// RUN: mlir-opt -split-input-file -test-tensor-transform-patterns=test-fold-into-pack-and-unpack %s | FileCheck %s func.func @fold_unpack_slice(%arg0 : tensor, %arg1 : tensor, %arg2 : index, %arg3 : index) -> tensor { %0 = tensor.unpack %arg0 inner_dims_pos = [0, 1] inner_tiles = [8, 4] into %arg1 : tensor -> tensor %1 = tensor.extract_slice %0[0, 0] [%arg2, %arg3] [1, 1] : tensor to tensor return %1 : tensor } // CHECK: func @fold_unpack_slice( // CHECK-SAME: %[[ARG0:.+]]: tensor // CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]]: tensor // CHECK-SAME: %[[ARG2:[a-zA-Z0-9]+]]: index // CHECK-SAME: %[[ARG3:[a-zA-Z0-9]+]]: index // CHECK: %[[INIT:.+]] = tensor.empty(%[[ARG2]], %[[ARG3]]) : tensor // CHECK: %[[UNPACK:.+]] = tensor.unpack %[[ARG0]] inner_dims_pos = [0, 1] inner_tiles = [8, 4] // CHECK-SAME: into %[[INIT]] // CHECK: return %[[UNPACK]] // ----- func.func @nofold_unpack_slice_non_zero_offset(%arg0 : tensor, %arg1 : tensor, %arg2 : index, %arg3 : index, %arg4 : index) -> tensor { %0 = tensor.unpack %arg0 inner_dims_pos = [0, 1] inner_tiles = [8, 4] into %arg1 : tensor -> tensor %1 = tensor.extract_slice %0[0, %arg4] [%arg2, %arg3] [1, 1] : tensor to tensor return %1 : tensor } // CHECK-LABEL: func @nofold_unpack_slice_non_zero_offset( // CHECK: %[[UNPACK:.+]] = tensor.unpack // CHECK: tensor.extract_slice %[[UNPACK]] // ----- func.func @nofold_unpack_slice_non_unit_stride(%arg0 : tensor, %arg1 : tensor, %arg2 : index, %arg3 : index, %arg4 : index) -> tensor { %0 = tensor.unpack %arg0 inner_dims_pos = [0, 1] inner_tiles = [8, 4] into %arg1 : tensor -> tensor %1 = tensor.extract_slice %0[0, 0] [%arg2, %arg3] [%arg4, 1] : tensor to tensor return %1 : tensor } // CHECK-LABEL: func @nofold_unpack_slice_non_unit_stride( // CHECK: %[[UNPACK:.+]] = tensor.unpack // CHECK: tensor.extract_slice %[[UNPACK]] // ----- func.func @nofold_unpack_slice_rank_reduced(%arg0 : tensor, %arg1 : tensor, %arg2 : index, %arg3 : index) -> tensor { %0 = tensor.unpack %arg0 inner_dims_pos = [0, 1] inner_tiles = [8, 4] into %arg1 : tensor -> tensor %1 = tensor.extract_slice %0[0, 0] [1, 1] [1, 1] : tensor to tensor return %1 : tensor } // CHECK-LABEL: func @nofold_unpack_slice_rank_reduced( // CHECK: %[[UNPACK:.+]] = tensor.unpack // CHECK: tensor.extract_slice %[[UNPACK]] // ----- func.func @pad_pack(%src: tensor<16641x16xf32>) -> tensor<2082x1x8x32xf32> { %c0 = arith.constant 0 : index %cst = arith.constant 0.000000e+00 : f32 %padded = tensor.pad %src low[0, 0] high[15, 0] { ^bb0(%arg0: index, %arg1: index): tensor.yield %cst : f32 } : tensor<16641x16xf32> to tensor<16656x16xf32> %empty = tensor.empty() : tensor<2082x1x8x32xf32> %pack = tensor.pack %padded padding_value(%cst : f32) inner_dims_pos = [0, 1] inner_tiles = [8, 32] into %empty : tensor<16656x16xf32> -> tensor<2082x1x8x32xf32> return %pack : tensor<2082x1x8x32xf32> } // CHECK-LABEL: func.func @pad_pack // CHECK-SAME: %[[SRC:[a-zA-Z0-9]+]] // CHECK: %[[PAD_VAL:.