// RUN: mlir-opt %s -tensor-bufferize -cse -split-input-file | FileCheck %s // CHECK-LABEL: func @dim( // CHECK-SAME: %[[TENSOR:.*]]: tensor<*xf32>, // CHECK-SAME: %[[INDEX:.*]]: index) -> index { // CHECK: %[[MEMREF:.*]] = bufferization.to_memref %[[TENSOR]] : memref<*xf32> // CHECK: %[[EXTENT:.*]] = memref.dim %[[MEMREF]], %[[INDEX]] : memref<*xf32> // CHECK: return %[[EXTENT]] : index func.func @dim(%arg0: tensor<*xf32>, %arg1: index) -> index { %0 = tensor.dim %arg0, %arg1 : tensor<*xf32> return %0 : index } // ----- // CHECK-LABEL: func @rank( // CHECK-SAME: %[[TENSOR:.*]]: tensor<*xf32>) -> index { // CHECK: %[[MEMREF:.*]] = bufferization.to_memref %[[TENSOR]] // CHECK: %[[EXTENT:.*]] = memref.rank %[[MEMREF]] : memref<*xf32> func.func @rank(%arg0: tensor<*xf32>) -> index { %0 = tensor.rank %arg0 : tensor<*xf32> return %0 : index } // ----- // CHECK-LABEL: func @tensor.cast( // CHECK-SAME: %[[TENSOR:.*]]: tensor) -> tensor<2xindex> { // CHECK: %[[MEMREF:.*]] = bufferization.to_memref %[[TENSOR]] // CHECK: %[[CASTED:.*]] = memref.cast %[[MEMREF]] : memref to memref<2xindex> // CHECK: %[[RET:.*]] = bufferization.to_tensor %[[CASTED]] // CHECK: return %[[RET]] : tensor<2xindex> func.func @tensor.cast(%arg0: tensor) -> tensor<2xindex> { %0 = tensor.cast %arg0 : tensor to tensor<2xindex> return %0 : tensor<2xindex> } // ----- // CHECK-LABEL: func @tensor.cast_from_unranked( // CHECK-SAME: %[[TENSOR:.*]]: tensor<*xf32>) -> tensor<2xf32> { // CHECK: %[[MEMREF:.*]] = bufferization.to_memref %[[TENSOR]] : memref<*xf32> // CHECK: %[[CASTED_MEMREF:.*]] = memref.cast %[[MEMREF]] : memref<*xf32> to memref<2xf32, strided<[?], offset: ?>> // CHECK: %[[RET:.*]] = bufferization.to_tensor %[[CASTED_MEMREF]] : memref<2xf32, strided<[?], offset: ?>> // CHECK: return %[[RET]] : tensor<2xf32> func.func @tensor.cast_from_unranked(%arg0: tensor<*xf32>) -> tensor<2xf32> { %0 = tensor.cast %arg0 : tensor<*xf32> to tensor<2xf32> return %0 : tensor<2xf32> } // ----- // CHECK-LABEL: func @tensor.cast_to_unranked( // CHECK-SAME: %[[TENSOR:.*]]: tensor<2xf32>) -> tensor<*xf32> { // CHECK: %[[MEMREF:.*]] = bufferization.to_memref %[[TENSOR]] : memref<2xf32> // CHECK: %[[CASTED_MEMREF:.*]] = memref.cast %[[MEMREF]] : memref<2xf32> to memref<*xf32> // CHECK: %[[RET:.*]] = bufferization.to_tensor %[[CASTED_MEMREF]] : memref<*xf32> // CHECK: return %[[RET]] : tensor<*xf32> func.func @tensor.cast_to_unranked(%arg0: tensor<2xf32>) -> tensor<*xf32> { %0 = tensor.cast %arg0 : tensor<2xf32> to tensor<*xf32> return %0 : tensor<*xf32> } // ----- // CHECK-LABEL: func @tensor.empty( // CHECK: %[[ALLOC:.*]] = memref.alloc() {{.*}} : memref<5xf32> // CHECK: %[[RET:.*]] = bufferization.to_tensor %[[ALLOC]] : memref<5xf32> // CHECK: return %[[RET]] : tensor<5xf32> func.func @tensor.empty() -> tensor<5xf32> { %0 = tensor.empty() : tensor<5xf32> return %0 : tensor<5xf32> } // ----- // CHECK-LABEL: func @tensor.extract( // CHECK-SAME: %[[TENSOR:.*]]: tensor, // CHECK-SAME: %[[IDX:.*]]: index) -> f32 { // CHECK: %[[MEMREF:.*]] = bufferization.to_memref %[[TENSOR]] : memref // CHECK: %[[RET:.