// RUN: mlir-opt %s --sparse-reinterpret-map -sparsification | FileCheck %s // // A contrived example where the sparse tensor B is only // used in the linalg op to determine the number of iterations // for the k-loop. This is included to make sure the sparse // compiler still generates the correct loop nest for this case. // #SM = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : dense, d1 : compressed) }> #trait = { indexing_maps = [ affine_map<(i,j,k) -> (i,j)>, // A affine_map<(i,j,k) -> (k,j)>, // B affine_map<(i,j,k) -> (i,j)> // S_out ], iterator_types = ["parallel", "parallel", "reduction"], doc = "C(i,j) = SUM_k A(i,j)" } // CHECK-LABEL: func.func @b_ununsed( // CHECK-SAME: %[[VAL_0:.*]]: tensor<2x4xf64>, // CHECK-SAME: %[[VAL_1:.*]]: tensor<8x4xf64, #sparse{{[0-9]*}}>, // CHECK-SAME: %[[VAL_2:.*]]: tensor<2x4xf64>) -> tensor<2x4xf64> { // CHECK-DAG: %[[VAL_3:.*]] = arith.constant 8 : index // CHECK-DAG: %[[VAL_4:.*]] = arith.constant 2 : index // CHECK-DAG: %[[VAL_5:.*]] = arith.constant 4 : index // CHECK-DAG: %[[VAL_6:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_7:.*]] = arith.constant 1 : index // CHECK-DAG: %[[VAL_8:.*]] = bufferization.to_memref %[[VAL_0]] : memref<2x4xf64> // CHECK-DAG: %[[VAL_9:.*]] = bufferization.to_memref %[[VAL_2]] : memref<2x4xf64> // CHECK: scf.for %[[VAL_10:.*]] = %[[VAL_6]] to %[[VAL_4]] step %[[VAL_7]] { // CHECK: scf.for %[[VAL_11:.*]] = %[[VAL_6]] to %[[VAL_3]] step %[[VAL_7]] { // CHECK: scf.for %[[VAL_12:.*]] = %[[VAL_6]] to %[[VAL_5]] step %[[VAL_7]] { // CHECK: %[[VAL_13:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_10]], %[[VAL_12]]] : memref<2x4xf64> // CHECK: %[[VAL_14:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_10]], %[[VAL_12]]] : memref<2x4xf64> // CHECK: %[[VAL_15:.*]] = arith.addf %[[VAL_13]], %[[VAL_14]] : f64 // CHECK: memref.store %[[VAL_15]], %[[VAL_9]]{{\[}}%[[VAL_10]], %[[VAL_12]]] : memref<2x4xf64> // CHECK: } // CHECK: } // CHECK: } // CHECK: %[[VAL_16:.*]] = bufferization.to_tensor %[[VAL_9]] : memref<2x4xf64> // CHECK: return %[[VAL_16]] : tensor<2x4xf64> // CHECK: } func.func @b_ununsed(%argA: tensor<2x4xf64>, %argB: tensor<8x4xf64, #SM>, %argC: tensor<2x4xf64>) -> tensor<2x4xf64> { %result = linalg.generic #trait ins(%argA, %argB: tensor<2x4xf64>, tensor<8x4xf64, #SM>) outs(%argC: tensor<2x4xf64>) { ^bb(%a: f64, %b: f64, %c: f64): %0 = arith.addf %c, %a : f64 linalg.yield %0 : f64 } -> tensor<2x4xf64> return %result : tensor<2x4xf64> }