+]] = arith.constant 0.000000e+00 : f32 // CHECK: %[[DEST:.+]] = tensor.empty() : tensor<2082x1x8x32xf32> // CHECK: %[[PACK:.+]] = tensor.pack %[[SRC]] // CHECK-SAME: padding_value(%[[PAD_VAL]] : f32) // CHECK-SAME: inner_dims_pos = [0, 1] inner_tiles = [8, 32] into %[[DEST]] // ----- func.func @nofold_pad_pack(%src: tensor<16641x16xf32>) -> tensor<2082x1x8x32xf32> { %c0 = arith.constant 0 : index %cst = arith.constant 0.000000e+00 : f32 %padded = tensor.pad %src nofold low[0, 0] high[15, 0] { ^bb0(%arg0: index, %arg1: index): tensor.yield %cst : f32 } : tensor<16641x16xf32> to tensor<16656x16xf32> %empty = tensor.empty() : tensor<2082x1x8x32xf32> %pack = tensor.pack %padded padding_value(%cst : f32) inner_dims_pos = [0, 1] inner_tiles = [8, 32] into %empty : tensor<16656x16xf32> -> tensor<2082x1x8x32xf32> return %pack : tensor<2082x1x8x32xf32> } // CHECK-LABEL: func.func @nofold_pad_pack // CHECK: tensor.pad // CHECK: tensor.pack // ----- func.func @pad_pack_different_padding_value(%src: tensor<16641x16xf32>) -> tensor<2082x1x8x32xf32> { %c0 = arith.constant 0 : index %cst0 = arith.constant 0.000000e+00 : f32 %cst1 = arith.constant 1.000000e+00 : f32 %padded = tensor.pad %src low[0, 0] high[15, 0] { ^bb0(%arg0: index, %arg1: index): tensor.yield %cst0 : f32 } : tensor<16641x16xf32> to tensor<16656x16xf32> %empty = tensor.empty() : tensor<2082x1x8x32xf32> %pack = tensor.pack %padded padding_value(%cst1 : f32) inner_dims_pos = [0, 1] inner_tiles = [8, 32] into %empty : tensor<16656x16xf32> -> tensor<2082x1x8x32xf32> return %pack : tensor<2082x1x8x32xf32> } // CHECK-LABEL: func.func @pad_pack_different_padding_value // CHECK: tensor.pad // CHECK: tensor.pack // ----- func.func @tensor_pack_linalg_transpose_fold(%arg0: tensor<56x57x1x64xf32>) -> tensor<1x57x56x2x32xf32> { %0 = tensor.empty() : tensor<56x2x1x57x32xf32> %pack = tensor.pack %arg0 outer_dims_perm = [0, 3, 2, 1] inner_dims_pos = [3] inner_tiles = [32] into %0 : tensor<56x57x1x64xf32> -> tensor<56x2x1x57x32xf32> %1 = tensor.empty() : tensor<1x57x56x2x32xf32> %transposed = linalg.transpose ins(%pack : tensor<56x2x1x57x32xf32>) outs(%1 : tensor<1x57x56x2x32xf32>) permutation = [2, 3, 0, 1, 4] return %transposed : tensor<1x57x56x2x32xf32> } // CHECK: func @tensor_pack_linalg_transpose_fold( // CHECK-SAME: %[[ARG0:.+]]: tensor<56x57x1x64xf32>) // CHECK: %[[INIT:.+]] = tensor.empty() : tensor<1x57x56x2x32xf32> // CHECK: %[[PACK:.