*]] = memref.load %[[MEMREF]][%[[IDX]]] : memref // CHECK: return %[[RET]] : f32 // CHECK: } func.func @tensor.extract(%arg0: tensor, %arg1: index) -> f32 { %0 = tensor.extract %arg0[%arg1] : tensor return %0 : f32 } // ----- // CHECK-LABEL: func @tensor.from_elements_0d( // CHECK-SAME: %[[ELEM0:.*]]: index) -> tensor { // CHECK: %[[MEMREF:.*]] = memref.alloc() {{.*}} : memref // CHECK: store %[[ELEM0]], %[[MEMREF]] // CHECK: %[[RET:.*]] = bufferization.to_tensor %[[MEMREF]] // CHECK: return %[[RET]] : tensor func.func @tensor.from_elements_0d(%arg0: index) -> tensor { %0 = tensor.from_elements %arg0 : tensor return %0 : tensor } // ----- // CHECK-LABEL: func @tensor.from_elements_1d( // CHECK-SAME: %[[ELEM0:.*]]: index, // CHECK-SAME: %[[ELEM1:.*]]: index) -> tensor<2xindex> { // CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index // CHECK-DAG: %[[C1:.*]] = arith.constant 1 : index // CHECK-DAG: %[[MEMREF:.*]] = memref.alloc() {{.*}} : memref<2xindex> // CHECK: store %[[ELEM0]], %[[MEMREF]][%[[C0]]] // CHECK: store %[[ELEM1]], %[[MEMREF]][%[[C1]]] // CHECK: %[[RET:.*]] = bufferization.to_tensor %[[MEMREF]] // CHECK: return %[[RET]] : tensor<2xindex> func.func @tensor.from_elements_1d(%arg0: index, %arg1: index) -> tensor<2xindex> { %0 = tensor.from_elements %arg0, %arg1 : tensor<2xindex> return %0 : tensor<2xindex> } // ----- // CHECK-LABEL: func @tensor.from_elements_2d( // CHECK-SAME: %[[ELEM0:.*]]: index, %[[ELEM1:.*]]: index) // CHECK-SAME: -> tensor<3x2xindex> { // CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index // CHECK-DAG: %[[C1:.*]] = arith.constant 1 : index // CHECK-DAG: %[[C2:.*]] = arith.constant 2 : index // CHECK-DAG: %[[MEMREF:.*]] = memref.alloc() {{.*}} : memref<3x2xindex> // CHECK: store %[[ELEM0]], %[[MEMREF]][%[[C0]], %[[C0]]] // CHECK: store %[[ELEM1]], %[[MEMREF]][%[[C0]], %[[C1]]] // CHECK: store %[[ELEM0]], %[[MEMREF]][%[[C1]], %[[C0]]] // CHECK: store %[[ELEM1]], %[[MEMREF]][%[[C1]], %[[C1]]] // CHECK: store %[[ELEM0]], %[[MEMREF]][%[[C2]], %[[C0]]] // CHECK: store %[[ELEM1]], %[[MEMREF]][%[[C2]], %[[C1]]] // CHECK: %[[RET:.*]] = bufferization.to_tensor %[[MEMREF]] // CHECK: return %[[RET]] : tensor<3x2xindex> func.func @tensor.from_elements_2d(%arg0: index, %arg1: index) -> tensor<3x2xindex> { %0 = tensor.from_elements %arg0, %arg1, %arg0, %arg1, %arg0, %arg1 : tensor<3x2xindex> return %0 : tensor<3x2xindex> } // ----- // CHECK-LABEL: func @tensor.from_elements_3d( // CHECK-SAME: %[[F0:.*]]: f32 // CHECK-DAG: %[[F1:.*]] = arith.constant 1.0{{0+}}e+00 // CHECK-DAG: %[[F2:.*]] = arith.constant 2.0 // CHECK-DAG: %[[F3:.*]] = arith.constant 3.0 // CHECK-DAG: %[[F4:.*]] = arith.constant 4.0 // CHECK-DAG: %[[F5:.*]] = arith.constant 5.0 // CHECK-DAG: %[[F6:.*]] = arith.constant 6.0 // CHECK-DAG: %[[F7:.*]] = arith.constant 7.0 // CHECK-DAG: %[[F8:.*]] = arith.constant 8.0 // CHECK-DAG: %[[F9:.*]] = arith.constant 9.0 // CHECK-DAG: %[[F10:.*]] = arith.constant 1.0{{0+}}e+01 // CHECK-DAG: %[[F11:.*]] = arith.constant 1.1{{0+}}e+01 // CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index // CHECK-DAG: %[[C1:.