf64, #SparseMatrix>) -> tensor { %0 = tensor.collapse_shape %arg0 [[0, 1]] : tensor<10x?xf64, #SparseMatrix> into tensor return %0 : tensor }