+]] = tensor.pack %[[ARG0]] // CHECK-SAME: outer_dims_perm = [2, 1, 0, 3] // CHECK-SAME: inner_dims_pos = [3] inner_tiles = [32] // CHECK-SAME: into %[[INIT]] // CHECK: return %[[PACK]] // ----- func.func @tensor_pack_linalg_transpose_fold_with_padding(%arg0: tensor<56x57x1x55xf32>, %padding: f32) -> tensor<1x57x56x2x32xf32> { %0 = tensor.empty() : tensor<56x2x1x57x32xf32> %pack = tensor.pack %arg0 padding_value(%padding : f32) outer_dims_perm = [0, 3, 2, 1] inner_dims_pos = [3] inner_tiles = [32] into %0 : tensor<56x57x1x55xf32> -> tensor<56x2x1x57x32xf32> %1 = tensor.empty() : tensor<1x57x56x2x32xf32> %transposed = linalg.transpose ins(%pack : tensor<56x2x1x57x32xf32>) outs(%1 : tensor<1x57x56x2x32xf32>) permutation = [2, 3, 0, 1, 4] return %transposed : tensor<1x57x56x2x32xf32> } // CHECK: func @tensor_pack_linalg_transpose_fold_with_padding( // CHECK-SAME: %[[ARG0:.+]]: tensor<56x57x1x55xf32>, %[[PADDING:.+]]: f32) // CHECK: %[[INIT:.+]] = tensor.empty() : tensor<1x57x56x2x32xf32> // CHECK: %[[PACK:.+]] = tensor.pack %[[ARG0]] padding_value(%[[PADDING]] : f32) // CHECK-SAME: outer_dims_perm = [2, 1, 0, 3] // CHECK-SAME: inner_dims_pos = [3] inner_tiles = [32] // CHECK-SAME: into %[[INIT]] // CHECK: return %[[PACK]] // ----- func.func @tensor_pack_linalg_transpose_fold_no_outer_dims_perm(%arg0: tensor<56x57x1x64xf32>) -> tensor<1x2x56x57x32xf32> { %0 = tensor.empty() : tensor<56x57x1x2x32xf32> %pack = tensor.pack %arg0 inner_dims_pos = [3] inner_tiles = [32] into %0 : tensor<56x57x1x64xf32> -> tensor<56x57x1x2x32xf32> %1 = tensor.empty() : tensor<1x2x56x57x32xf32> %transposed = linalg.transpose ins(%pack : tensor<56x57x1x2x32xf32>) outs(%1 : tensor<1x2x56x57x32xf32>) permutation = [2, 3, 0, 1, 4] return %transposed : tensor<1x2x56x57x32xf32> } // CHECK: func @tensor_pack_linalg_transpose_fold_no_outer_dims_perm( // CHECK-SAME: %[[ARG0:.+]]: tensor<56x57x1x64xf32>) // CHECK: %[[INIT:.+]] = tensor.empty() : tensor<1x2x56x57x32xf32> // CHECK: %[[PACK:.+]] = tensor.pack %[[ARG0]] // CHECK-SAME: outer_dims_perm = [2, 3, 0, 1] // CHECK-SAME: inner_dims_pos = [3] inner_tiles = [32] // CHECK-SAME: into %[[INIT]] // CHECK: return %[[PACK]] // ----- func.func @tensor_pack_linalg_transpose_fold_tile_dims_transpose(%arg0: tensor<56x72x24x128xf32>) -> tensor<12x56x4x9x32x8x2xf32> { %0 = tensor.empty() : tensor<4x9x12x56x8x2x32xf32> %pack = tensor.pack %arg0 outer_dims_perm = [3, 1, 2, 0] inner_dims_pos = [1, 2, 3] inner_tiles = [8, 2, 32] into %0 : tensor<56x72x24x128xf32> -> tensor<4x9x12x56x8x2x32xf32> %1 = tensor.empty() : tensor<12x56x4x9x32x8x2xf32> %transposed = linalg.transpose ins(%pack : tensor<4x9x12x56x8x2x32xf32>) outs(%1 : tensor<12x56x4x9x32x8x2xf32>) permutation = [2, 3, 0, 1, 6, 4, 5] return %transposed : tensor<12x56x4x9x32x8x2xf32> } // CHECK: func @tensor_pack_linalg_transpose_fold_tile_dims_transpose( // CHECK-SAME: %[[ARG0:.