*]] = arith.constant 1 : index // CHECK-DAG: %[[C2:.*]] = arith.constant 2 : index // CHECK-DAG: %[[MEMREF:.*]] = memref.alloc() {{.*}} : memref<3x2x2xf32> // CHECK: store %[[F0]], %[[MEMREF]][%[[C0]], %[[C0]], %[[C0]]] // CHECK: store %[[F1]], %[[MEMREF]][%[[C0]], %[[C0]], %[[C1]]] // CHECK: store %[[F2]], %[[MEMREF]][%[[C0]], %[[C1]], %[[C0]]] // CHECK: store %[[F3]], %[[MEMREF]][%[[C0]], %[[C1]], %[[C1]]] // CHECK: store %[[F4]], %[[MEMREF]][%[[C1]], %[[C0]], %[[C0]]] // CHECK: store %[[F5]], %[[MEMREF]][%[[C1]], %[[C0]], %[[C1]]] // CHECK: store %[[F6]], %[[MEMREF]][%[[C1]], %[[C1]], %[[C0]]] // CHECK: store %[[F7]], %[[MEMREF]][%[[C1]], %[[C1]], %[[C1]]] // CHECK: store %[[F8]], %[[MEMREF]][%[[C2]], %[[C0]], %[[C0]]] // CHECK: store %[[F9]], %[[MEMREF]][%[[C2]], %[[C0]], %[[C1]]] // CHECK: store %[[F10]], %[[MEMREF]][%[[C2]], %[[C1]], %[[C0]]] // CHECK: store %[[F11]], %[[MEMREF]][%[[C2]], %[[C1]], %[[C1]]] // CHECK: %[[RET:.*]] = bufferization.to_tensor %[[MEMREF]] // CHECK: return %[[RET]] : tensor<3x2x2xf32> func.func @tensor.from_elements_3d(%f0 : f32) -> tensor<3x2x2xf32> { %f1 = arith.constant 1.0 : f32 %f2 = arith.constant 2.0 : f32 %f3 = arith.constant 3.0 : f32 %f4 = arith.constant 4.0 : f32 %f5 = arith.constant 5.0 : f32 %f6 = arith.constant 6.0 : f32 %f7 = arith.constant 7.0 : f32 %f8 = arith.constant 8.0 : f32 %f9 = arith.constant 9.0 : f32 %f10 = arith.constant 10.0 : f32 %f11 = arith.constant 11.0 : f32 %0 = tensor.from_elements %f0,%f1,%f2,%f3,%f4,%f5,%f6,%f7,%f8,%f9,%f10,%f11 : tensor<3x2x2xf32> return %0 : tensor<3x2x2xf32> } // ----- // CHECK-LABEL: func @tensor.generate( // CHECK-SAME: %[[ARG:.*]]: tensor<*xf32>, // CHECK-SAME: %[[DYNAMIC_EXTENT:.*]]: index) -> tensor { // CHECK-DAG: %[[ARG_M:.*]] = bufferization.to_memref %[[ARG]] : memref<*xf32> // CHECK-DAG: %[[ALLOC:.*]] = memref.alloc(%[[DYNAMIC_EXTENT]]) {{.*}} : memref // CHECK: %[[ALLOC_T:.*]] = bufferization.to_tensor %[[ALLOC]] // CHECK: %[[MAPPED:.*]] = linalg.map // CHECK: outs(%[[ALLOC_T]] : tensor) // CHECK: %[[INDEX:.*]] = linalg.index 0 : index // CHECK: %[[ELEM:.*]] = memref.dim %[[ARG_M]], %[[INDEX]] : memref<*xf32> // CHECK: linalg.yield %[[ELEM]] // CHECK: } // CHECK: return %[[MAPPED]] : tensor // CHECK: } func.func @tensor.generate(%arg: tensor<*xf32>, %dynamic_extent: index) -> tensor { %result = tensor.generate %dynamic_extent { ^bb0(%i : index): %elem = tensor.dim %arg, %i : tensor<*xf32> tensor.yield %elem : index } : tensor return %result : tensor } // ----- // Additional test that checks the logic for intermixed static and dynamic // extents. // // CHECK-LABEL: func @tensor.generate_static_and_dynamic( // CHECK-SAME: %[[DYNAMIC_EXTENT:.*]]: index) -> tensor<16x?xindex> { // CHECK: %[[ALLOC:.*]] = memref.alloc(%[[DYNAMIC_EXTENT]]) {{.*}} : memref<16x?xindex> // CHECK: %[[ALLOC_T:.*]] = bufferization.to_tensor %[[ALLOC]] // CHECK: %[[MAPPED:.*]] = linalg.map // CHECK: outs(%[[ALLOC_T]] : tensor<16x?xindex>) // CHECK: %[[INDEX0:.*]] = linalg.index 0 // CHECK: %[[INDEX1:.