// RUN: mlir-opt %s --transform-interpreter -allow-unregistered-dialect --split-input-file | FileCheck %s func.func @cast_to_dynamic(%arg0: tensor<10x13xf32>, %arg1: tensor<3x13xf32>) -> tensor<13x13xf32> { %0 = tensor.concat dim(0) %arg0, %arg1 : (tensor<10x13xf32>, tensor<3x13xf32>) -> tensor<13x13xf32> func.return %0 : tensor<13x13xf32> } func.func private @concat_replacement(%arg0: tensor, %arg1: tensor) -> tensor module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg0: !transform.any_op) { %funcs = transform.structured.match ops{["func.func"]} in %arg0 : (!transform.any_op) -> !transform.any_op %f:2 = transform.split_handle %funcs : (!transform.any_op) -> (!transform.any_op, !transform.any_op) %concat = transform.structured.match ops{["tensor.concat"]} in %f#0 : (!transform.any_op) -> !transform.any_op %ins = transform.get_operand %concat[all] : (!transform.any_op) -> !transform.any_value %out = transform.get_result %concat[all] : (!transform.any_op) -> !transform.any_value transform.func.cast_and_call %f#1(%ins) -> %out before %concat { transform.type_conversion.tensor.cast_shape_dynamic_dims } : (!transform.any_op, !transform.any_value, !transform.any_value, !transform.any_op) -> !transform.any_op transform.apply_dce to %f#0 : !transform.any_op transform.yield } } // CHECK-LABEL: func.func @cast_to_dynamic // CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]: tensor<10x13xf32> // CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]]: tensor<3x13xf32> // CHECK-DAG: %[[CAST0:.+]] = tensor.cast %[[ARG0]] : tensor<10x13xf32> to tensor // CHECK-DAG: %[[CAST1:.+]] = tensor.cast %[[ARG1]] : tensor<3x13xf32> to tensor // CHECK: %[[CALL:.+]] = call @concat_replacement(%[[CAST0]], %[[CAST1]]) // CHECK: %[[CAST_RES:.+]] = tensor.cast %[[CALL]] : tensor to tensor<13x13xf32> // CHECK: return %[[CAST_RES]] : tensor<13x13xf32> // ----- func.func @cast_to_static(%arg0: tensor) -> tensor { %0 = tensor.collapse_shape %arg0 [[0, 1]] : tensor into tensor func.return %0 : tensor } func.func private @collapse_replacement(%arg0: tensor<4x5xf32>) -> tensor<20xf32> module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg0: !transform.any_op) { %funcs = transform.structured.match ops{["func.func"]} in %arg0 : (!transform.any_op) -> !transform.any_op %f:2 = transform.split_handle %funcs : (!transform.any_op) -> (!transform.any_op, !transform.any_op) %concat = transform.structured.match ops{["tensor.collapse_shape"]} in %f#0 : (!transform.any_op) -> !transform.any_op %ins = transform.get_operand %concat[all] : (!transform.any_op) -> !transform.any_value %out = transform.get_result %concat[all] : (!transform.any_op) -> !transform.any_value transform.func.cast_and_call %f#1(%ins) -> %out before %concat { transform.type_conversion.tensor.cast_shape_dynamic_dims ignore_dynamic_info } : (!transform.any_op, !transform.any_value, !transform.any_value, !transform.any_op) -> !transform.any_op transform.apply_dce to %f#0 : !transform.any_op transform.yield } } // CHECK-LABEL: func.func @cast_to_static // CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]: tensor // CHECK-DAG: %[[CAST_IN:.+]] = tensor.cast %[[ARG0]] : tensor to tensor<4x5xf32> // CHECK: %[[CALL:.+]] = call @collapse_replacement(%[[CAST_IN]]) // CHECK: %[[CAST_RES:.+]] = tensor.cast %[[CALL]] : tensor<20xf32> to tensor // CHECK: return %[[CAST_RES]] : tensor