+]]: tensor<56x72x24x128xf32>) // CHECK: %[[INIT:.+]] = tensor.empty() : tensor<12x56x4x9x32x8x2xf32> // CHECK: %[[PACK:.+]] = tensor.pack %[[ARG0]] // CHECK-SAME: outer_dims_perm = [2, 0, 3, 1] // CHECK-SAME: inner_dims_pos = [3, 1, 2] inner_tiles = [32, 8, 2] // CHECK-SAME: into %[[INIT]] // CHECK: return %[[PACK]] // ----- func.func @tensor_pack_linalg_transpose_fold_tile_dims_outer_dims_transpose(%arg0: tensor<56x72x24x128xf32>) -> tensor<9x56x2x12x32x8x4xf32> { %0 = tensor.empty() : tensor<4x12x9x56x8x2x32xf32> %pack = tensor.pack %arg0 outer_dims_perm = [3, 2, 1, 0] inner_dims_pos = [1, 2, 3] inner_tiles = [8, 2, 32] into %0 : tensor<56x72x24x128xf32> -> tensor<4x12x9x56x8x2x32xf32> %1 = tensor.empty() : tensor<9x56x2x12x32x8x4xf32> %transposed = linalg.transpose ins(%pack : tensor<4x12x9x56x8x2x32xf32>) outs(%1 : tensor<9x56x2x12x32x8x4xf32>) permutation = [2, 3, 5, 1, 6, 4, 0] return %transposed : tensor<9x56x2x12x32x8x4xf32> } // CHECK: func @tensor_pack_linalg_transpose_fold_tile_dims_outer_dims_transpose( // CHECK-SAME: %[[ARG0:.+]]: tensor<56x72x24x128xf32>) // CHECK: tensor.pack // CHECK: linalg.transpose // ----- func.func @tensor_pack_linalg_transpose_fold_dynamic_outer_dims(%arg0: tensor<56x?x?x64xf32>) -> tensor { %0 = tensor.empty() : tensor<56x2x1x57x32xf32> %pack = tensor.pack %arg0 outer_dims_perm = [0, 3, 2, 1] inner_dims_pos = [3] inner_tiles = [32] into %0 : tensor<56x?x?x64xf32> -> tensor<56x2x1x57x32xf32> %1 = tensor.empty() : tensor<1x57x56x2x32xf32> %transposed = linalg.transpose ins(%pack : tensor<56x2x1x57x32xf32>) outs(%1 : tensor<1x57x56x2x32xf32>) permutation = [2, 3, 0, 1, 4] %return_value = tensor.cast %transposed : tensor<1x57x56x2x32xf32> to tensor return %return_value : tensor } // CHECK: func @tensor_pack_linalg_transpose_fold_dynamic_outer_dims( // CHECK-SAME: %[[ARG0:.+]]: tensor<56x?x?x64xf32>) // CHECK-DAG: %[[c1:.+]] = arith.constant 1 : index // CHECK-DAG: %[[c2:.+]] = arith.constant 2 : index // CHECK: %[[dim:.+]] = tensor.dim %[[ARG0]], %[[c1]] : tensor<56x?x?x64xf32> // CHECK: %[[dim_0:.+]] = tensor.dim %[[ARG0]], %[[c2]] : tensor<56x?x?x64xf32> // CHECK: %[[INIT:.+]] = tensor.empty(%[[dim_0]], %[[dim]]) : tensor // CHECK: %[[PACK:.+]] = tensor.pack %[[ARG0]] // CHECK-SAME: outer_dims_perm = [2, 1, 0, 3] // CHECK-SAME: inner_dims_pos = [3] inner_tiles = [32] // CHECK-SAME: into %[[INIT]] // CHECK: return %[[PACK]] // ----- func.func @tensor_pack_linalg_transpose_fold_dynamic_outer_and_tile_dims(%arg0: tensor<56x?x?x128xf32>) -> tensor { %0 = tensor.empty() : tensor<56x9x12x4x8x2x32xf32> %pack = tensor.pack %arg0 inner_dims_pos = [1, 2, 3] inner_tiles = [8, 2, 32] into %0 : tensor<56x?x?x128xf32> -> tensor<56x9x12x4x8x2x32xf32> %1 = tensor.empty() : tensor<12x4x56x9x32x8x2xf32> %transposed = linalg.transpose ins(%pack : tensor<56x9x12x4x8x2x32xf32>) outs(%1 : tensor<12x4x56x9x32x8x2xf32>) permutation = [2, 3, 0, 1, 6, 4, 5] %return_value = tensor.cast %transposed : tensor<12x4x56x9x32x8x2xf32> to tensor return %return_value : tensor } // CHECK: #[[map:.