*]] = linalg.index 1 // CHECK: %[[ADD:.*]] = arith.addi %[[INDEX0]], %[[INDEX1]] // CHECK: linalg.yield %[[ADD]] // CHECK: } // CHECK: return %[[MAPPED]] : tensor<16x?xindex> // CHECK: } func.func @tensor.generate_static_and_dynamic(%arg0: index) -> tensor<16x?xindex> { %result = tensor.generate %arg0 { ^bb0(%i: index, %j: index): %sum = arith.addi %i, %j : index tensor.yield %sum : index } : tensor<16x?xindex> return %result : tensor<16x?xindex> } // ----- // CHECK-LABEL: func @tensor.generate_unknown_ops_in_body func.func @tensor.generate_unknown_ops_in_body(%arg0: index) -> tensor { // CHECK-NOT: tensor.generate %tensor = tensor.generate %arg0 { ^bb0(%iv: index): // CHECK: test.source %0 = "test.source"() : () -> index tensor.yield %0 : index } : tensor return %tensor : tensor } // ----- // CHECK-LABEL: func @tensor.extract_slice( // CHECK-SAME: %[[t1:.*]]: tensor, %[[idx1:.*]]: index, %[[idx2:.*]]: index func.func @tensor.extract_slice( %t1: tensor, %idx1: index, %idx2: index) -> tensor { // CHECK: %[[m:.*]] = bufferization.to_memref %[[t1]] : memref // CHECK: %[[r:.*]] = memref.subview %[[m]][5, %[[idx2]]] [%[[idx1]], 10] [1, 1] : memref to memref> %0 = tensor.extract_slice %t1[5, %idx2][%idx1, 10][1, 1] : tensor to tensor // CHECK: %[[r_tensor:.*]] = bufferization.to_tensor %[[r]] // CHECK: return %[[r_tensor]] return %0 : tensor } // ----- // CHECK-LABEL: func @tensor.extract_slice_rank_reducing( // CHECK-SAME: %[[t1:.*]]: tensor, %[[idx1:.*]]: index, // CHECK-SAME: %[[idx2:.*]]: index func.func @tensor.extract_slice_rank_reducing( %t1: tensor, %idx1: index, %idx2: index) -> tensor { // CHECK: %[[m1:.*]] = bufferization.to_memref %[[t1]] : memref // CHECK: %[[r:.*]] = memref.subview %[[m1]][5, %[[idx1]], 10] [%[[idx2]], 1, 15] [1, 1, 1] : memref to memref> %0 = tensor.extract_slice %t1[5, %idx1, 10][%idx2, 1, 15][1, 1, 1] : tensor to tensor // CHECK: %[[r_tensor:.*]] = bufferization.to_tensor %[[r]] // CHECK: return %[[r_tensor]] return %0 : tensor } // ----- // CHECK-LABEL: func @tensor.insert_slice( // CHECK-SAME: %[[t1:.*]]: tensor, %[[t2:.*]]: tensor, // CHECK-SAME: %[[idx1:.*]]: index, %[[idx2:.*]]: index func.func @tensor.insert_slice(%t1: tensor, %t2: tensor, %idx1: index, %idx2: index) -> tensor { // CHECK-DAG: %[[c0:.*]] = arith.constant 0 : index // CHECK-DAG: %[[c1:.*]] = arith.constant 1 : index // CHECK-DAG: %[[m1:.*]] = bufferization.to_memref %[[t1]] : memref // CHECK-DAG: %[[m2:.*]] = bufferization.to_memref %[[t2]] : memref // CHECK-DAG: %[[dim0:.*]] = memref.dim %[[m1]], %[[c0]] // CHECK-DAG: %[[dim1:.*]] = memref.dim %[[m1]], %[[c1]] // CHECK: %[[alloc:.*]] = memref.alloc(%[[dim0]], %[[dim1]]) // CHECK: memref.copy %[[m1]], %[[alloc]] // CHECK: %[[subview:.*]] = memref.subview %[[alloc]][%[[idx1]], 5] [%[[idx2]], 10] [1, 1] // CHECK: memref.copy %[[m2]], %[[subview]] %0 = tensor.insert_slice %t2 into %t1[%idx1, 5][%idx2, 10][1, 1] : tensor into tensor // CHECK: %[[r:.*]] = bufferization.to_tensor %[[alloc]] // CHECK: return %[[r]] return %0 : tensor } // ----- // CHECK-LABEL: func @tensor.insert_slice_rank_reducing_1( func.func @tensor.insert_slice_rank_reducing_1( %t1: tensor, %f: tensor, %idx1: index, %idx2: index) -> tensor { // CHECK: %[[alloc:.*]] = memref.alloc{{.*}} : memref // CHECK: memref.subview %[[alloc]][%{{.*}}, %{{.*}}] [1, 1] [1, 1] : memref to memref> // CHECK: memref.copy {{.*}} : memref to memref> %0 = tensor.insert_slice %f into %t1[%idx1, %idx2][1, 1][1, 1] : tensor into tensor return %0 : tensor } // ----- // CHECK-LABEL: func @tensor.insert_slice_rank_reducing_2( func.func @tensor.insert_slice_rank_reducing_2( %t1: tensor, %t2: tensor<2x1x4x1x1xf32>, %i: index) -> tensor { // CHECK: %[[alloc:.*]] = memref.alloc{{.*}} : memref // CHECK: memref.subview %[[alloc]][{{.*}}] [1, 2, 1, 4, 1, 1, 1] [1, 1, 1, 1, 1, 1, 1] : memref to memref<2x1x4x1x1xf32, strided<[?, ?, ?, ?, ?], offset: ?>> // CHECK: memref.copy {{.*}} : memref<2x1x4x1x1xf32> to memref<2x1x4x1x1xf32, strided<[?, ?, ?, ?, ?], offset: ?>> %0 = tensor.insert_slice %t2 into %t1[%i, %i, %i, %i, %i, %i, %i][1, 2, 1, 4, 1, 1, 1][1, 1, 1, 1, 1, 1, 1] : tensor<2x1x4x1x1xf32> into tensor return %0 : tensor } // ----- // CHECK-LABEL: func @tensor.insert( // CHECK-SAME: %[[t1:.*]]: tensor<5xf32>, %[[idx1:.*]]: index, // CHECK-SAME: %[[f:.*]]: f32 func.func @tensor.insert(%t1: tensor<5xf32>, %idx1: index, %f: f32) -> tensor<5xf32> { // CHECK-DAG: %[[alloc:.*]] = memref.alloc() {{.*}} : memref<5xf32> // CHECK-DAG: %[[m1:.*]] = bufferization.to_memref %[[t1]] : memref<5xf32> // CHECK: memref.copy %[[m1]], %[[alloc]] // CHECK: memref.store %[[f]], %[[alloc]][%[[idx1]]] %0 = tensor.insert %f into %t1[%idx1] : tensor<5xf32> // CHECK: %[[r:.*]] = bufferization.to_tensor %[[alloc]] // CHECK: return %[[r]] return %0 : tensor<5xf32> } // ----- // CHECK-LABEL: func @tensor.expand_shape( // CHECK-SAME: %[[t1:.*]]: tensor func.func @tensor.expand_shape(%t1: tensor) -> tensor<2x?x10xf32> { // CHECK: %[[m1:.*]] = bufferization.to_memref %[[t1]] : memref // CHECK: %[[expanded:.*]] = memref.expand_shape %[[m1]] [ // CHECK-SAME: [0, 1], [2]] : memref into memref<2x?x10xf32> %0 = tensor.expand_shape %t1 [[0, 1], [2]] : tensor into tensor<2x?x10xf32> // CHECK: %[[r:.*]] = bufferization.to_tensor %[[expanded]] // CHECK: return %[[r]] return %0 : tensor<2x?x10xf32> } // ----- // CHECK-LABEL: func @tensor.expand_shape_of_slice( // CHECK-SAME: %[[t1:.*]]: tensor func.func @tensor.expand_shape_of_slice( %t1: tensor, %o1: index, %s1: index) -> tensor { // CHECK: %[[m1:.*]] = bufferization.to_memref %[[t1]] : memref // CHECK: %[[subview:.*]] = memref.subview %[[m1]][%{{.*}}, 5] [%{{.*}}, 10] [1, 1] : memref to memref> %0 = tensor.extract_slice %t1[%o1, 5][%s1, 10][1, 1] : tensor to tensor // CHECK: %[[expanded:.*]] = memref.expand_shape %[[subview]] [ // CHECK-SAME: [0, 1], [2, 3]] : memref> into memref> %1 = tensor.expand_shape %0 [[0, 1], [2, 3]] : tensor into tensor // CHECK: %[[r:.*]] = bufferization.to_tensor %[[expanded]] // CHECK: return %[[r]] return %1 : tensor } // ----- // CHECK-LABEL: func @tensor.expand_shape_of_scalar_slice( // CHECK-SAME: %[[t1:.