+]] = affine_map<()[s0] -> (s0 ceildiv 8)> // CHECK: #[[map1:.+]] = affine_map<()[s0] -> (s0 ceildiv 2)> // CHECK: module { // CHECK: func.func @tensor_pack_linalg_transpose_fold_dynamic_outer_and_tile_dims( // CHECK-SAME: %[[ARG0:.+]]: tensor<56x?x?x128xf32>) // CHECK-DAG: %[[c1:.+]] = arith.constant 1 : index // CHECK-DAG: %[[c2:.+]] = arith.constant 2 : index // CHECK: %[[dim:.+]] = tensor.dim %[[ARG0]], %[[c1]] : tensor<56x?x?x128xf32> // CHECK: %[[dim_0:.+]] = tensor.dim %[[ARG0]], %[[c2]] : tensor<56x?x?x128xf32> // CHECK: %[[mapped_dim1:.+]] = affine.apply #[[map:.+]]()[%[[dim]]] // CHECK: %[[mapped_dim2:.+]] = affine.apply #[[map1:.+]]()[%[[dim_0]]] // CHECK: %[[INIT:.+]] = tensor.empty(%[[mapped_dim2]], %[[mapped_dim1]]) : tensor // CHECK: %[[PACK:.+]] = tensor.pack %[[ARG0]] outer_dims_perm = [2, 3, 0, 1] inner_dims_pos = [3, 1, 2] inner_tiles = [32, 8, 2] into %[[INIT]] : tensor<56x?x?x128xf32> -> tensor // CHECK: %[[CAST:.+]] = tensor.cast %[[PACK]] : tensor to tensor // CHECK: return %[[CAST]] : tensor // CHECK: } // ----- func.func @tensor_pack_linalg_transpose_fold_dynamic_outer_dims_tile_dims_tile_sizes(%arg0: tensor, %pack_dest: tensor, %transpose_dest: tensor, %tile_p : index, %tile_q : index, %tile_r : index) -> tensor { %pack = tensor.pack %arg0 outer_dims_perm = [3, 0, 2, 1] inner_dims_pos = [1, 2, 3] inner_tiles = [%tile_p, %tile_q, %tile_r] into %pack_dest : tensor -> tensor %transposed = linalg.transpose ins(%pack : tensor) outs(%transpose_dest : tensor) permutation = [2, 3, 0, 1, 6, 4, 5] return %transposed : tensor } // CHECK: #[[map:.+]] = affine_map<()[s0, s1] -> (s0 ceildiv s1)> // CHECK: module { // CHECK: func.func @tensor_pack_linalg_transpose_fold_dynamic_outer_dims_tile_dims_tile_sizes( // CHECK-SAME: %[[ARG0:.+]]: tensor, // CHECK-SAME: %[[PACK_DEST:.+]]: tensor, %[[TRANSPOSE_DEST:.+]]: tensor, // CHECK-SAME: %[[ARG1:.+]]: index, %[[ARG2:.+]]: index, // CHECK-SAME: %[[ARG3:.+]]: index) // CHECK-DAG: %[[c0:.+]] = arith.constant 0 : index // CHECK-DAG: %[[c1:.+]] = arith.constant 1 : index // CHECK-DAG: %[[c2:.+]] = arith.constant 2 : index // CHECK-DAG: %[[c3:.+]] = arith.constant 3 : index // CHECK: %[[dim:.+]] = tensor.dim %[[ARG0]], %[[c0]] : tensor // CHECK: %[[dim_0:.+]] = tensor.dim %[[ARG0]], %[[c1]] : tensor // CHECK: %[[dim_1:.+]] = tensor.dim %[[ARG0]], %[[c2]] : tensor // CHECK: %[[dim_2:.+]] = tensor.dim %[[ARG0]], %[[c3]] : tensor // CHECK: %[[mapped_dim0:.+]] = affine.apply #[[map:.+]]()[%[[dim_2]], %[[ARG3]]] // CHECK: %[[mapped_dim1:.+]] = affine.apply #[[map:.+]]()[%[[dim_0]], %[[ARG1]]] // CHECK: %[[mapped_dim2:.+]] = affine.apply #[[map:.+]]()[%[[dim_1]], %[[ARG2]]] // CHECK: %[[INIT:.+]] = tensor.empty(%[[mapped_dim2]], %[[mapped_dim1]], %[[mapped_dim0]], %[[dim]], %[[ARG3]], %[[ARG1]], %[[ARG2]]) : tensor // CHECK: %[[PACK:.+]] = tensor.pack %[[ARG0]] outer_dims_perm = [2, 1, 3, 0] inner_dims_pos = [3, 1, 2] inner_tiles = [%[[ARG3]], %[[ARG1]], %[[ARG2]]] into %[[INIT]] : tensor -> tensor // CHECK: return %[[PACK]] : tensor // CHECK: } // ----- func.func @linalg_transpose_tensor_pack_fold(%arg0: tensor<56x57x1x64xf32>) -> tensor<1x57x56x2x32xf32> { %0 = tensor.empty() : tensor<1x56x57x64xf32> %transposed = linalg.transpose ins(%arg0 : tensor<56x57x1x64xf32>) outs(%0 : tensor<1x56x57x64xf32>) permutation = [2, 0, 1, 3] %1 = tensor.empty() : tensor<1x57x56x2x32xf32> %pack = tensor.pack %transposed outer_dims_perm = [0, 2, 1, 3] inner_dims_pos = [3] inner_tiles = [32] into %1 : tensor<1x56x57x64xf32> -> tensor<1x57x56x2x32xf32> return %pack : tensor<1x57x56x2x32xf32> } //CHECK-LABEL: func @linalg_transpose_tensor_pack_fold( // CHECK-SAME: %[[ARG0:.+]]: tensor<56x57x1x64xf32>) // CHECK: %[[INIT:.+]] = tensor.empty() : tensor<1x57x56x2x32xf32> // CHECK: %[[PACK:.+]] = tensor.pack %[[ARG0]] // CHECK-SAME: outer_dims_perm = [2, 1, 0, 3] // CHECK-SAME: inner_dims_pos = [3] inner_tiles = [32] // CHECK-SAME: into %[[INIT]] // CHECK: return %[[PACK]] // ----- func.func @linalg_transpose_tensor_pack_fold_with_padding(%arg0: tensor<56x57x1x55xf32>, %padding: f32) -> tensor<1x57x56x2x32xf32> { %0 = tensor.empty() : tensor<1x56x57x55xf32> %transpose = linalg.transpose ins(%arg0 : tensor<56x57x1x55xf32>) outs(%0 : tensor<1x56x57x55xf32>) permutation = [2, 0, 1, 3] %1 = tensor.empty() : tensor<1x57x56x2x32xf32> %pack = tensor.pack %transpose padding_value(%padding : f32) outer_dims_perm = [0, 2, 1, 3] inner_dims_pos = [3] inner_tiles = [32] into %1 : tensor<1x56x57x55xf32> -> tensor<1x57x56x2x32xf32> return %pack : tensor<1x57x56x2x32xf32> } //CHECK-LABEL: func @linalg_transpose_tensor_pack_fold_with_padding( // CHECK-SAME: %[[ARG0:.+]]: tensor<56x57x1x55xf32>, %[[PADDING:.+]]: f32) // CHECK: %[[INIT:.+]] = tensor.empty() : tensor<1x57x56x2x32xf32> // CHECK: %[[PACK:.