*]]: tensor func.func @tensor.expand_shape_of_scalar_slice( %t1: tensor, %o1: index, %s1: index) -> tensor<1xf32> { // CHECK: %[[m1:.*]] = bufferization.to_memref %[[t1]] : memref // CHECK: %[[subview:.*]] = memref.subview %[[m1]][%{{.*}}] [1] [1] : memref to memref> %0 = tensor.extract_slice %t1[%o1][1][1] : tensor to tensor // CHECK: %[[expanded:.*]] = memref.expand_shape %[[subview]] [] : memref into memref<1xf32, strided<[1], offset: ?>> %1 = tensor.expand_shape %0 [] : tensor into tensor<1xf32> // CHECK: %[[r:.*]] = bufferization.to_tensor %[[expanded]] // CHECK: return %[[r]] return %1 : tensor<1xf32> } // ----- // CHECK-LABEL: func @tensor.collapse_shape( // CHECK-SAME: %[[t1:.*]]: tensor<2x?x?xf32> func.func @tensor.collapse_shape(%t1: tensor<2x?x?xf32>) -> tensor { // CHECK: %[[m1:.*]] = bufferization.to_memref %[[t1]] : memref<2x?x?xf32> // CHECK: %[[collapsed:.*]] = memref.collapse_shape %[[m1]] [ // CHECK-SAME: [0, 1], [2]] : memref<2x?x?xf32> into memref %0 = tensor.collapse_shape %t1 [[0, 1], [2]] : tensor<2x?x?xf32> into tensor // CHECK: %[[r:.*]] = bufferization.to_tensor %[[collapsed]] // CHECK: return %[[r]] return %0 : tensor } // ----- // CHECK-LABEL: func @tensor.collapse_shape_to_scalar( // CHECK-SAME: %[[t1:.*]]: tensor<1x1x1xf32> func.func @tensor.collapse_shape_to_scalar(%t1: tensor<1x1x1xf32>) -> tensor { // CHECK: %[[m1:.*]] = bufferization.to_memref %[[t1]] : memref<1x1x1xf32> // CHECK: %[[collapsed:.*]] = memref.collapse_shape %[[m1]] [] : memref<1x1x1xf32> into memref %0 = tensor.collapse_shape %t1 [] : tensor<1x1x1xf32> into tensor // CHECK: %[[r:.*]] = bufferization.to_tensor %[[collapsed]] // CHECK: return %[[r]] return %0 : tensor } // ----- // CHECK-LABEL: func @tensor.collapse_shape_of_slice( func.func @tensor.collapse_shape_of_slice(%arg0: tensor<2xi32>) -> tensor { // CHECK: memref.subview %{{.*}}[1] [1] [1] : memref<2xi32> to memref<1xi32, strided<[1], offset: 1>> %0 = tensor.extract_slice %arg0[1] [1] [1] : tensor<2xi32> to tensor<1xi32> // CHECK: memref.collapse_shape %{{.*}} [] : memref<1xi32, strided<[1], offset: 1>> into memref> %1 = tensor.collapse_shape %0 [] : tensor<1xi32> into tensor return %1 : tensor } // ----- // CHECK-LABEL: func @tensor.collapse_shape_of_slice2( func.func @tensor.collapse_shape_of_slice2( %arg0: tensor, %o1: index, %o2: index, %o3: index, %o4: index) -> tensor<87x63648xi64> { // CHECK: %[[subview:.*]] = memref.subview %{{.*}} : memref to memref<87x78x68x12xi64, strided{{.*}}> %0 = tensor.extract_slice %arg0[%o1, %o2, %o3, %o4] [87, 78, 68, 12] [1, 1, 1, 1] : tensor to tensor<87x78x68x12xi64> // This memref may not be collapsible, so the buffer must be copied to get rid // of the layout map. // CHECK: %[[alloc:.*]] = memref.alloc() {{.*}} : memref<87x78x68x12xi64> // CHECK: memref.copy %[[subview]], %[[alloc]] // CHECK: memref.collapse_shape %[[alloc]] [ // CHECK-SAME: [0], [1, 2, 3]] : memref<87x78x68x12xi64> into memref<87x63648xi64> %1 = tensor.collapse_shape %0 [[0], [1, 2, 3]] : tensor<87x78x68x12xi64> into tensor<87x63648xi64> return %1 : tensor<87x63648xi64> } // ----- // CHECK-LABEL: func @tensor.collapse_shape_of_slice3( // CHECK-SAME: %[[t1:.