+]] = tensor.pack %[[ARG0]] padding_value(%[[PADDING]] : f32) // CHECK-SAME: outer_dims_perm = [2, 1, 0, 3] // CHECK-SAME: inner_dims_pos = [3] inner_tiles = [32] // CHECK-SAME: into %[[INIT]] // CHECK: return %[[PACK]] // ----- func.func @linalg_transpose_tensor_pack_fold_no_outer_dims_perm(%arg0: tensor<56x57x1x64xf32>) -> tensor<1x56x57x2x32xf32> { %0 = tensor.empty() : tensor<1x56x57x64xf32> %transposed = linalg.transpose ins(%arg0 : tensor<56x57x1x64xf32>) outs(%0 : tensor<1x56x57x64xf32>) permutation = [2, 0, 1, 3] %1 = tensor.empty() : tensor<1x56x57x2x32xf32> %pack = tensor.pack %transposed inner_dims_pos = [3] inner_tiles = [32] into %1 : tensor<1x56x57x64xf32> -> tensor<1x56x57x2x32xf32> return %pack : tensor<1x56x57x2x32xf32> } //CHECK-LABEL: func @linalg_transpose_tensor_pack_fold_no_outer_dims_perm( // CHECK-SAME: %[[ARG0:.+]]: tensor<56x57x1x64xf32>) // CHECK: %[[INIT:.+]] = tensor.empty() : tensor<1x56x57x2x32xf32> // CHECK: %[[PACK:.+]] = tensor.pack %[[ARG0]] // CHECK-SAME: outer_dims_perm = [2, 0, 1, 3] // CHECK-SAME: inner_dims_pos = [3] inner_tiles = [32] // CHECK-SAME: into %[[INIT]] // CHECK: return %[[PACK]] // ----- func.func @linalg_transpose_tensor_pack_fold_complex_inner_dims_change(%arg0: tensor<25x30x35x40xf32>, %transpose_dest: tensor<35x40x25x30xf32>, %pack_dest: tensor<3x35x5x8x5x10x5xf32>) -> tensor<3x35x5x8x5x10x5xf32> { %transposed = linalg.transpose ins(%arg0 : tensor<25x30x35x40xf32>) outs(%transpose_dest : tensor<35x40x25x30xf32>) permutation = [2, 3, 0, 1] %pack = tensor.pack %transposed outer_dims_perm = [3, 0, 2, 1] inner_dims_pos = [1, 3, 2] inner_tiles = [5, 10, 5] into %pack_dest : tensor<35x40x25x30xf32> -> tensor<3x35x5x8x5x10x5xf32> return %pack : tensor<3x35x5x8x5x10x5xf32> } //CHECK-LABEL: func.func @linalg_transpose_tensor_pack_fold_complex_inner_dims_change( // CHECK-SAME: %[[ARG0:.+]]: tensor<25x30x35x40xf32>, // CHECK-SAME: %[[ARG1:.+]]: tensor<35x40x25x30xf32>, // CHECK-SAME: %[[ARG2:.+]]: tensor<3x35x5x8x5x10x5xf32>) -> tensor<3x35x5x8x5x10x5xf32> { // CHECK: %[[VAL0:.+]] = tensor.empty() : tensor<3x35x5x8x5x10x5xf32> // CHECK: %[[PACK:.+]] = tensor.pack %[[ARG0]] // CHECK-SAME: outer_dims_perm = [1, 2, 0, 3] // CHECK-SAME: inner_dims_pos = [3, 1, 0] // CHECK-SAME: inner_tiles = [5, 10, 5] // CHECK-SAME: into %[[VAL0]] // CHECK: return %[[PACK]] // ----- func.func @linalg_transpose_tensor_pack_fold_dynamic_outer_dims_tile_dims_tile_sizes(%arg0: tensor, %transpose_dest: tensor, %pack_dest: tensor, %tile_p : index, %tile_q : index, %tile_r : index) -> tensor { %transposed = linalg.transpose ins(%arg0 : tensor) outs(%transpose_dest : tensor) permutation = [2, 3, 0, 1] %pack = tensor.pack %transposed outer_dims_perm = [3, 0, 2, 1] inner_dims_pos = [1, 3, 2] inner_tiles = [%tile_p, %tile_q, %tile_r] into %pack_dest : tensor -> tensor return %pack : tensor } // CHECK: #[[map:.+]] = affine_map<()[s0, s1] -> (s0 ceildiv s1)> //CHECK-LABEL: func.func @linalg_transpose_tensor_pack_fold_dynamic_outer_dims_tile_dims_tile_sizes( // CHECK-SAME: %[[ARG0:.