*]]: tensor<1x2xf32> func.func @tensor.collapse_shape_of_slice3(%t1: tensor<1x2xf32>) -> tensor<1xf32> { // CHECK: memref.subview {{.*}} : memref<1x2xf32> to memref<1x1xf32, strided<[2, 1]>> %0 = tensor.extract_slice %t1[0, 0][1, 1][1, 1] : tensor<1x2xf32> to tensor<1x1xf32> // CHECK: memref.collapse_shape %{{.*}} [ // CHECK-SAME: [0, 1]] : memref<1x1xf32, strided<[2, 1]>> into memref<1xf32, strided<[2]>> %1 = tensor.collapse_shape %0 [[0, 1]] : tensor<1x1xf32> into tensor<1xf32> return %1 : tensor<1xf32> } // ----- // CHECK-LABEL: func @tensor.collapse_shape_of_slice4( // CHECK-SAME: %[[t1:.*]]: tensor, // CHECK-SAME: %[[OFFSET:.*]]: index) -> tensor<8xf32> { func.func @tensor.collapse_shape_of_slice4(%arg0: tensor, %offset: index, %size: index) -> tensor<8xf32> { // CHECK: memref.subview %{{.*}} : memref to memref<4x2x1xf32, strided<[8, 4, 1], offset: ?>> %0 = tensor.extract_slice %arg0[0, 0, %offset] [4, 2, 1] [1, 1, 1] : tensor to tensor<4x2x1xf32> // CHECK: memref.collapse_shape %{{.*}} [ // CHECK-SAME: [0, 1, 2]] : memref<4x2x1xf32, strided<[8, 4, 1], offset: ?>> into memref<8xf32, strided<[4], offset: ?>> %ret = tensor.collapse_shape %0 [[0, 1, 2]] : tensor<4x2x1xf32> into tensor<8xf32> return %ret: tensor<8xf32> } // ----- // CHECK-LABEL: func @tensor.collapse_shape_of_slice5( func.func @tensor.collapse_shape_of_slice5(%arg0: tensor<2x2x2xi64>) -> tensor<4xi64> { // CHECK: %[[subview:.*]] = memref.subview %{{.*}} : memref<2x2x2xi64> to memref<2x1x2xi64, {{.*}}> %0 = tensor.extract_slice %arg0[0, 0, 0] [2, 1, 2] [1, 1, 1] : tensor<2x2x2xi64> to tensor<2x1x2xi64> // This memref is not collapsible, so the buffer must be copied to get rid of // the layout map. // CHECK: %[[alloc:.*]] = memref.alloc() {{.*}} : memref<2x1x2xi64> // CHECK: memref.copy %[[subview]], %[[alloc]] // CHECK: memref.collapse_shape %[[alloc]] [ // CHECK-SAME: [0, 1, 2]] : memref<2x1x2xi64> into memref<4xi64> %1 = tensor.collapse_shape %0 [[0, 1, 2]] : tensor<2x1x2xi64> into tensor<4xi64> return %1 : tensor<4xi64> } // ----- // CHECK-LABEL: func @tensor.reshape( // CHECK-SAME: %[[t1:.*]]: tensor func.func @tensor.reshape(%t1: tensor) -> tensor<2x2x5xf32> { // CHECK: %[[m1:.*]] = bufferization.to_memref %[[t1]] : memref // CHECK: %[[two:.*]] = arith.constant 2 : i64 %two = arith.constant 2 : i64 // CHECK: %[[five:.*]] = arith.constant 5 : i64 %five = arith.constant 5 : i64 // CHECK: %[[alloc:.*]] = memref.alloc() {alignment = 64 : i64} : memref<3xi64> // CHECK: %[[zero_idx:.*]] = arith.constant 0 : index // CHECK: %[[one_idx:.*]] = arith.constant 1 : index // CHECK: %[[two_idx:.*]] = arith.constant 2 : index // CHECK: memref.store %[[two]], %[[alloc]][%[[zero_idx]]] : memref<3xi64> // CHECK: memref.store %[[two]], %[[alloc]][%[[one_idx]]] : memref<3xi64> // CHECK: memref.store %[[five]], %[[alloc]][%[[two_idx]]] : memref<3xi64> %shape = tensor.from_elements %two, %two, %five : tensor<3xi64> // CHECK: %[[reshaped:.*]] = memref.reshape %[[m1]](%[[alloc]]) : (memref, memref<3xi64>) -> memref<2x2x5xf32> %reshaped = tensor.reshape %t1(%shape) : (tensor, tensor<3xi64>) -> tensor<2x2x5xf32> // CHECK: %[[r:.*]] = bufferization.to_tensor %[[reshaped]] // CHECK: return %[[r]] return %reshaped : tensor<2x2x5xf32> } // ----- // CHECK: #[[$sum_map_1:.+]] = affine_map<()[s0, s1] -> (s0 + s1 + 5)> // CHECK: #[[$sum_map_2:.+]] = affine_map<()[s0, s1] -> (s0 + s1 + 10)> // CHECK-LABEL: func @tensor.pad( // CHECK-SAME: %[[t1:.*]]: tensor, %[[l2:.*]]: index, %[[h1:.*]]: index, %[[h2:.*]]: index func.func @tensor.pad(%t1: tensor, %l2: index, %h1: index, %h2: index) -> tensor { // CHECK-DAG: %[[m1:.*]] = bufferization.to_memref %[[t1]] : memref // CHECK-DAG: %[[c0:.*]] = arith.constant 0 : index // CHECK-DAG: %[[c1:.*]] = arith.constant 1 : index // CHECK-DAG: %[[dim0:.*]] = memref.dim %[[m1]], %[[c0]] // CHECK-DAG: %[[dim1:.*]] = memref.dim %[[m1]], %[[c1]] // CHECK-DAG: %[[size0:.*]] = affine.apply #[[$sum_map_1]]()[%[[h1]], %[[dim0]]] // CHECK-DAG: %[[size1:.*]] = affine.apply #[[$sum_map_2]]()[%[[l2]], %[[h2]]] // CHECK: %[[alloc:.*]] = memref.alloc(%[[size0]], %[[size1]]) {{.*}} : memref // CHECK: %[[alloc_t:.*]] = bufferization.to_tensor %[[alloc]] // CHECK: %[[mapped:.*]] = linalg.map // CHECK: outs(%[[alloc_t]] : tensor) // CHECK: %[[index0:.*]] = linalg.index 0 // CHECK: %[[index1:.*]] = linalg.index 1 // CHECK: %[[mul:.*]] = arith.muli %[[index0]], %[[index1]] // CHECK: linalg.yield %[[mul]] // CHECK: } // CHECK: %[[mapped_m:.*]] = bufferization.to_memref %[[mapped]] // CHECK: %[[subview:.*]] = memref.subview %[[mapped_m]][5, %[[l2]]] [%[[dim0]], 10] [1, 1] // CHECK: memref.copy %[[m1]], %[[subview]] %0 = tensor.pad %t1 low[5, %l2] high[%h1, %h2] { ^bb0(%arg0: index, %arg1: index): %m = arith.muli %arg0, %arg1 : index tensor.yield %m : index } : tensor to tensor // CHECK: %[[r:.*]] = bufferization.to_tensor %[[mapped_m]] // CHECK: return %[[r]] : tensor return %0 : tensor } // ----- // CHECK-LABEL: func @tensor.splat( // CHECK-SAME: %[[F:.*]]: f32) // CHECK-DAG: %[[ALLOC:.*]] = memref.alloc() {{.*}} : memref<10x2x4xf32> // CHECK: %[[ALLOC_T:.*]] = bufferization.to_tensor %[[ALLOC]] // CHECK: %[[MAPPED:.*]] = linalg.map // CHECK: outs(%[[ALLOC_T]] : tensor<10x2x4xf32>) // CHECK: linalg.yield %[[F]] // CHECK: } // CHECK: return %[[MAPPED]] : tensor<10x2x4xf32> // CHECK: } func.func @tensor.splat(%f: f32) -> tensor<10x2x4xf32> { %t = tensor.splat %f : tensor<10x2x4xf32> return %t : tensor<10x2x4xf32> } // ----- // CHECK-LABEL: func @tensor.splat_dynamic( // CHECK-SAME: %[[F:[a-zA-Z0-9_]+]]: f32 // CHECK-SAME: %[[M:[a-zA-Z0-9_]+]]: index // CHECK-SAME: %[[N:[a-zA-Z0-9_]+]]: index // CHECK-DAG: %[[ALLOC:.*]] = memref.alloc(%[[M]], %[[N]]) {{.*}} : memref // CHECK: %[[ALLOC_T:.*]] = bufferization.to_tensor %[[ALLOC]] // CHECK: %[[MAPPED:.*]] = linalg.map outs(%[[ALLOC_T]] : tensor) // CHECK: () { // CHECK: linalg.yield %[[F]] : f32 // CHECK: } // CHECK: return %[[MAPPED]] : tensor // CHECK: } func.func @tensor.splat_dynamic(%f: f32, %m: index, %n: index) -> tensor { %0 = tensor.splat %f[%m, %n] : tensor return %0 : tensor }