+]]: tensor, %[[ARG1:.+]]: tensor, // CHECK-SAME: %[[ARG2:.+]]: tensor, %[[ARG3:.+]]: index, %[[ARG4:.+]]: index, %[[ARG5:.+]]: index) -> tensor { // CHECK-DAG: %[[C0:.+]] = arith.constant 0 : index // CHECK-DAG: %[[C1:.+]] = arith.constant 1 : index // CHECK-DAG: %[[C2:.+]] = arith.constant 2 : index // CHECK-DAG: %[[C3:.+]] = arith.constant 3 : index // CHECK: %[[DIM:.+]] = tensor.dim %[[ARG0]], %[[C0]] : tensor // CHECK: %[[DIM0:.+]] = tensor.dim %[[ARG0]], %[[C1]] : tensor // CHECK: %[[DIM1:.+]] = tensor.dim %[[ARG0]], %[[C2]] : tensor // CHECK: %[[DIM2:.+]] = tensor.dim %[[ARG0]], %[[C3]] : tensor // CHECK: %[[VAL0:.+]] = affine.apply #[[map:.+]]()[%[[DIM2]], %[[ARG3]]] // CHECK: %[[VAL1:.+]] = affine.apply #[[map:.+]]()[%[[DIM0]], %[[ARG4]]] // CHECK: %[[VAL2:.+]] = affine.apply #[[map:.+]]()[%[[DIM]], %[[ARG5]]] // CHECK: %[[VAL3:.+]] = tensor.empty(%[[VAL1]], %[[DIM1]], %[[VAL2]], %[[VAL0]], %[[ARG3]], %[[ARG4]], %[[ARG5]]) : tensor // CHECK: %[[PACK:.+]] = tensor.pack %[[ARG0]] outer_dims_perm = [1, 2, 0, 3] inner_dims_pos = [3, 1, 0] inner_tiles = [%[[ARG3]], %[[ARG4]], %[[ARG5]]] into %[[VAL3]] : tensor -> tensor // CHECK: return %[[PACK]] : tensor // ----- func.func @linalg_transpose_tensor_pack_multiple_tiles(%arg0: tensor) -> tensor<32x?x64x16x2xbf16> { %c0 = arith.constant 0 : index %cst = arith.constant 0.000000e+00 : bf16 %dim = tensor.dim %arg0, %c0 : tensor %0 = tensor.empty(%dim) : tensor<32x128x?xbf16> %transposed = linalg.transpose ins(%arg0 : tensor) outs(%0 : tensor<32x128x?xbf16>) permutation = [1, 2, 0] %2 = tensor.empty(%dim) : tensor<32x?x64x16x2xbf16> %pack = tensor.pack %transposed padding_value(%cst : bf16) outer_dims_perm = [0, 2, 1] inner_dims_pos = [2, 1] inner_tiles = [16, 2] into %2 : tensor<32x128x?xbf16> -> tensor<32x?x64x16x2xbf16> return %pack : tensor<32x?x64x16x2xbf16> } // CHECK: #[[map:.+]] = affine_map<()[s0] -> (s0 ceildiv 16)> //CHECK-LABEL: func.func @linalg_transpose_tensor_pack_multiple_tiles( // CHECK-SAME: %[[ARG0:.+]]: tensor) -> tensor<32x?x64x16x2xbf16> { // CHECK-DAG: %[[C0:.+]] = arith.constant 0 : index // CHECK-DAG: %[[CST:.+]] = arith.constant 0.000000e+00 : bf16 // CHECK: %[[DIM:.+]] = tensor.dim %[[ARG0]], %[[C0]] : tensor // CHECK: %[[VAL0:.+]] = affine.apply #[[map:.+]]()[%[[DIM]]] // CHECK: %[[VAL1:.+]] = tensor.empty(%[[VAL0]]) : tensor<32x?x64x16x2xbf16> // CHECK: %[[PACK:.+]] = tensor.pack %[[ARG0]] // CHECK-SAME: padding_value(%[[CST]] : bf16) // CHECK-SAME: outer_dims_perm = [1, 0, 2] // CHECK-SAME: inner_dims_pos = [0, 2] // CHECK-SAME: inner_tiles = [16, 2] // CHECK-SAME: into %[[VAL1]] : tensor -> tensor<32x?x64x16x2xbf16> // CHECK: return %[[PACK]] : tensor<32x?x64x16x2xbf16> // CHECK: }